Biologic Drugs for Rheumatoid Arthritis in the Context of Biosimilars, Genetics, Epigenetics and COVID-19 Treatment
Abstract
:1. Introduction
2. bDMARDs Based on Cytokine-Targeted Therapy
2.1. TNF Inhibition
2.1.1. Etanercept (ETN)—TNF Receptor Fusion Protein
2.1.2. Infliximab (IFX)—A Humanized Mouse Monoclonal Antibody
2.1.3. Adalimumab (ADA)—Fully Human Monoclonal Antibody
2.1.4. Certolizumab (CTZ)—Humanized Antigen-Binding Fragment of a Monoclonal Antibody Binding TNF
2.1.5. Golimumab (GOL)—Fully Human Monoclonal Antibody
2.2. IL-6 Inhibition
2.3. IL-1 Inhibition
2.4. GM-CSF Inhibition
3. bDMARDs Based on Cell-Targeted Therapy
3.1. T Cell Targeted Therapy
3.2. B Cell Targeted Therapy
4. Biosimilars and Biomimics (or Intended Copies)
5. The Effect of Genetic Factors on bDMARDs Response in RA Treatment
6. The Effect of Epigenetic Factors on bDMARDs Response in RA
7. The Role of bDMARDs in Fighting COVID-19
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smolen, J.S.; Van Der Heijde, D.; Machold, K.P.; Aletaha, D.; Landewé, R.B. Proposal for a new nomenclature of disease-modifying antirheumatic drugs: Table 1. Ann. Rheum. Dis. 2013, 73, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Charles, P.; Elliott, M.J.; Davis, D.; Potter, A.; Kalden, J.R.; Antoni, C.; Breedveld, F.C.; Smolen, J.S.; Eberl, G.; DeWoody, K.; et al. Regulation of cytokines, cytokine inhibitors, and acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J. Immunol. 1999, 163, 1521–1528. [Google Scholar] [PubMed]
- López-Pedrera, C.; Barbarroja, N.; Patiño-Trives, A.M.; Luque-Tévar, M.; Collantes-Estevez, E.; Escudero-Contreras, A.; Pérez-Sánchez, C. Effects of Biological Therapies on Molecular Features of Rheumatoid Arthritis. Int. J. Mol. Sci. 2020, 21, 9067. [Google Scholar] [CrossRef]
- Wright, H.L.; Bucknall, R.C.; Moots, R.; Edwards, S.W. Analysis of SF and plasma cytokines provides insights into the mechanisms of inflammatory arthritis and may predict response to therapy. Rheumatol. 2011, 51, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.S.; Goncalves, J.; Quinn, M.; Benedetti, F.; Lee, J.Y. Era of biosimilars in rheumatology: Reshaping the healthcare environment. RMD Open 2019, 5, e000900. [Google Scholar] [CrossRef] [Green Version]
- IQVIA. The Impact of Biosimilar Competition in Europe. Available online: File:///C:/Users/IR_NP7/AppData/Local/Temp/IQVIA%20Biosimilar%202018_V7-4.pdf (accessed on 31 July 2018).
- Andrew, W.; Mulcahy, J.P.H.; Spencer, R. Case. Biosimilar Cost Savings in the United States Initial Experience and Future Potential. 2017. Available online: https://www.rand.org/pubs/perspectives/PE264.html (accessed on 31 July 2018).
- The NHS Saves £324 Million in a Year by Switching to Better Value Medicines. Available online: https://www.england.nhs.uk/2018/07/nhs-saves-324-million-year-switching-to-better-value-medicines/ (accessed on 31 July 2018).
- Bergstra, S.A.; Cunha-Branco, J.; Vega-Morales, D.; Salomon-Escoto, K.; Govind, N.; Allaart, C.F.; Landewé, R.B.M. Inequity in access to bDMARD care and how it influences disease outcomes across countries worldwide: Results from the METEOR-registry. Ann. Rheum. Dis. 2018, 77, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Kaló, Z.; Vokó, Z.; Östör, A.; Clifton-Brown, E.; Vasilescu, R.; Battersby, A.; Gibson, E. Patient access to reimbursed biological disease-modifying antirheumatic drugs in the European region. J. Mark Access Health Policy 2017, 5, 1345580. [Google Scholar] [CrossRef] [Green Version]
- Rezaeepoor, M.; Pourjafar, M.; Tahamoli-Roudsari, A.; Basiri, Z.; Hajilooi, M.; Solgi, G. Altered expression of microRNAs may predict therapeutic response in rheumatoid arthritis patients. Int. Immunopharmacol. 2020, 83, 106404. [Google Scholar] [CrossRef]
- Hammaker, D.; Firestein, G.S. Epigenetics of inflammatory arthritis. Curr. Opin. Rheumatol. 2018, 30, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Bang, S.-Y.; Lee, H.-S.; Bae, S.-Y.B.H.-S.L.S.-C. Update on the genetic architecture of rheumatoid arthritis. Nat. Rev. Rheumatol. 2017, 13, 13–24. [Google Scholar] [CrossRef]
- Generali, E.; Ceribelli, A.; Stazi, M.A.; Selmi, C. Lessons learned from twins in autoimmune and chronic inflammatory diseases. J. Autoimmun. 2017, 83, 51–61. [Google Scholar] [CrossRef]
- Farrugia, M.; Baron, B. The role of TNF-α in rheumatoid arthritis: A focus on regulatory T cells. J. Clin. Transl. Res. 2016, 2, 84–90. [Google Scholar] [CrossRef]
- Perez, C.; Albert, I.; Defay, K.; Zachariades, N.; Gooding, L.; Kriegler, M. A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. Cell 1990, 63, 251–258. [Google Scholar] [CrossRef]
- Davignon, J.; Rauwel, B.; Degboé, Y.; Constantin, A.; Boyer, J.-F.; Kruglov, A.; Cantagrel, A. Modulation of T-cell responses by anti-tumor necrosis factor treatments in rheumatoid arthritis: A review. Arthritis Res. 2018, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Holbrook, J.; Lara-Reyna, S.; Jarosz-Griffiths, H.; McDermott, M.F. Tumour necrosis factor signalling in health and disease. F1000Research 2019, 8, 111. [Google Scholar] [CrossRef]
