Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. KIR and HLA genotyping
2.3. Statistical Analysis
3. Results
3.1. Frequency of KIRs and HLA Ligands in AAA Patients and Controls
3.2. KIR A/B Genotypes and Haplotypes
3.3. Aneurysm Diameter, KIR Genes, HLA Ligands and Clinical Parameters
4. Discussion
5. Conclusions
- The risk of AAA may be associated with KIR3DL1 because majority of HLA-B allotypes contain the threonine residue in position −21 of their leader sequence, which prevents it from being presented by HLA-E molecule and NK education by NKG2D/CD94 receptor, but favours education via KIRs, including KIR3DL1. HLA-A-Bw4 alleles occur most frequently in linkage disequilibrium with HLA-B alleles containing −21 threonine, with the same result as above (Figure 3A). Therefore, we could not detect any role of the Bw4 epitope, on HLA-A or on HLA-B, in the initiation of AAA, for three reasons: (a) the signal for education of NK cells is focused on position −21 of HLA-B, not on Bw4. (b) AAA might be initiated by KIR3DL1Low rather than KIR3DL1High because the too-weak inhibition by this KIR favours the activation of NK cells (Figure 3B). (c) Our test system did not differentiate between HLA-A-Bw4 strong binders of KIR3DL1 (A*32), weak binders (A*23, A*24) and no binders (A*25). Therefore, a contribution of strong versus weak binders might have been masked, to some extent, by weak and no binders.
- On the other hand, AAA diameter was associated with HLA-A-Bw4 alleles, and not with KIR3DL1 or with HLA-B-Bw4. It is conceivable that at this stage the contribution of HLA-A-Bw4 allotypes presenting aneurysmogenic peptide to CD8+ T cells (Figure 3C) is more important than the KIR3DL1-Bw4 interaction, which in turn is important for regulation of NK cell activity. This interpretation should be confirmed on larger cohorts of patients and controls, and, optimally, by high-resolution typing of both HLA-A-Bw4 and KIR3DL1 alleles, as well as by functional studies.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moll, F.L.; Powell, J.T.; Fraedrich, G.; Verzini, F.; Haulon, S.; Waltham, M.; van Herwaarden, J.A.; Holt, P.J.E.; van Keulen, J.W.; Rantner, B.; et al. Management of Abdominal Aortic Aneurysms Clinical Practice Guidelines of the European Society for Vascular Surgery. Eur. J. Vasc. Endovasc. Surg. 2011, 41 (Suppl. 1), S1–S58. [Google Scholar] [CrossRef] [Green Version]
- Makrygiannis, G.; Labalue, P.; Erpicum, M.; Schlitz, M.; Seidel, L.; El Hachemi, M.; Gangolf, M.; Albert, A.; Defraigne, J.-O.; Lindholt, J.S.; et al. Extending Abdominal Aortic Aneurysm Detection to Older Age Groups: Preliminary Results from the Liège Screening Programme. Ann. Vasc. Surg. 2016, 36, 55–63. [Google Scholar] [CrossRef]
- Altobelli, E.; Rapacchietta, L.; Profeta, V.F.; Fagnano, R. Risk Factors for Abdominal Aortic Aneurysm in Population-Based Studies: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2018, 15, 2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, F.M.; Daugherty, A.; Lu, H.S. Updates of Recent Aortic Aneurysm Research. Arter. Thromb. Vasc. Biol. 2019, 39, e83–e90. [Google Scholar] [CrossRef] [PubMed]
