Rapid Estimation of Wheat Straw Decomposition Constituents Using Near-Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Fiber and Nutrient Analysis
2.3. Near-Infrared Spectroscopy
2.4. Statistics
3. Results and Discussion
3.1. Calibration Models
3.2. Validation of Models
3.3. Predictions within Breeding Populations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schillinger, W.F.; Papendick, R.I. Then and now: 125 years of dryland wheat farming in the Inland Pacific Northwest. Agron. J. 2008, 100, S166–S182. [Google Scholar] [CrossRef]
- Greer, R.C.; Wu, J.Q.; Singh, P.; McCool, D.K. WEPP simulation of observed winter runoff and erosion in the U.S. Pacific Northwest. Vadose Zone J. 2006, 5, 261–272. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Papendick, R.I.; McCool, D.K. Soil and water challenges for Pacific Northwest agriculture. In Soil and Water Conservation Advances in the United States, SSSA Special Publication 60; Zobeck, T.M., Schillinger, W.F., Eds.; SSSA: Madison, WI, USA, 2010; pp. 47–79. [Google Scholar]
- Kennedy, A.C.; Schillinger, W.F. Soil quality and water intake in traditional-till vs. no-till paired farms in Washington’s Palouse region. Soil Sci. Soc. Am. J. 2006, 70, 940–949. [Google Scholar] [CrossRef]
- Williams, J.D.; Wuest, S.B.; Long, D.S. Soil and water conservation in the Pacific Northwest through no-tillage and intensified crop rotations. J. Soil Water Conserv. 2014, 69, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Frazier, B.E.; McCool, D.K.; Engle, C.F. Soil erosion in the Palouse: An aerial perspective. J. Soil Water Conserv. 1983, 38, 70–74. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Young, D.L. Best management practices for summer fallow in the world’s driest rainfed wheat region. Soil Sci. Soc. Am. J. 2014, 78, 1707–1715. [Google Scholar] [CrossRef]
- Feng, G.; Sharratt, B.; Young, F. Soil properties governing soil erosion affected by cropping systems in the U.S. Pacific Northwest. Soil Till. Res. 2011, 111, 168–174. [Google Scholar] [CrossRef]
- Papendick, R.I.; Lindstrom, M.J.; Cochran, V.L. Soil mulch effects on seedbed temperature and water during fallow in Eastern Washington. Soil Sci. Soc. Am. Proc. 1973, 37, 307–314. [Google Scholar] [CrossRef]
- Sharratt, B.; Feng, G.; Wendling, L. Loss of soil and PM10 from agricultural fields associated with high winds on the Columbia Plateau. Earth Surf. Process. Landf. 2007, 32, 621–630. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Papendick, R.I.; Guy, S.O.; Rasmussen, P.E.; van Kessel, C. Dryland Cropping in the Western United States. In Dryland Agriculture, Agronomy Monograph No. 23, 2nd ed.; Peterson, G.A., Unger, P.W., Payne, W.A., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2006; pp. 365–393. [Google Scholar]
- Sullivan, P. Conservation tillage. ATTRA Sustain. Agric. 2003, 105, 1–5. [Google Scholar]
- Kok, H.; Papendick, R.I.; Saxton, K.E. STEEP: Impact of long-term conservation farming research and education in Pacific Northwest wheatlands. J. Soil Water Conserv. 2009, 64, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Stubbs, T.L.; Kennedy, A.C.; Fortuna, A. Using NIRS to predict fiber and nutrient content of dryland cereal cultivars. J. Agric. Food Chem. 2010, 58, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Lafond, G.P.; Stumborg, M.; Lemke, R.; May, W.E.; Holzapfel, C.B.; Campbell, C.A. Quantifying straw removal through baling and measuring the long-term impact on soil quality and wheat production. Agron. J. 2009, 101, 529–537. [Google Scholar] [CrossRef]