- Manara, M.; Sinigaglia, L. Bone and TNF in rheumatoid arthritis: Clinical implications. RMD Open 2015, 1, e000065. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; Van Vollenhoven, R.F.; De Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.A.; Saag, K.G.; Bridges, S.L., Jr.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; E Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheumatol. 2016, 68, 1–26. [Google Scholar] [CrossRef]
- Lau, C.-S.; Chia, F.; Dans, L.; Harrison, A.; Hsieh, T.Y.; Jain, R.; Jung, S.M.; Kishimoto, M.; Kumar, A.; Leong, K.P.; et al. 2018 update of the APLAR recommendations for treatment of rheumatoid arthritis. Int. J. Rheum. Dis. 2019, 22, 357–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiberg, M.S.; Rodevand, E.; Mikkelsen, K.; Kaufmann, C.; Didriksen, A.; Mowinckel, P.; Kvien, T.K. Adalimumab and methotrexate is more effective than adalimumab alone in patients with established rheumatoid arthritis: Results from a 6-month longitudinal, observational, multicentre study. Ann. Rheum. Dis. 2006, 65, 1379–1383. [Google Scholar] [CrossRef] [PubMed]
- Neovius, M.; Arkema, E.V.; Olsson, H.; Eriksson, J.K.; Kristensen, L.E.; Simard, J.F.; Askling, J. Drug survival on TNF inhibitors in patients with rheumatoid arthritis comparison of adalimumab, etanercept and infliximab. Ann. Rheum. Dis. 2013, 74, 354–360. [Google Scholar] [CrossRef]
- Papadopoulos, C.G.; Gartzonikas, I.K.; Pappa, T.K.; E Markatseli, T.; Migkos, M.P.; Voulgari, P.V.; A Drosos, A. Eight-year survival study of first-line tumour necrosis factor α inhibitors in rheumatoid arthritis: Real-world data from a university centre registry. Rheumatol. Adv. Pract. 2019, 3, rkz007. [Google Scholar] [CrossRef]
- Poiroux, L.; Allanore, Y.; Kahan, A.; Avouac, J. All-cause Mortality Associated with TNF-α Inhibitors in Rheumatoid Arthritis: A Meta-Analysis of Randomized Controlled Trials. Am. J. Med. 2015, 128, 1367–1373.e1. [Google Scholar] [CrossRef]
- Cantini, F.; Niccoli, L.; Goletti, D. Adalimumab, Etanercept, Infliximab, and the Risk of Tuberculosis: Data from Clinical Trials, National Registries, and Postmarketing Surveillance. J. Rheumatol. Suppl. 2014, 91, 47–55. [Google Scholar] [CrossRef]
- Kristjansdottir, S.R.; Steingrimsdottir, T.; Grondal, G.; Bjarnadottir, R.I.; Einarsdottir, K.; Gudbjornsson, B. [Pregnancy outcomes in Icelandic female patients with inflammatory arthritides. Nationwide results from the ICEBIO and the Icelandic Medical Birth Register]. Laeknabladid 2019, 105, 267–275. [Google Scholar]
- Förger, F.; Bandoli, G.; Luo, Y.; Robinson, L.; Johnson, D.L.; Chambers, C.D. No Association of Discontinuing Tumor Necrosis Factor Inhibitors Before Gestational Week Twenty in Well-Controlled Rheumatoid Arthritis and Juvenile Idiopathic Arthritis With a Disease Worsening in Late Pregnancy. Arthritis Rheumatol. 2019, 71, 901–907. [Google Scholar] [CrossRef]
- Puchner, A.; Grochenig, H.P.; Sautner, J.; Helmy-Bader, Y.; Juch, H.; Reinisch, S.; Hogenauer, C.; Koch, R.; Hermann, J.; Studnicka-Benke, A. Immunosuppressives and biologics during pregnancy and lactation: A consensus report issued by the Austrian Societies of Gastroenterology and Hepatology and Rheumatology and Rehabilitation. Wien Klin. Wochenschr. 2019, 131, 29–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clowse, M.E.B.; Scheuerle, A.E.; Chambers, C.; Afzali, A.; Kimball, A.B.; Cush, J.J.; Cooney, M.; Shaughnessy, L.; Vanderkelen, M.; Forger, F. Pregnancy Outcomes After Exposure to Certolizumab Pegol: Updated Results From a Pharmacovigilance Safety Database. Arthritis Rheumatol. 2018, 70, 1399–1407. [Google Scholar] [CrossRef]
- Skorpen, C.G.; Hoeltzenbein, M.; Tincani, A.; Fischer-Betz, R.; Elefant, E.; Chambers, C.; Da Silva, J.; Nelson-Piercy, C.; Cetin, I.; Costedoat-Chalumeau, N.; et al. The EULAR points to consider for use of antirheumatic drugs before pregnancy, and during pregnancy and lactation. Ann. Rheum. Dis. 2016, 75, 795–810. [Google Scholar] [CrossRef] [Green Version]
- Rubbert-Roth, A.; Atzeni, F.; Masala, I.F.; Caporali, R.; Montecucco, C.; Sarzi-Puttini, P. TNF inhibitors in rheumatoid arthritis and spondyloarthritis: Are they the same? Autoimmun. Rev. 2018, 17, 24–28. [Google Scholar] [CrossRef]
- Emery, P.; Vlahos, B.; Szczypa, P.; Thakur, M.; Jones, H.; Woolcott, J.; Estrella, P.V.S.; Rolland, C.; Gibofsky, A.; Citera, G.; et al. Longterm Drug Survival of Tumor Necrosis Factor Inhibitors in Patients with Rheumatoid Arthritis. J. Rheumatol. 2019, 47, 493–501. [Google Scholar] [CrossRef]