- Nordon, I.M.; Hinchliffe, R.J.; Loftus, I.M.; Thompson, M.M. Pathophysiology and epidemiology of abdominal aortic aneurysms. Nat. Rev. Cardiol. 2010, 8, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Cronin, O.; Walker, P.J.; Golledge, J. The association of obesity with abdominal aortic aneurysm presence and growth. Atheroscler. 2013, 226, 321–327. [Google Scholar] [CrossRef]
- Dale, M.A.; Ruhlman, M.K.; Baxter, B.T. Inflammatory Cell Phenotypes in AAAs. Arter. Thromb. Vasc. Biol. 2015, 35, 1746–1755. [Google Scholar] [CrossRef] [Green Version]
- Mangum, K.D.; Farber, M.A. Genetic and epigenetic regulation of abdominal aortic aneurysms. Clin. Genet. 2020, 97, 815–826. [Google Scholar] [CrossRef]
- Pearce, W.H.; Shively, V.P. Abdominal Aortic Aneurysm as a Complex Multifactorial Disease: Interactions of Polymorphisms of Inflammatory Genes, Features of Autoimmunity, and Current Status of MMPs. Ann. N. Y. Acad. Sci. 2006, 1085, 117–132. [Google Scholar] [CrossRef]
- Chan, W.L.; Pejnovic, N.; Hamilton, H.; Liew, T.V.; Popadic, D.; Poggi, A.; Khan, S.M. Atherosclerotic Abdominal Aortic Aneurysm and the Interaction Between Autologous Human Plaque-Derived Vascular Smooth Muscle Cells, Type 1 NKT, and Helper T Cells. Circ. Res. 2005, 96, 675–683. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.W.; Gracon, A.S.A.; Murphy, M.P.; Wilkes, D.S. Exploring autoimmunity in the pathogenesis of abdominal aortic aneurysms. Am. J. Physiol. Circ. Physiol. 2015, 309, H719–H727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinterseher, I.; Schworer, C.M.; Lillvis, J.H.; Stahl, E.; Erdman, R.; Gatalica, Z.; Tromp, G.; Kuivaniemi, H. Immunohistochemical Analysis of the Natural Killer Cell Cytotoxicity Pathway in Human Abdominal Aortic Aneurysms. Int. J. Mol. Sci. 2015, 16, 11196–11212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forester, N.D.; Cruickshank, S.M.; Scott, D.J.; Carding, S.R. Increased natural killer cell activity in patients with an ab-dominal aortic aneurysm. Br. J. Surg. 2006, 93, 46–54. [Google Scholar] [CrossRef]
- Wang, H.; Wei, G.; Cheng, S.; Wang, D.; Ma, J.; Xin, S. Circulatory CD4-Positive T-Lymphocyte Imbalance Mediated by Homocysteine-Induced AIM2 and NLRP1 Inflammasome Upregulation and Activation Is Associated with Human Abdominal Aortic Aneurysm. J. Vasc. Res. 2020, 57, 276–290. [Google Scholar] [CrossRef]
- Lu, S.; White, J.V.; Judy, R.I.; Merritt, L.L.; Lin, W.L.; Zhang, X.; Solomides, C.; Nwaneshiudu, I.; Gaughan, J.; Monos, D.S.; et al. Clonally expanded alpha-chain T-cell receptor (TCR) transcripts are present in aneurysmal lesions of patients with Abdominal Aortic Aneurysm (AAA). PLoS ONE 2019, 14, e0218990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindholt, J.; Shi, G.-P. Chronic Inflammation, Immune Response, and Infection in Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2006, 31, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Lenk, G.M.; Tromp, G.; Weinsheimer, S.; Gatalica, Z.; Berguer, R.; Kuivaniemi, H. Whole genome expression profiling re-veals a significant role for immune function in human abdominal aortic aneurysms. BMC Genom. 2007, 16, 237. [Google Scholar]