- Stubbs, T.L.; Kennedy, A.C.; Reisenauer, P.E.; Burns, J.W. Chemical composition of residue from cereal crops and cultivars in dryland ecosystems. Agron. J. 2009, 101, 538–545. [Google Scholar] [CrossRef]
- Douglas, C.L., Jr.; Allmaras, R.R.; Rasmussen, P.E.; Ramig, R.E.; Roager, N.C., Jr. Wheat straw composition and placement effects on decomposition in dryland agriculture of the Pacific Northwest. Soil Sci. Soc. Am. J. 1980, 44, 833–837. [Google Scholar] [CrossRef]
- van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Johnson, J.M.-F.; Barbour, N.W.; Meyers, S.L. Chemical composition of crop biomass impacts its decomposition. Soil Sci. Soc. Am. J. 2007, 71, 155–162. [Google Scholar] [CrossRef]
- Başlar, M.; Ertugay, M.F. Determination of protein and gluten quality-related paramenters of wheat flour using near-infrared reflectance spectroscopy (NIRS). Turk. J. Agric. For. 2009, 35, 139–144. [Google Scholar] [CrossRef]
- Albanell, E.; Miñarro, B.; Carrasco, N. Detection of low-level gluten content in flour and batter by near infrared reflectance spectroscopy (NIRS). J. Cereal Sci. 2012, 56, 490–495. [Google Scholar] [CrossRef]
- Bruun, A.; Jensen, J.W.; Magid, J.; Lindedam, J.; Engelsen, S.B. Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy. Ind. Crop. Prod. 2010, 31, 321–326. [Google Scholar] [CrossRef]
- Huang, C.; Han, L.; Yang, Z.; Liu, X. Ultimate analysis and heating vlaue prediction of straw by near infrared spectroscopy. Waste Manag. 2008, 29, 1793–1797. [Google Scholar] [CrossRef] [PubMed]
- Mathison, G.W.; Hsu, H.; Soofi-Siawash, R.; Recino-Diaz, G.; Okine, E.K.; Helm, J.; Juskiw, P. Prediction of composition and ruminal degradability characteristics of barley straw by near infrared reflectance spectroscopy. Can. J. Anim. Sci. 1999, 79, 519–523. [Google Scholar] [CrossRef]
- Redshaw, E.S.; Mathison, G.W.; Milligan, L.P.; Weisenburger, R.D. Near infrared reflectance spectroscopy for predicting forage composition and voluntary consumption and digestibility in cattle and sheep. Can. J. Anim. Sci. 1986, 66, 103–115. [Google Scholar] [CrossRef]
- Stubbs, T.L.; Kennedy, A.C. Prediction of canola residue characteristic using near-infrared spectroscopy. Int. J. Agron. 2017, 2017, 1–9. [Google Scholar] [CrossRef]
- Kong, X.; Xie, J.; Wu, X.; Huang, Y.; Bao, J. Rapid prediction of acid detergent fiber, neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy. J. Agric. Food Chem. 2005, 53, 2843–2848. [Google Scholar] [CrossRef] [PubMed]
- Bobelyn, E.; Serban, A.; Nicu, M.; Lammertyn, J.; Nicolai, B.M.; Saeys, W. Postharvest quality of apple predicted by NIR-spectroscopy: Study of the effect of biological variability on spectra and model performance. Postharvest Biol. Tec. 2010, 55, 133–143. [Google Scholar] [CrossRef]
- Rungpichayapichet, P.; Mahayothee, B.; Nagle, M.; Khuwijitjaru, P.; Müller, J. Robust NIRS models for non-destructive prediction of postharvest fruit ripeness and quality in mango. Postharvest Biol. Tec. 2016, 111, 31–40. [Google Scholar] [CrossRef]
- Nordey, T.; Joas, J.; Davrieux, F.; Chillet, M.; Léchaudel, M. Robust NIRS models for non-destructive prediction of mango internal quality. Sci. Hortic. 2017, 216, 51–57. [Google Scholar] [CrossRef]
- Pomares-Viciana, T.; Martínez-Valdivieso, D.; Font, R.; Gómez, P.; del Río-Celestino, M. Characterisation and prediction of carbohydrate content in zucchini fruit using near infrared spectroscopy. J. Sci. Food Agric. 2018, 98, 1703–1711. [Google Scholar] [CrossRef]
- Web Soil Survey. Available online: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (accessed on 16 January 2019).