- Cantini, F.; Benucci, M. Focus on biosimilar etanercept – bioequivalence and interchangeability. Biol. Targets Ther. 2018, 12, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Barbier, L.; Ebbers, H.C.; Declerck, P.; Simoens, S.; Vulto, A.G.; Huys, I. The Efficacy, Safety, and Immunogenicity of Switching Between Reference Biopharmaceuticals and Biosimilars: A Systematic Review. Clin. Pharmacol. Ther. 2020, 108, 734–755. [Google Scholar] [CrossRef]
- Fleischmann, R.; Jairath, V.; Mysler, E.; Nicholls, D.; Declerck, P. Nonmedical Switching From Originators to Biosimilars: Does the Nocebo Effect Explain Treatment Failures and Adverse Events in Rheumatology and Gastroenterology? Rheumatol. Ther. 2020, 7, 35–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezones-Holguín, E.; Gamboa-Cardenas, R.V.; Sanchez-Felix, G.; Chávez-Corrales, J.; Helguero-Santin, L.M.; Seminario, L.M.L.; Burela-Prado, P.A.; Castro-Reyes, M.M.; Fiestas, F. Efficacy and Safety in the Continued Treatment With a Biosimilar Drug in Patients Receiving Infliximab: A Systematic Review in the Context of Decision-Making From a Latin-American Country. Front. Pharmacol. 2019, 10, 1010. [Google Scholar] [CrossRef] [PubMed]
- Boone, N.W.; Liu, L.; Romberg-Camps, M.J.; Duijsens, L.; Houwen, C.; Van Der Kuy, P.H.M.; Janknegt, R.; Peeters, R.; Landewé, R.B.M.; Winkens, B.; et al. The nocebo effect challenges the non-medical infliximab switch in practice. Eur. J. Clin. Pharmacol. 2018, 74, 655–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarallo, M.; Onishchenko, K.; Alexopoulos, S.T. Costs associated with non-medical switching from originator to biosimilar etanercept in patients with rheumatoid arthritis in the UK. J. Med Econ. 2019, 22, 1162–1170. [Google Scholar] [CrossRef]
- Zhao, S.; Mysler, E.; Moots, R. Etanercept for the treatment of rheumatoid arthritis. Immunotherapy 2018, 10, 433–445. [Google Scholar] [CrossRef]
- Yamanaka, H.; Hirose, T.; Endo, Y.; Sugiyama, N.; Fukuma, Y.; Morishima, Y.; Sugiyama, N.; Yoshii, N.; Miyasaka, N.; Koike, T. Three-year safety and two-year effectiveness of etanercept in patients with rheumatoid arthritis in Japan: Results of long-term postmarketing surveillance. Mod. Rheumatol. 2018, 29, 737–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramiro, S.; Szumski, A.; Koenig, A.S.; Jones, T.V.; Marshall, L. Predictors of remission with etanercept-methotrexate induction therapy and loss of remission with etanercept maintenance, reduction, or withdrawal in moderately active rheumatoid arthritis: Results of the PRESERVE trial. Arthritis Res. 2018, 20, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jensen, T.B.; Bartels, D.; Sædder, E.A.; Poulsen, B.K.; Andersen, S.E.; Christensen, M.M.H.; Nielsen, L.; Christensen, H.R. The Danish model for the quick and safe implementation of infliximab and etanercept biosimilars. Eur. J. Clin. Pharmacol. 2020, 76, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Kang, Y.M.; Yoo, W.-H.; Emery, P.; Weinblatt, M.E.; Keystone, E.C.; Genovese, M.C.; Myung, G.; Baek, I.; Ghil, J. Radiographic progression based on baseline characteristics from TNF inhibitor biosimilar studies in patients with rheumatoid arthritis. Arthritis Res. 2020, 22, 1–9. [Google Scholar] [CrossRef]
- Agca, R.; Heslinga, S.C.; Rollefstad, S.; Heslinga, M.; McInnes, I.B.; Peters, M.J.; Kvien, T.K.; Dougados, M.; Radner, H.; Atzeni, F.; et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 2017, 76, 17–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kameda, H.; Uechi, E.; Atsumi, T.; Abud-Mendoza, C.; Kamei, K.; Matsumoto, T.; De Leon, D.P.; Rehman, M.I.; Zhang, M.; Radominski, S.C. A comparative study of PF-06438179/GP1111 (an infliximab biosimilar) and reference infliximab in patients with moderate to severe active rheumatoid arthritis: A subgroup analysis. Int. J. Rheum. Dis. 2020, 23, 876–881. [Google Scholar] [CrossRef]
- Müskens, W.D.; Dartel, S.A.A.R.-V.; Teerenstra, S.; Adang, E.M.M.; Van Riel, P.L.C.M. One-year results after transitioning from etanercept originator to biosimilar in a setting promoting shared decision-making in rheumatology. Rheumatol. Adv. Pr. 2020, 4, 042. [Google Scholar] [CrossRef]
- Glintborg, B.; Loft, A.G.; Omerovic, E.; Hendricks, O.; Linauskas, A.; Espesen, J.; Danebod, K.; Jensen, D.V.; Nordin, H.; Dalgaard, E.B.; et al. To switch or not to switch: Results of a nationwide guideline of mandatory switching from originator to biosimilar etanercept. One-year treatment outcomes in 2061 patients with inflammatory arthritis from the DANBIO registry. Ann. Rheum. Dis. 2019, 78, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, J.; Myung, G.; Park, M.; Jeong, D.; Ghil, J. SB5 shows cross-immunogenicity to adalimumab but not infliximab: Results in patients with inflammatory bowel disease or rheumatoid arthritis. Ther. Adv. Gastroenterol. 2019, 12, 1756284819891081. [Google Scholar] [CrossRef]
- Remsima, INN-infliximab-European Medicines Agency. [cited 2019 November 22]; EMA. Available online: https://www.ema.europa.eu/en/documents/product-information/remsima-epar-product-information_en.pdf (accessed on 31 July 2018).