- Gianchecchi, E.; Delfino, D.V.; Fierabracci, A. Natural Killer Cells: Potential Biomarkers and Therapeutic Target in Autoimmune Diseases? Front. Immunol. 2021, 12, 616853. [Google Scholar] [CrossRef]
- Gianchecchi, E.; Delfino, D.V.; Fierabracci, A. NK cells in autoimmune diseases: Linking innate and adaptive immune responses. Autoimmun. Rev. 2018, 17, 142–154. [Google Scholar] [CrossRef]
- Liu, M.; Liang, S.; Zhang, C. NK Cells in Autoimmune Diseases: Protective or Pathogenic? Front. Immunol. 2021, 12, 624687. [Google Scholar] [CrossRef]
- Trowsdale, J.; Des, C.; Alexander, D.J.; Barrow James, A.; Traherne, J. Surveillance of cell and tissue perturbation by receptors in the LRC. Immunol. Rev. 2015, 267, 117–136. [Google Scholar] [CrossRef]
- Kulkarni, S.; Martin, M.P.; Carrington, M. The Yin and Yang of HLA and KIR in human disease. Semin. Immunol. 2008, 20, 343–352. [Google Scholar] [CrossRef] [Green Version]
- Middleton, D.; Gonzelez, F. The extensive polymorphism of KIR genes. Immunology 2009, 129, 8–19. [Google Scholar] [CrossRef]
- Trowsdale, J.; Knight, J.C. Major Histocompatibility Complex Genomics and Human Disease. Annu. Rev. Genom. Hum. Genet. 2013, 14, 301–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudreau, J.E.; Hsu, K.C. Natural killer cell education in human health and disease. Curr. Opin. Immunol. 2018, 50, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Fauriat, C.; Ivarsson, M.A.; Ljunggren, H.-G.; Malmberg, K.-J.; Michaëlsson, J. Education of human natural killer cells by activating killer cell immunoglobulin-like receptors. Blood 2010, 115, 1166–1174. [Google Scholar] [CrossRef] [Green Version]
- Matzaraki, V.; Kumar, V.; Wijmenga, C.; Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017, 18, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Pando, M.J.; Gardiner, C.; Gleimer, M.; McQueen, K.L.; Parham, P. The Protein Made from a Common Allele ofKIR3DL1(3DL1*004) Is Poorly Expressed at Cell Surfaces due to Substitution at Positions 86 in Ig Domain 0 and 182 in Ig Domain 1. J. Immunol. 2003, 171, 6640–6649. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.M.; Augusto, D.G.; Dandekar, R.; Shams, H.; Zhao, C.; Yusufali, T.; Montero-Martín, G.; Marin, W.M.; Nemat-Gorgani, N.; Creary, L.E.; et al. Killer Cell Immunoglobulin-like Receptor Variants Are Associated with Protection from Symptoms Associated with More Severe Course in Parkinson Disease. J. Immunol. 2020, 205, 1323–1330. [Google Scholar] [CrossRef]
- Schmidt, A.H.; Solloch, U.V.; Pingel, J.; Baier, D.; Böhme, I.; Dubicka, K.; Schumacher, S.; Rutt, C.; Skotnicki, A.B.; Wachowiak, J.; et al. High-resolution human leukocyte antigen allele and haplotype frequencies of the Polish population based on 20,653 stem cell donors. Hum. Immunol. 2011, 72, 558–565. [Google Scholar] [CrossRef]
- Niepiekło-Miniewska, W.; Majorczyk, E.; Matusiak, Ł.; Gendzekhadze, K.; Nowak, I.; Narbutt, J.; Lesiak, A.; Kuna, P.; Ponińska, J.; Pietkiewicz-Sworowska, A.; et al. Protective effect of the KIR2DS1 gene in atopic dermatitis. Gene 2013, 527, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Nestorowicz, K.; Bogacz, A.; Bukowska, A.; Chraplak, M.; Czerwiński, J.; Góralski, M.; Gronkowski, M.; Jopek, K.; Kniżewski, Ł.; Kolasiński, M.; et al. High-resolution allele frequencies for NGS based HLA-A, B, C, DQB1 and DRB1 typing of 23,595 bone marrow donors recruited for the Polish central potential unrelated bone marrow donor registry. Hum. Immunol. 2020, 81, 49–51. [Google Scholar] [CrossRef] [PubMed]