- Wheat & Small Grains. Available online: http://smallgrains.wsu.edu/variety/variety-2018-data/ (accessed on 27 February 2019).
- Peterson, C.J.; Allan, R.E.; Rubenthaler, G.L.; Line, R.F. Registration of ‘Eltan’ wheat. J. Plant Regist. 1991, 31, 1704. [Google Scholar] [CrossRef]
- Garland Campbell, K.A.; Allan, R.E.; Anderson, J.; Pritchett, J.A.; Little, L.M.; Morris, C.F.; Line, R.F.; Chen, X.; Walker-Simmons, M.K.; Carter, B.P.; et al. Registration of ‘Finch’ wheat. J. Plant Regist. 2005, 45, 1656–1657. [Google Scholar] [CrossRef]
- Balow, K.; Shelton, G.; Burke, A.; Hagemeyer, K.; Klarquist, E.F.; Froese, P.S.; Carle, S.W.; Roa, A.; Nielsen, N.; Carter, A.H.; et al. Registration of the Finch-Eltan winter wheat recombinant inbred mapping population. J. Plant Regist. 2019, 13, 287–293. [Google Scholar]
- Large, E.C. Growth stages in cereals illustrations of the Feekes scale. Plant Pathol. 1954, 3, 128–129. [Google Scholar] [CrossRef]
- Feekes, W. De Tarwe en haar milieu. Tech. Tarwe Comm. 1941, XVII, 560–561. [Google Scholar]
- Gazulla, M.F.; Rodrigo, M.; Orduña, M.; Gómez, C.M. Determination of carbon, hydrogen, nitrogen, and sulfur in geological materials using elemental analysers. Geostand. Geoanal. Res. 2012, 36, 1397–1402. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O. Population structuring of near infrared spectra and modified partial least squares regression. Crop Sci. 1991, 31, 1548–1555. [Google Scholar] [CrossRef]
- Foss North America. ISIscan & WinISI Software Training Class; Foss North America: Eden Prairie, MN, USA, 2017. [Google Scholar]
- Li, J.; Li, Q.; Li, D.; Chen, Y.; Wang, X.; Yang, W.; Zhang, L. Use of near-infrared reflectance spectroscopy for the rapid determination of the digestible energy and metabolizable energy content of corn fed to growing pigs. J. Anim. Sci. Biotechnol. 2016, 7, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deaville, E.R.; Humphries, D.J.; Givens, D.I. Whole crop cereals 2. Prediction of apparent digestibility and energy value from in vitro digestion techniques and near infrared reflectance spectroscopy and of chemical composition by near infrared reflectance spectroscopy. Anim. Feed Sci. Tech. 2009, 149, 114–124. [Google Scholar] [CrossRef]
- Filho, P.A.C.; Volery, P. Broad-based versus specific NIRS calibration: Determination of total solids in fresh cheese. Anal. Chim. Acta 2005, 554, 82–88. [Google Scholar] [CrossRef]
- Jin, S.; Chen, H. Near-infrared analysis of the chemical composition of rice straw. Ind. Crop. Prod. 2007, 26, 207–211. [Google Scholar] [CrossRef]