- Jani, R.H.; Gupta, R.; Bhatia, G.; Rathi, G.; Kumar, P.A.; Sharma, R.; Kumar, U.; Gauri, L.A.; Jadhav, P.; Bartakke, G.; et al. A prospective, randomized, double-blind, multicentre, parallel-group, active controlled study to compare efficacy and safety of biosimilar adalimumab (Exemptia; ZRC-3197) and adalimumab (Humira) in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 2015, 19, 1157–1168. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.R.; Xie, F.; Kay, J.; Kallich, J.D. Will savings from biosimilars offset increased costs related to dose escalation? A comparison of infliximab and golimumab for rheumatoid arthritis. Arthritis Res. 2019, 21, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.-H.; Lee, S.-S.; Park, W.; Song, Y.W.; Suh, C.-H.; Kim, S.; Lee, Y.N.; Yoo, D.-H. A 5-year Retrospective Analysis of Drug Survival, Safety, and Effectiveness of the Infliximab Biosimilar CT-P13 in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis. Clin. Drug Investig. 2020, 40, 541–553. [Google Scholar] [CrossRef]
- Glintborg, B.; Sørensen, I.J.; Loft, A.G.; Lindegaard, H.; Linauskas, A.; Hendricks, O.; Hansen, I.M.J.; Jensen, D.V.; Manilo, N.; Espesen, J.; et al. A nationwide non-medical switch from originator infliximab to biosimilar CT-P13 in 802 patients with inflammatory arthritis: 1-year clinical outcomes from the DANBIO registry. Ann. Rheum. Dis. 2017, 76, 1426–1431. [Google Scholar] [CrossRef]
- Goll, G.L.; Jørgensen, K.K.; Sexton, J.; Olsen, I.C.; Bolstad, N.; Haavardsholm, E.A.; Lundin, K.E.A.; Tveit, K.S.; Lorentzen, M.; Berset, I.P.; et al. Long-term efficacy and safety of biosimilar infliximab (CT-P13) after switching from originator infliximab: Open-label extension of the NOR-SWITCH trial. J. Intern. Med. 2019, 285, 653–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, S.B.; Genovese, M.C.; Choy, E.; Perez-Ruiz, F.; Matsumoto, A.; Pavelka, K.; Pablos, J.L.; Rizzo, W.; Hrycaj, P.; Zhang, N.; et al. Efficacy and safety of the biosimilar ABP 501 compared with adalimumab in patients with moderate to severe rheumatoid arthritis: A randomised, double-blind, phase III equivalence study. Ann. Rheum. Dis. 2017, 76, 1679–1687. [Google Scholar] [CrossRef]
- Jamshidi, A.; Gharibdoost, F.; Vojdanian, M.; Soroosh, S.G.; Soroush, M.; Ahmadzadeh, A.; Nazarinia, M.A.; Mousavi, M.; Karimzadeh, H.; Shakibi, M.R.; et al. A phase III, randomized, two-armed, double-blind, parallel, active controlled, and non-inferiority clinical trial to compare efficacy and safety of biosimilar adalimumab (CinnoRA(R)) to the reference product (Humira(R)) in patients with active rheumatoid arthritis. Arthritis Res. Ther. 2017, 19, 168. [Google Scholar] [PubMed]
- Kang, J.; Eudy-Byrne, R.J.; Mondick, J.; Knebel, W.; Jayadeva, G.; Liesenfeld, K. Population pharmacokinetics of adalimumab biosimilar adalimumab-adbm and reference product in healthy subjects and patients with rheumatoid arthritis to assess pharmacokinetic similarity. Br. J. Clin. Pharmacol. 2020, 86, 2274–2285. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.C.; Kellner, H.; Arai, Y.; Muniz, R.; Alten, R. Long-term safety, immunogenicity and efficacy comparing FKB327 with the adalimumab reference product in patients with active rheumatoid arthritis: Data from randomised double-blind and open-label extension studies. RMD Open 2020, 6, e000987. [Google Scholar] [CrossRef]
- Sinha, S.; Ghosh, B.; Bandyopadhyay, S.; Fatima, F.; Bandi, V.K.; Thakur, P.; Reddy, B.; Chary, S.; Talluri, L.; Gupta, A.; et al. Comparative evaluation of efficacy, pharmacodynamics, and safety of Hetero’s adalimumab (Mabura®, Hetero Biopharma Ltd.) and reference adalimumab (Humira®, Abbvie Inc.) in patients with active rheumatoid arthritis on concomitant methotrexate therapy. BMC Rheumatol. 2020, 4, 24. [Google Scholar] [CrossRef] [PubMed]
- Mariette, X.; Förger, F.; Abraham, B.; Flynn, A.D.; Moltó, A.; Flipo, R.-M.; Van Tubergen, A.; Shaughnessy, L.; Simpson, J.; Teil, M.; et al. Lack of placental transfer of certolizumab pegol during pregnancy: Results from CRIB, a prospective, postmarketing, pharmacokinetic study. Ann. Rheum. Dis. 2018, 77, 228–233. [Google Scholar] [CrossRef]
- Janke, K.; Biester, K.; Krause, D.; Richter, B.; Schürmann, C.; Hirsch, K.; Hörn, H.; Kerekes, M.F.; Kohlepp, P.; Wieseler, B. Comparative effectiveness of biological medicines in rheumatoid arthritis: Systematic review and network meta-analysis including aggregate results from reanalysed individual patient data. BMJ 2020, 370, m2288. [Google Scholar] [CrossRef] [PubMed]
- Berkhout, L.C.; Vogelzang, E.H.; Hart, M.M.; Loeff, F.C.; Dijk, L.; Derksen, N.I.L.; Wieringa, R.; Van Leeuwen, W.A.; Krieckaert, C.L.M.; De Vries, A.; et al. The effect of certolizumab drug concentration and anti-drug antibodies on TNF neutralisation. Clin. Exp. Rheumatol. 2019, 38, 306–313. [Google Scholar]
- Curtis, J.R.; Mariette, X.; Gaujoux-Viala, C.; Blauvelt, A.; Kvien, T.K.; Sandborn, W.J.; Winthrop, K.; De Longueville, M.; Huybrechts, I.; Bykerk, V.P. Long-term safety of certolizumab pegol in rheumatoid arthritis, axial spondyloarthritis, psoriatic arthritis, psoriasis and Crohn’s disease: A pooled analysis of 11 317 patients across clinical trials. RMD Open 2019, 5, e000942. [Google Scholar] [CrossRef]