- Bäck, M.; Gasser, T.C.; Michel, J.-B.; Caligiuri, G. Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc. Res. 2013, 99, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Dua, M.M.; Dalman, R.L. Hemodynamic Influences on abdominal aortic aneurysm disease: Application of biomechanics to aneurysm pathophysiology. Vasc. Pharmacol. 2010, 53, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tromp, G.; Ogata, T.; Gregoire, L.; Goddard, K.A.; Skunca, M.; Lancaster, W.D.; Parrado, A.R.; Lu, Q.; Shibamura, H.; Sakalihasan, N.; et al. HLA-DQA Is Associated with Abdominal Aortic Aneurysms in the Belgian Population. Ann. N. Y. Acad. Sci. 2006, 1085, 392–395. [Google Scholar] [CrossRef] [PubMed]
- Anaya-Ayala, J.E.; Hernandez-Doño, S.; Escamilla-Tilch, M.; Marquez-Garcia, J.; Hernandez-Sotelo, K.; Lozano-Corona, R.; Ruiz-Gomez, D.; Granados, J.; Hinojosa, C.A. Genetic polymorphism of HLA-DRB1 alleles in Mexican mestizo patients with abdominal aortic aneurysms. BMC Med Genet. 2019, 20, 102. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, T.; Sada, M.; Miyamoto, T.; Yao, H. Genetic analysis on HLA loci in Japanese patients with abdominal aortic aneurysm. Eur. J. Vasc. Endovasc. Surg. 2003, 26, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Badger, S.A.; Soong, C.V.; O’Donnell, M.E.; Middleton, D. The role of human leukocyte antigen genes in the formation of abdominal aortic aneurysms. J. Vasc. Surg. 2007, 45, 475–480. [Google Scholar] [CrossRef]
- Saunders, P.M.; MacLachlan, B.J.; Widjaja, J.; Wong, S.C.; Oates, C.V.L.; Rossjohn, J.; Vivian, J.P.; Brooks, A.G. The Role of the HLA Class I α2 Helix in Determining Ligand Hierarchy for the Killer Cell Ig-like Receptor 3DL1. J. Immunol. 2021, 206, 849–860. [Google Scholar] [CrossRef]
- Van Der Ploeg, K.; Le Luduec, J.-B.; Stevenson, P.A.; Park, S.; Gooley, T.A.; Petersdorf, E.W.; Shaffer, B.C.; Hsu, K.C. HLA-A alleles influencing NK cell function impact AML relapse following allogeneic hematopoietic cell transplantation. Blood Adv. 2020, 4, 4955–4964. [Google Scholar] [CrossRef]
- Resse, M.; Paolillo, R.; Minucci, P.B.; Cavalca, F.; Casamassimi, A.; Napoli, C. Epitope-specificities of HLA antibodies: The effect of epitope structure on Luminex technique-dependent antibody reactivity. Hum. Immunol. 2015, 76, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Graciano-Machuca, O.; Alvarado-Navarro, A.; Ramírez-Dueñas, M.G.; Villanueva-Quintero, D.G.; La Cruz, E.E.V.-D.; Machado-Sulbarán, A.C.; Montoya-Buelna, M.; Sánchez-Hernández, P.E. Diversity of KIR/HLA Genotypes and Their Association with Psoriasis Vulgaris in the Western Mexican Population. Genes 2020, 11, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erbe, A.K.; Wang, W.; Reville, P.; Carmichael, L.; Kim, K.; Mendonca, E.A.; Song, Y.; Hank, J.A.; London, W.B.; Naranjo, A.; et al. HLA-Bw4-I-80 Isoform Differentially Influences Clinical Outcome As Compared to HLA-Bw4-T-80 and HLA-A-Bw4 Isoforms in Rituximab or Dinutuximab-Based Cancer Immunotherapy. Front. Immunol. 