- Campo, L.; Manteagudo, A.B.; Salleres, B.; Castro, P.; Moreno-Gonzales, J. NIRS determination of non- structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability. Span. J. Agric. Res. 2013, 11, 463–471. [Google Scholar] [CrossRef]
- Wittkop, B.; Snowdon, R.J.; Friedt, W. New NIRS Calibrations for fiber fractions reveal broad genetic variation in Brassica napus seed quality. J. Agric. Food Chem. 2012, 60, 2248–2256. [Google Scholar] [CrossRef] [PubMed]
- Bruno-Soares, A.M.; Murray, I.; Paterson, R.M.; Abreu, J.M.F. Use of near infrared reflectance spectroscopy (NIRS) for the prediction of the chemical composition and nutritional attributes of green crop cereals. Anim. Feed Sci. Tech. 1998, 75, 15–25. [Google Scholar] [CrossRef]
- Williams, P. Variables Affecting Near-Infrared Reflectance Spectroscopic Analysis. In Near-Infrared Technology in the Agricultural and Food Industries; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1987; pp. 143–167. [Google Scholar]
- Starr, C.; Morgan, A.G.; Smith, D.B. An evaluation of near infra-red reflectance analysis in some plant breeding programmes. J. Agric. Sci. 1981, 97, 107–118. [Google Scholar] [CrossRef]
- Malley, D.F.; Ben-Dor, E.; Martin, P.D. Application in analysis of soils. In Near Infrared Spectroscopy in Agriculture, Agronomy Monograph 44; Roberts, C., Workman, J., Reeves, J.B., III, Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2004; Volume 44, pp. 729–784. [Google Scholar]
Trait | Math Treatment | n | Mean | SD | SEC (%) | R2cal | SECV (%) | 1-VR | SD/SECV |
---|---|---|---|---|---|---|---|---|---|
NDF | 2,6,4,1 | 1517 | 79.48 | 4.12 | 1.49 | 0.87 | 1.52 | 0.86 | 2.71 |
ADF | 2,6,4,1 | 1511 | 51.79 | 3.92 | 1.32 | 0.89 | 1.38 | 0.88 | 2.84 |
ADL | 1,10,10,1 | 1504 | 6.42 | 0.97 | 0.55 | 0.68 | 0.56 | 0.67 | 1.73 |
CELL | 2,6,4,1 | 1513 | 45.34 | 3.17 | 0.97 | 0.91 | 1.00 | 0.90 | 3.17 |
HEMI | 2,10,10,1 | 1513 | 27.63 | 1.43 | 1.06 | 0.45 | 1.07 | 0.44 | 1.34 |
C | 3,5,5,1 | 1508 | 43.32 | 2.19 | 1.08 | 0.76 | 1.12 | 0.74 | 1.96 |
N | 2,4,4,1 | 1511 | 0.16 | 0.10 | 0.05 | 0.75 | 0.05 | 0.73 | 2.00 |
Laboratory Measurements | Validation Results | ||||||||
---|---|---|---|---|---|---|---|---|---|
Trait | n | Range | Lab Mean | Lab SD | NIRS Mean | Bias | R2pred | SEP (%) | Slope |
NDF | 350 | 66.64–87.21 | 78.88 | 4.38 | 79.07 | −0.196 | 0.85 | 1.68 | 1.02 |
ADF | 349 | 40.54–60.14 | 51.47 | 4.10 | 51.52 | −0.053 | 0.86 | 1.54 | 1.03 |
ADL | 350 | 3.91–9.21 | 6.37 | 1.05 | 6.37 | 0.005 | 0.65 | 0.62 | 1.08 |
CELL | 349 | 35.20–51.13 | 45.09 | 3.31 | 45.12 | −0.030 | 0.88 | 1.14 | 1.02 |