- Michelsen, B.; Sexton, J.; Wierød, A.; Bakland, G.; Rødevand, E.; Krøll, F.; Kvien, T.K. Four-year follow-up of inflammatory arthropathy patients treated with golimumab: Data from the observational multicentre NOR-DMARD study. Semin. Arthritis Rheum. 2020, 50, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Flipo, R.M.; Tubach, F.; Goupille, P.; Lespessailles, E.; Harid, N.; Sequeira, S.; Bertin, P.; Fautrel, B. Real-life persistence of golimumab in patients with chronic inflammatory rheumatic diseases: Results of the 2-year observational GO-PRACTICE study. Clin. Exp. Rheumatol. 2020. [Google Scholar]
- Iannone, F.; Favalli, E.G.; Caporali, R.; D’Angelo, S.; Cantatore, F.P.; Sarzi-Puttini, P.; Foti, R.; Conti, F.; Carletto, A.; Gremese, E.; et al. Golimumab effectiveness in biologic inadequate responding patients with rheumatoid arthritis, psoriatic arthritis and spondyloarthritis in real-life from the Italian registry GISEA. Jt. Bone Spine 2020, 105062. [Google Scholar] [CrossRef] [PubMed]
- Rahman, P.; Baer, P.; Keystone, E.; Choquette, D.; Thorne, C.; Haraoui, B.; Chow, A.; Faraawi, R.; Olszynski, W.; Kelsall, J.; et al. Long-term effectiveness and safety of infliximab, golimumab and golimumab-IV in rheumatoid arthritis patients from a Canadian prospective observational registry. BMC Rheumatol. 2020, 4, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Drugs and Lactation Database (LactMed) [Internet][Tarallo, 2019 #2144]; National Library of Medicine: Bethesda, MD, USA, 2020; Golimumab. [PubMed]
- Rose-John, S.; Winthrop, K.; Calabrese, L. The role of IL-6 in host defence against infections: Immunobiology and clinical implications. Nat. Rev. Rheumatol. 2017, 13, 399–409. [Google Scholar] [CrossRef]
- Johnson, D.E.; O’Keefe, R.A.; Grandis, J.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 2018, 15, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kishimoto, T. The Biology and Medical Implications of Interleukin-6. Cancer Immunol. Res. 2014, 2, 288–294. [Google Scholar] [CrossRef] [Green Version]
- Kimura, A.; Kishimoto, T. IL-6: Regulator of Treg/Th17 balance. Eur. J. Immunol. 2010, 40, 1830–1835. [Google Scholar] [CrossRef]
- Biggioggero, M.; Crotti, C.; Becciolini, A.; Favalli, E.G. Tocilizumab in the treatment of rheumatoid arthritis: An evidence-based review and patient selection. Drug Des. Dev. Ther. 2018, 13, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Manfredi, A.; Cassone, G.; Furini, F.; Gremese, E.; Venerito, V.; Atzeni, F.; Arrigoni, E.; Della Casa, G.; Cerri, S.; Govoni, M.; et al. Tocilizumab therapy in rheumatoid arthritis with interstitial lung disease: A multicentre retrospective study. Intern. Med. J. 2019, 50, 1085–1090. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.R.; Choy, E.; Kivitz, A.; Ogata, A.; Bao, M.; Nomura, A.; Lacey, S.; Pei, J.; Reiss, W.; Pethoe-Schramm, A.; et al. Low immunogenicity of tocilizumab in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 1078–1085. [Google Scholar] [CrossRef] [Green Version]
- Kivitz, A.J.; Olech, E.; Borofsky, M.; Zazueta, B.M.; Navarro-Sarabia, F.; Radominski, S.C.; Merrill, J.T.; Rowell, L.; Nasmyth-Miller, C.; Bao, M.; et al. Subcutaneous Tocilizumab Versus Placebo in Combination With Disease-Modifying Antirheumatic Drugs in Patients With Rheumatoid Arthritis. Arthritis Rheum. 2014, 66, 1653–1661. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.R.; Rubbert-Roth, A.; Cantagrel, A.; Hall, S.; Leszczynski, P.; Feldman, D.; Rangaraj, M.J.; Roane, G.; Ludivico, C.; Lu, P.; et al. A randomised, double-blind, parallel-group study of the safety and efficacy of subcutaneous tocilizumab versus intravenous tocilizumab in combination with traditional disease-modifying antirheumatic drugs in patients with moderate to severe rheumatoid arthritis (SUMMACTA study). Ann. Rheum. Dis. 2014, 73, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burmester, G.-R.; Rigby, W.F.; Van Vollenhoven, R.F.; Kay, J.; Rubbert-Roth, A.; Blanco, R.; Kadva, A.; Dimonaco, S. Tocilizumab combination therapy or monotherapy or methotrexate monotherapy in methotrexate-naive patients with early rheumatoid arthritis: 2-year clinical and radiographic results from the randomised, placebo-controlled FUNCTION trial. Ann. Rheum. Dis. 2017, 76, 1279–1284. [Google Scholar] [CrossRef]
- Jones, G.; Sebba, A.; Alvarez-Rodríguez, L.; Lowenstein, M.B.; Calvo-Alen, J.; Gomez-Reino, J.J.; A Siri, D.; Tomšič, M.; Alecock, E.; Woodworth, T.; et al. Comparison of tocilizumab monotherapy versus methotrexate monotherapy in patients with moderate to severe rheumatoid arthritis: The AMBITION study. Ann. Rheum. Dis. 2009, 69, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Kremer, J.M.; Blanco, R.; Brzosko, M.; Burgos-Vargas, R.; Halland, A.M.; Vernon, E.; Ambs, P.; Fleischmann, R. Tocilizumab inhibits structural joint damage in rheumatoid arthritis patients with inadequate responses to methotrexate: Results from the double-blind treatment phase of a randomized placebo-controlled trial of tocilizumab safety and prevention of structural joint damage at one year. Arthritis Rheum. 2011, 63, 609–621. [Google Scholar]
- Emery, P.; Keystone, E.; Tony, H.P.; Cantagrel, A.; Van Vollenhoven, R.; Sanchez, A.; Alecock, E.; Lee, J.; Kremer, J. IL-6 receptor inhibition with tocilizumab improves treatment outcomes in patients with rheumatoid arthritis refractory to anti-tumour necrosis factor biologicals: Results from a 24-week multicentre randomised placebo-controlled trial. Ann. Rheum. Dis. 2008, 67, 1516–1523. [Google Scholar] [CrossRef]