2017, 8, 675. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.S.; Boulet, S.; Song, R.; Bruneau, J.; Shoukry, N.H.; Routy, J.-P.; Tsoukas, C.M.; Bernard, N.F. Mind the Gap: Lack of Association between KIR3DL1*004/HLA-Bw4–Induced Natural Killer Cell Function and Protection from HIV Infection. J. Infect. Dis. 2010, 202, S356–S360. [Google Scholar] [CrossRef] [Green Version]
- Castaño-Núñez, Á.; Montes-Cano, M.-A.; García-Lozano, J.-R.; Ortego-Centeno, N.; García-Hernández, F.-J.; Espinosa, G.; Graña, J.; Sánchez-Bursón, J.; Juliá, M.-R.; Solans, R.; et al. Association of Functional Polymorphisms of KIR3DL1/DS1 With Behçet’s Disease. Front. Immunol. 2019, 10, 2755. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, A.; Morita, H.; Miyata, T.; Ando, J.; Fujita, H.; Ohtsu, H.; Akai, T.; Hoshina, K.; Nagayama, M.; Takanashi, S.; et al. Inverse association between the existence of coronary artery disease and progression of abdominal aortic aneurysm. Atheroscler. 2012, 222, 278–283. [Google Scholar] [CrossRef]
- Horowitz, A.; Djaoud, Z.; Nemat-Gorgani, N.; Blokhuis, J.; Hilton, H.G.; Béziat, V.; Malmberg, K.-J.; Norman, P.J.; Guethlein, L.A.; Parham, P. Class I HLA haplotypes form two schools that educate NK cells in different ways. Sci. Immunol. 2016, 1, eaag1672. [Google Scholar] [CrossRef] [Green Version]
- Middleton, D.; Meenagh, A.; Gourraud, P.A. KIR haplotype content at the allele level in 77 Northern Irish families. Immunogenetics 2007, 59, 145–158. [Google Scholar] [CrossRef]
- Gfeller, D.; Bassani-Sternberg, M. Predicting Antigen Presentation—What Could We Learn From a Million Peptides? Front. Immunol. 2018, 9, 1716. [Google Scholar] [CrossRef]
Median ± Sn (Range) or Number of AAA Patients | Median ± Sn (Range) or Number of Controls | |
---|---|---|
age [years] | 72 ± 7 (43–90) | 67 ± 5 (58–84) |
sex [male] | 167 (89.3%) | 220 (96.1%) |
smoking | 122 (65.2%) | 89 (38.9%) |
BMI [kg/m2] | 26.9 ± 3.8 (17.3–39.2) | 27± 3.1 (19.6–38.7) |
CAD | 70 (37.4%) | 25 (10.9%) |
hypertension | 149 (79.7%) | 34 (14.8%) |
kidney disease | 34 (18.2%) | 38 (16.6%) |
diabetes | 40 (21.4%) | 101 (44%) |
AAA diameter [mm] | 56± 8 (40–105) | - |
aortic diameter [mm] | - | 19.2 ± 2.2 (14–28) |
KIR | AAA, n = 187 | Controls, n = 229 | OR (95%CI) |
---|---|---|---|
Inhibitory | |||
2DL1 | 185 (98.9%) | 222 (96.5%) | 2.92 (0.60–14.2) |
2DL2 | 110 (58.8%) | 118 (51.5%) | 1.34 (0.91–1.98) |
2DL3 | 170 (90.9%) | 209 (91.3%) | 0.96 (0.49–1.88) |
2DL5A | 61 (32.6%) | 88 (38.4%) | 0.78 (0.52–1.16) |
2DL5B | 55 (29.4%) | 64 (27.9%) | 1.07 (0.70–1.65) |
3DL1High a | 118 (63.1%) | 167 (72.9%) | 0.63 (0.42–0.96) |
3DL1Low b | 64 (34.2%) | 52 (22.7%) | 1.77 (1.15–2.73) |
Activating | |||
2DS1 | 74 (39.6%) | 103 (45.0%) | 0.80 (0.54–1.19) |
2DS2 | 108 (57,8%) | 116 (50.7%) | 1.33 (0.90–1.96) |
2DS3 | 64 (34.2%) | 79 (34.5%) | 0.99 (0.66–1.48) |
2DS4full | 68 (36.4%) | 73 (31.9%) | 1.22 (0.81–1.84) |
2DS4del | 158 (84.5%) | 193 (84.3%) | 1.02 (0.60–1.73) |