HEMI | 349 | 22.84–31.35 | 27.45 | 1.45 | 27.53 | −0.074 | 0.42 | 1.11 | 0.94 |
C | 349 | 39.39–47.56 | 43.35 | 2.12 | 43.41 | −0.061 | 0.67 | 1.23 | 0.94 |
N | 347 | 0.00–0.56 | 0.17 | 0.11 | 0.18 | −0.003 | 0.73 | 0.06 | 0.95 |
NDF | ADF | ADL | CELL | HEMI | C | N | |
---|---|---|---|---|---|---|---|
Correlation | 0.92 | 0.93 | 0.81 | 0.94 | 0.65 | 0.82 | 0.86 |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Lab Measurements | Validation Results | |||||||
---|---|---|---|---|---|---|---|---|
Trait | n | Lab Mean | Lab SD | NIRS Mean | Bias | R2pred | SEP (%) | Slope |
F × E Pullman 2015 | ||||||||
NDF | 142 | 86.97 | 0.83 | 85.38 | 1.587 | 0.53 | 1.71 | 0.68 |
ADF | 142 | 59.30 | 1.18 | 56.45 | 2.854 | 0.56 | 2.96 | 0.89 |
ADL | 142 | 10.99 | 0.63 | 7.43 | 3.552 | 0.52 | 3.58 | 0.98 |
CELL | 142 | 48.34 | 0.80 | 48.83 | −0.497 | 0.50 | 0.77 | 0.75 |
HEMI | 142 | 27.65 | 0.75 | 29.16 | −1.508 | 0.50 | 1.60 | 0.93 |
C | 154 | 46.14 | 0.57 | 46.32 | −0.178 | 0.29 | 0.77 | 0.35 |
N | 158 | 0.155 | 0.062 | 0.206 | −0.052 | 0.13 | 0.08 | 0.72 |
F × E Waterville 2015 | ||||||||
NDF | 147 | 83.95 | 1.89 | 82.06 | 1.894 | 0.77 | 2.15 | 0.77 |
ADF | 147 | 55.85 | 1.77 | 52.30 | 3.550 | 0.64 | 3.72 | 0.84 |
ADL | 147 | 10.37 | 0.63 | 6.71 | 3.657 | 0.41 | 3.69 | 0.91 |
CELL | 147 | 45.48 | 1.32 | 45.21 | 0.274 | 0.64 | 0.90 | 0.76 |
HEMI | 147 | 28.16 | 1.01 | 29.41 | −1.246 | 0.38 | 1.48 | 0.84 |
C | 145 | 46.08 | 7.29 | 46.10 | −0.015 | 0.03 | 7.47 | −1.37 |
N | 147 | 0.145 | 0.057 | 0.151 | −0.006 | <0.01 | 0.07 | −0.05 |
F × E Mansfield 2015 | ||||||||
NDF | 170 | 80.04 | 1.87 | 76.30 | 3.741 | 0.54 | 4.04 | 0.62 |
ADF | 170 | 50.60 | 1.76 | 46.94 | 3.655 | 0.58 | 3.89 | 0.66 |
ADL | 170 | 8.30 | 0.75 | 5.61 | 2.686 | 0.32 | 2.76 | 0.86 |
CELL | 170 | 42.28 | 1.25 | 41.58 | 0.701 | 0.55 | 1.25 | 0.60 |
HEMI | 170 | 29.32 | 0.72 | 28.59 | 0.730 | 0.25 | 1.00 | 0.55 |
C | 132 | 42.77 | 1.64 | 43.67 | −0.906 | 0.03 | 1.94 | 0.32 |
N | 153 | 0.381 | 0.169 | 0.214 | 0.166 | 0.14 | 0.23 | 1.22 |
F × E Pullman 2017 | ||||||||
NDF | 342 | 81.66 | 3.21 | 80.93 | 0.725 | 0.75 | 1.77 | 1.08 |
ADF | 342 | 53.99 | 2.73 | 53.27 | 0.723 | 0.69 | 1.69 | 1.10 |
ADL | 342 | 7.02 | 0.84 | 7.09 | −0.064 | 0.24 | 0.74 | 0.83 |
CELL | 342 | 46.97 | 2.29 | 46.46 | 0.514 | 0.79 | 1.17 | 1.06 |
HEMI | 342 | 27.66 | 1.65 | 27.42 | 0.245 | 0.43 | 1.27 | 0.96 |
C | 336 | 45.41 | 0.42 | 43.12 | 2.292 | 0.17 | 2.39 | 0.24 |
N | 341 | 0.233 | 0.081 | 0.173 | 0.059 | 0.42 | 0.09 | 0.73 |
F × E Mansfield 2017 | ||||||||