- Choy, E.H.; Bernasconi, C.; Aassi, M.; Molina, J.F.; Epis, O.M. Treatment of Rheumatoid Arthritis With Anti-Tumor Necrosis Factor or Tocilizumab Therapy as First Biologic Agent in a Global Comparative Observational Study. Arthritis Rheum. 2017, 69, 1484–1494. [Google Scholar] [CrossRef] [Green Version]
- Gabay, C.; Emery, P.; Van Vollenhoven, R.; Dikranian, A.; Alten, R.; Pavelka, K.; Klearman, M.; Musselman, D.; Agarwal, S.; Green, J.; et al. Tocilizumab monotherapy versus adalimumab monotherapy for treatment of rheumatoid arthritis (ADACTA): A randomised, double-blind, controlled phase 4 trial. Lancet 2013, 381, 1541–1550. [Google Scholar] [CrossRef]
- Genovese, M.C.; Fleischmann, R.; Kivitz, A.J.; Rell-Bakalarska, M.; Martincova, R.; Fiore, S.; Rohane, P.; Van Hoogstraten, H.; Garg, A.; Stefano, F.; et al. Sarilumab Plus Methotrexate in Patients With Active Rheumatoid Arthritis and Inadequate Response to Methotrexate: Results of a Phase III Study. Arthritis Rheumatol. 2015, 67, 1424–1437. [Google Scholar] [CrossRef] [Green Version]
- Choy, E.; Freemantle, N.; Proudfoot, C.; Chen, C.-I.; Pollissard, L.; Kuznik, A.; Van Hoogstraten, H.; Mangan, E.; Carita, P.; Huynh, T.-M.-T. Evaluation of the efficacy and safety of sarilumab combination therapy in patients with rheumatoid arthritis with inadequate response to conventional disease-modifying antirheumatic drugs or tumour necrosis factor α inhibitors: Systematic literature review and network meta-analyses. RMD Open 2019, 5, e000798. [Google Scholar] [CrossRef]
- Burmester, G.-R.; Lin, Y.; Patel, R.; Van Adelsberg, J.; Mangan, E.K.; Graham, N.M.H.; Van Hoogstraten, H.; Bauer, D.; Vargas, J.I.; Lee, E.B. Efficacy and safety of sarilumab monotherapy versus adalimumab monotherapy for the treatment of patients with active rheumatoid arthritis (MONARCH): A randomised, double-blind, parallel-group phase III trial. Ann. Rheum. Dis. 2016, 76, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Genovese, M.; Fleischmann, R.; Furst, D.; Janssen, N.; Carter, J.; Dasgupta, B.; Bryson, J.; Duncan, B.; Zhu, W.; Pitzalis, C.; et al. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: Outcomes of a randomised Phase IIb study. Ann. Rheum. Dis. 2014, 73, 1607–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinblatt, M.; Mease, P.J.; Mysler, E.; Takeuchi, T.; Drescher, E.; Berman, A.; Xing, J.; Zilberstein, M.; Banerjee, S.; Emery, P. The Efficacy and Safety of Subcutaneous Clazakizumab in Patients With Moderate-to-Severe Rheumatoid Arthritis and an Inadequate Response to Methotrexate: Results From a Multinational, Phase IIb, Randomized, Double-Blind, Placebo/Active-Controlled, Dose-Ra. Arthritis Rheumatol. 2015, 67, 2591–2600. [Google Scholar] [CrossRef]
- Dörner, T.; Weinblatt, M.; Van Beneden, K.; Dombrecht, E.J.; De Beuf, K.; Schoen, P.; Zeldin, R.K. Results of a phase 2b study of vobarilizumab, an anti-interleukin-6 receptor nanobody, as monotherapy in patients with moderate to severe rheumatoid arthritis. Ann. Rheum. Dis. 2017. [Google Scholar] [CrossRef]
- Arthritis Advisory Committee PLIVENSIA™ (Sirukumab). [cited 2017 June 28]; Janssen Research & Development, LLC. Available online: https://www.fda.gov/media/106360/download (accessed on 31 July 2018).
- Rooney, M.; Symons, J.A.; Duff, G.W. Interleukin 1 beta in synovial fluid is related to local disease activity in rheumatoid arthritis. Rheumatol. Int. 1990, 10, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.Y.; Boey, M.L.; Koh, W.H.; Feng, P.H. Cytokine concentrations in the synovial fluid and plasma of rheumatoid arthritis patients: Correlation with bony erosions. Clin. Exp. Rheumatol. 1994, 12, 55–58. [Google Scholar] [PubMed]
- Furst, D.E.; Keystone, E.C.; So, A.K.; Braun, J.; Breedveld, F.C.; Burmester, G.R.; De Benedetti, F.; Dorner, T.; Emery, P.; Fleischmann, R.; et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases. Ann. Rheum. Dis. 2012, 72 (Suppl. 2), ii2–ii34. [Google Scholar] [CrossRef]
- Salliot, C.; Dougados, M.; Gossec, L. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: Meta-analyses of randomised placebo-controlled trials. Ann. Rheum. Dis. 2008, 68, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Alten, R.; Gómez-Reino, J.; Durez, P.; Beaulieu, A.; Sebba, A.; Krammer, G.; Preiss, R.; Arulmani, U.; Widmer, A.; Gitton, X.; et al. Efficacy and safety of the human anti-IL-1beta monoclonal antibody canakinumab in rheumatoid arthritis: Results of a 12-week, phase II, dose-finding study. BMC Musculoskelet. Disord. 2011, 12, 153. [Google Scholar] [CrossRef]
- Stahl, N.; Radin, A.; Mellis, S. Rilonacept--CAPS and beyond. Ann. N. Y. Acad. Sci. 2009, 1182, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Dokoupilová, E.; Aelion, J.; Takeuchi, T.; Malavolta, N.; Sfikakis, P.P.; Wang, Y.; Rohrer, S.; Richards, H.B. Secukinumab after anti-tumour necrosis factor-α therapy: A phase III study in active rheumatoid arthritis. Scand. J. Rheumatol. 2018, 47, 276–281. [Google Scholar] [CrossRef]
- Ramiro, S.; Agarwal, S.K.; Ilivanova, E.; Xu, X.L.; Miao, Y.; Zhuang, Y.; Nnane, I.; Radziszewski, W.; Greenspan, A.; Beutler, A.; et al. A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann. Rheum. Dis. 2017, 76, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Nair, J.R.; Edwards, S.W.; Moots, R.J. Mavrilimumab, a human monoclonal GM-CSF receptor-α antibody for the management of rheumatoid arthritis: A novel approach to therapy. Expert Opin. Biol. Ther. 2012, 12, 1661–1668. [Google Scholar] [CrossRef]