2DS5 | 44 (23.5%) | 57 (24.9%) | 0.93 (0.59–1.46) |
3DS1 | 68 (36.4%) | 90 (39.3%) | 0.88 (0.59–1.32) |
AAA Patients | Controls | OR (95%CI) | |
---|---|---|---|
HLA Ligand * | |||
C1 | 151 (80.7%) | 176 (76.9%) | 1.26 (0.78–2.03) |
C2 | 121 (64.7%) | 156 (68.1%) | 0.86 (0.57–1.29) |
B-Bw4-80I | 50 (26.7%) | 68 (29.7%) | 0.86 (0.56–1.33) |
B-Bw4-80T | 56 (29.9%) | 72 (31.4%) | 0.93 (0.61–1.42) |
A-Bw4 | 60 (32.1%) | 69 (30.1%) | 1.10 (0.72–1.66) |
Genotypes ** | |||
A/A | 51 (27.3%) | 69 (30.1%) | 0.87 (0.57–1.33) |
A/B | 112 (59.9%) | 124 (54.1%) | 1.26 (0.86–1.87) |
B/B | 24 (12.8%) | 36 (15.7%) | 0.79 (0.45–1.38) |
Cases (%) | Controls (%) | Centromeric Region | Telomeric Region | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2DS2 | 2DL3 | 2DL2 | 2DL5B | 2DS3 | 2DL1 | 3DL1High | 3DL1Low | 3DS1 | 2DL5A | 2DS5 | 2DS1B | 2DS4A | 2DS4B | ||
20.83 | 25.42 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
16.25 | 11.25 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
5.78 | 6.2 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
2.74 | 5.99 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
8.95 | 5.13 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
3.48 | 3.25 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 |
0.34 | 3.07 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 |
0.07 | 2.73 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
4.16 | 2.42 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Variable | β | CI95% | p-Value | |
---|---|---|---|---|
HLA-A-Bw4 CAD | 4.250 | 1.251 | 7.423 | 0.008 |
−25.463 | −44.562 | −7.681 | 0.007 | |
BMI | −0.162 | −0.548 | 0.201 | 0.392 |
CAD × BMI | 1.003 | 0.344 | 1.707 | 0.004 |
HLA-A-Bw4 a | HLA-B | Amino Acid −21 in HLA-B Leader Peptide b | Frequency in Polish Population (%) c |
---|---|---|---|
*23:01 | *44:03 | threonine | 0.939 |
*24:02 | *13:02 | threonine | 0.892 |
*24:02 | *07:02 | methionine | 0.670 |
*24:02 | *44:03 | threonine | 0.277 |
*24:02 | *15:01 | threonine | 0.249 |
*25:01 | *18:01 | threonine | 2.489 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubis, J.; Niepiekło-Miniewska, W.; Jędruchniewicz, N.; Sobczyński, M.; Witkiewicz, W.; Zapotoczny, N.; Kuśnierczyk, P. Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm. Cells 2021, 10, 3357. https://doi.org/10.3390/cells10123357
Dubis J, Niepiekło-Miniewska W, Jędruchniewicz N, Sobczyński M, Witkiewicz W, Zapotoczny N, Kuśnierczyk P. Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm. Cells. 2021; 10(12):3357. https://doi.org/10.3390/cells10123357
Chicago/Turabian StyleDubis, Joanna, Wanda Niepiekło-Miniewska, Natalia Jędruchniewicz, Maciej Sobczyński, Wojciech Witkiewicz, Norbert Zapotoczny, and Piotr Kuśnierczyk. 2021. "Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm" Cells 10, no. 12: 3357. https://doi.org/10.3390/cells10123357
APA StyleDubis, J., Niepiekło-Miniewska, W., Jędruchniewicz, N., Sobczyński, M., Witkiewicz, W., Zapotoczny, N., & Kuśnierczyk, P. (2021). Associations of Genes for Killer Cell Immunoglobulin-like Receptors and Their Human Leukocyte Antigen-A/B/C Ligands with Abdominal Aortic Aneurysm. Cells, 10(12), 3357. https://doi.org/10.3390/cells10123357