NDF | 343 | 75.96 | 3.97 | 74.62 | 1.345 | 0.33 | 3.53 | 0.91 |
ADF | 343 | 47.31 | 3.63 | 45.92 | 1.393 | 0.40 | 3.14 | 0.96 |
ADL | 343 | 5.96 | 1.00 | 5.70 | 0.256 | 0.14 | 0.98 | 0.64 |
CELL | 343 | 41.35 | 2.93 | 40.33 | 1.029 | 0.44 | 2.43 | 0.99 |
HEMI | 343 | 28.65 | 1.81 | 28.49 | 0.159 | 0.10 | 1.74 | 0.67 |
C | 336 | 45.31 | 0.51 | 42.60 | 2.705 | 0.00 | 2.96 | 0.001 |
N | 345 | 1.005 | 5.824 | 0.124 | 0.881 | 0.06 | 5.87 | 28.32 |
F × E Pullman 2015 | |||||||
Trait | NDF | ADF | ADL | Cellulose | Hemicell | Carbon | Nitrogen |
Correlation | 0.73 | 0.75 | 0.72 | 0.71 | 0.71 | 0.54 | 0.36 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F × E Waterville 2015 | |||||||
Trait | NDF | ADF | ADL | Cellulose | Hemicell | Carbon | Nitrogen |
Correlation | 0.88 | 0.80 | 0.64 | 0.80 | 0.61 | −0.17 | −0.03 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.04 | 0.73 |
F × E Mansfield 2015 | |||||||
Trait | NDF | ADF | ADL | Cellulose | Hemicell | Carbon | Nitrogen |
Correlation | 0.73 | 0.76 | 0.57 | 0.74 | 0.50 | 0.17 | 0.38 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.05 | <0.001 |
F × E Pullman 2017 | |||||||
Trait | NDF | ADF | ADL | Cellulose | Hemicell | Carbon | Nitrogen |
Correlation | 0.87 | 0.83 | 0.49 | 0.89 | 0.66 | 0.41 | 0.65 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F × E Mansfield 2017 | |||||||
Trait | NDF | ADF | ADL | Cellulose | Hemicell | Carbon | Nitrogen |
Correlation | 0.57 | 0.63 | 0.37 | 0.66 | 0.32 | <0.01 | 0.24 |
p value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.94 | <0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nielsen, N.S.; Stubbs, T.L.; Garland-Campbell, K.A.; Carter, A.H. Rapid Estimation of Wheat Straw Decomposition Constituents Using Near-Infrared Spectroscopy. Agronomy 2019, 9, 462. https://doi.org/10.3390/agronomy9080462
Nielsen NS, Stubbs TL, Garland-Campbell KA, Carter AH. Rapid Estimation of Wheat Straw Decomposition Constituents Using Near-Infrared Spectroscopy. Agronomy. 2019; 9(8):462. https://doi.org/10.3390/agronomy9080462
Chicago/Turabian StyleNielsen, Nathan S., Tami L. Stubbs, Kimberly A. Garland-Campbell, and Arron H. Carter. 2019. "Rapid Estimation of Wheat Straw Decomposition Constituents Using Near-Infrared Spectroscopy" Agronomy 9, no. 8: 462. https://doi.org/10.3390/agronomy9080462
APA StyleNielsen, N. S., Stubbs, T. L., Garland-Campbell, K. A., & Carter, A. H. (2019). Rapid Estimation of Wheat Straw Decomposition Constituents Using Near-Infrared Spectroscopy. Agronomy, 9(8), 462. https://doi.org/10.3390/agronomy9080462