- Lukens, J.R.; Barr, M.J.; Chaplin, D.D.; Chi, H.; Kanneganti, T.D. Inflammasome-derived IL-1beta regulates the production of GM-CSF by CD4(+) T cells and gammadelta T cells. J. Immunol. 2012, 188, 3107–3115. [Google Scholar] [CrossRef] [Green Version]
- Burmester, G.R.; McInnes, I.; Kremer, J.; Miranda, P.; Korkosz, M.; Vencovsky, J.; Rubbert-Roth, A.; Mysler, E.; A Sleeman, M.; Godwood, A.; et al. A randomised phase IIb study of mavrilimumab, a novel GM–CSF receptor alpha monoclonal antibody, in the treatment of rheumatoid arthritis. Ann. Rheum. Dis. 2017, 76, 1020–1030. [Google Scholar] [CrossRef]
- Weinblatt, M.E.; McInnes, I.B.; Kremer, J.M.; Miranda, P.; Vencovsky, J.; Guo, X.; White, W.I.; Ryan, P.C.; Godwood, A.; Albulescu, M.; et al. A Randomized Phase IIb Study of Mavrilimumab and Golimumab in Rheumatoid Arthritis. Arthritis Rheumatol. 2018, 70, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.R.; McInnes, I.B.; Kremer, J.M.; Miranda, P.; Vencovsky, J.; Godwood, A.; Albulescu, M.; Michaels, M.A.; Guo, X.; Close, D.; et al. Mavrilimumab, a Fully Human Granulocyte-Macrophage Colony-Stimulating Factor Receptor alpha Monoclonal Antibody: Long-Term Safety and Efficacy in Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2018, 70, 679–689. [Google Scholar] [CrossRef]
- Kivitz, A.; Hazan, L.; Hoffman, K.; Wallin, B. FRI0209 MORAb-022, An Anti-Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) Monoclonal Antibody (MAB): Results of The First Study in Patients with Mild-To-Moderate Rheumatoid Arthritis (RA): Table 1. Ann. Rheum. Dis. 2016, 75, 507.2-507. [Google Scholar] [CrossRef]
- Behrens, F.; Tak, P.P.; Østergaard, M.; Stoilov, R.; Wiland, P.; Huizinga, T.W.; Berenfus, V.Y.; Vladeva, S.; Rech, J.; Rubbert-Roth, A.; et al. MOR103, a human monoclonal antibody to granulocyte–macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: Results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial. Ann. Rheum. Dis. 2014, 74, 1058–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crotti, C.; Agape, E.; Becciolini, A.; Biggioggero, M.; Favalli, E.G. Targeting Granulocyte-Monocyte Colony-Stimulating Factor Signaling in Rheumatoid Arthritis: Future Prospects. Drugs 2019, 79, 1741–1755. [Google Scholar] [CrossRef]
- Tak, P.P.; A Van Der Lubbe, P.; Cauli, A.; Daha, M.R.; Smeets, T.J.M.; Kluin, P.M.; E Meinders, A.; Yanni, G.; Panayi, G.S.; Breedveld, F.C. Reduction of synovial inflammation after anti-CD4 monoclonal antibody treatment in early rheumatoid arthritis. Arthritis Rheum. 1995, 38, 1457–1465. [Google Scholar] [CrossRef] [PubMed]
- Scarsi, M.; Paolini, L.; Ricotta, D.; Pedrini, A.; Piantoni, S.; Caimi, L.; Tincani, A.; Airó, P. Abatacept Reduces Levels of Switched Memory B Cells, Autoantibodies, and Immunoglobulins in Patients with Rheumatoid Arthritis. J. Rheumatol. 2014, 41, 666–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisman, M.H.; Durez, P.; Hallegua, D.; Aranda, R.; Becker, J.-C.; Nuamah, I.; Vratsanos, G.; Zhou, Y.; Moreland, L.W. Reduction of inflammatory biomarker response by abatacept in treatment of rheumatoid arthritis. J. Rheumatol. 2006, 33, 2162–2166. [Google Scholar]
- Bonelli, M.; Göschl, L.; Blüml, S.; Karonitsch, T.; Hirahara, K.; Ferner, E.; Steiner, G.; Steiner, G.; Ramiro, S.; Scheinecker, C. Abatacept (CTLA-4Ig) treatment reduces T cell apoptosis and regulatory T cell suppression in patients with rheumatoid arthritis. Rheumatol. 2015, 55, 710–720. [Google Scholar] [CrossRef] [Green Version]
- Orencia. [cited 2019 April 12]; EMA. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/orencia (accessed on 1 June 2017).
- Kremer, J.M.; Westhovens, R.R.; Leon, M.; Di Giorgio, E.E.; Alten, R.; Steinfeld, S.; Russell, A.; Dougados, M.M.; Emery, P.; Nuamah, I.F.; et al. Treatment of Rheumatoid Arthritis by Selective Inhibition of T-Cell Activation with Fusion Protein CTLA4Ig. N. Engl. J. Med. 2003, 349, 1907–1915. [Google Scholar] [CrossRef] [PubMed]
- Westhovens, R.; Robles, M.; Ximenes, A.C.; Nayiager, S.; Wollenhaupt, J.; Durez, P.; Gomez-Reino, J.; Grassi, W.; Haraoui, B.; Shergy, W.; et al. Clinical efficacy and safety of abatacept in methotrexate-naive patients with early rheumatoid arthritis and poor prognostic factors. Ann. Rheum. Dis. 2009, 68, 1870–1877. [Google Scholar] [CrossRef] [Green Version]
- Peterfy, C.; Burmester, G.R.; Bykerk, V.P.; Combe, B.G.; Dicarlo, J.C.; E Furst, D.; Huizinga, T.W.J.; A Wong, D.; Conaghan, P.G.; Emery, P. Sustained improvements in MRI outcomes with abatacept following the withdrawal of all treatments in patients with early, progressive rheumatoid arthritis. Ann. Rheum. Dis. 2016, 75, 1501–1505. [Google Scholar] [CrossRef] [Green Version]
- Weinblatt, M.; Schiff, M.; Valente, R.; Van Der Heijde, D.; Citera, G.; Zhao, C.; Maldonado, M.; Fleischmann, R. Head-to-head comparison of subcutaneous abatacept versus adalimumab for rheumatoid arthritis: Findings of a phase IIIb, multinational, prospective, randomized study. Arthritis Rheum. 2012, 65, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Schiff, M.; Keiserman, M.; Codding, C.; Songcharoen, S.; Berman, A.; Nayiager, S.; Saldate, C.; Li, T.; Aranda, R.; Becker, J.-C.; et al. Efficacy and safety of abatacept or infliximab vs placebo in ATTEST: A phase III, multi-centre, randomised, double-blind, placebo-controlled study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Ann. Rheum. Dis. 2008, 67, 1096–1103. [Google Scholar] [CrossRef]
- Nüßlein, H.G.; Alten, R.; Galeazzi, M.; Lorenz, H.-M.; Nurmohamed, M.; Bensen, W.G.; Burmester, G.-R.; Peter, H.-H.; Peichl, P.; Pavelka, K.; et al. Efficacy and prognostic factors of treatment retention with intravenous abatacept for rheumatoid arthritis: 24-month results from an international, prospective, real-world study. Clin. Exp. Rheumatol. 2016, 34, 489–499. [Google Scholar]
- Al-Laith, M.; Jasenecova, M.; Abraham, S.; Bosworth, A.; Bruce, I.N.; Buckley, C.D.; Ciurtin, C.; D’Agostino, M.-A.; Emery, P.; Gaston, H.; et al. Arthritis prevention in the pre-clinical phase of RA with abatacept (the APIPPRA study): A multi-centre, randomised, double-blind, parallel-group, placebo-controlled clinical trial protocol. Trials 2019, 20, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Germay, S.; Bagheri, H.; Despas, F.; Rousseau, V.; Montastruc, F. Abatacept in rheumatoid arthritis and the risk of cancer: A world observational post-marketing study. Rheumatology 2019, 59, 2360–2367. [Google Scholar] [CrossRef]
- Cagnotto, G.; Willim, M.; Nilsson, J.-Å.; Compagno, M.; Jacobsson, L.T.H.; Saevarsdottir, S.; Turesson, C. Abatacept in rheumatoid arthritis: Survival on drug, clinical outcomes, and their predictors—data from a large national quality register. Arthritis Res. 2020, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Gerlag, D.M.; Safy, M.; I Maijer, K.; Tang, M.W.; Tas, S.W.; Starmans-Kool, M.J.F.; Van Tubergen, A.; Janssen, M.; De Hair, M.; Hansson, M.; et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: The PRAIRI study. Ann. Rheum. Dis. 2019, 78, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Marston, B.; Palanichamy, A.; Anolik, J.H. B cells in the pathogenesis and treatment of rheumatoid arthritis. Curr. Opin. Rheumatol. 2010, 22, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Ramsköld, D.; Parodis, I.; Lakshmikanth, T.; Sippl, N.; Khademi, M.; Chen, Y.; Zickert, A.; Mikeš, J.; Achour, A.; Amara, K.; et al. B cell alterations during BAFF inhibition with belimumab in SLE. EBioMedicine 2019, 40, 517–527. [Google Scholar] [CrossRef] [Green Version]
- Alexander, T.; Cheng, Q.; Klotsche, J.; Khodadadi, L.; Waka, A.; Biesen, R.; Hoyer, M.B.F.; Burmester, G.-R.; Radbruch, A.; Hiepe, F. Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors. Eur. J. Immunol. 2018, 48, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Luo, Z.; Yang, H. Peripheral B Cell Subsets in Autoimmune Diseases: Clinical Implications and Effects of B Cell-Targeted Therapies. J. Immunol. Res. 2020, 2020, 9518137. [Google Scholar] [CrossRef]
- Nakou, M.; Katsikas, G.; Sidiropoulos, P.; Bertsias, G.; Papadimitraki, E.D.; Raptopoulou, A.; Koutala, E.; Papadaki, H.A.; Kritikos, H.; Boumpas, D.T. Rituximab therapy reduces activated B cells in both the peripheral blood and bone marrow of patients with rheumatoid arthritis: Depletion of memory B cells correlates with clinical response. Arthritis Res. Ther. 2009, 11, R131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koffas, A.; E Dolman, G.; Kennedy, P.T.F. Hepatitis B virus reactivation in patients treated with immunosuppressive drugs: A practical guide for clinicians. Clin. Med. 2018, 18, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.; Van Melckebeke, J.; Dale, J.; Messow, C.M.; McConnachie, A.; Walker, A.; Munro, R.; McLaren, J.; McRorie, E.; Packham, J.; et al. Tumour necrosis factor inhibition versus rituximab for patients with rheumatoid arthritis who require biological treatment (ORBIT): An open-label, randomised controlled, non-inferiority, trial. Lancet 2016, 388, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Emery, P.; E Gottenberg, J.; Rubbert-Roth, A.; Sarzi-Puttini, P.; Choquette, D.; Taboada, V.M.M.; Barile-Fabris, L.; Moots, R.J.; Ostor, A.; Andrianakos, A.; et al. Rituximab versus an alternative TNF inhibitor in patients with rheumatoid arthritis who failed to respond to a single previous TNF inhibitor: SWITCH-RA, a global, observational, comparative effectiveness study. Ann. Rheum. Dis. 2014, 74, 979–984. [Google Scholar] [CrossRef] [Green Version]
- Pascart, T.; Philippe, P.; Drumez, E.; Deprez, X.; Cortet, B.; Duhamel, A.; Houvenagel, E.; Flipo, R. Comparative efficacy of tocilizumab, abatacept and rituximab after non-TNF inhibitor failure: Results from a multicentre study. Int. J. Rheum. Dis. 2016, 19, 1093–1102. [Google Scholar] [CrossRef]
- Van Vollenhoven, R.F.; Emery, P.; Bingham, C.O.; Keystone, E.C.; Fleischmann, R.M.; Furst, D.E.; Tyson, N.; Collinson, N.; Lehane, P.B. Long-term safety of rituximab in rheumatoid arthritis: 9.5-year follow-up of the global clinical trial programme with a focus on adverse events of interest in RA patients. Ann. Rheum. Dis. 2013, 72, 1496–1502. [Google Scholar] [CrossRef]
- Emery, P.; Furst, D.E.; Kirchner, P.; Melega, S.; Lacey, S.; Lehane, P.B. Risk of Malignancies in Patients with Rheumatoid Arthritis Treated with Rituximab: Analyses of Global Postmarketing Safety Data and Long-Term Clinical Trial Data. Rheumatol. Ther. 2020, 7, 121–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, G.; Damotte, V.; Gelfand, J.M.; Bevan, C.; Cree, B.A.C.; Do, L.; Green, A.J.; Hauser, S.L.; Bove, R. Rituximab before and during pregnancy: A systematic review, and a case series in MS and NMOSD. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e453. [Google Scholar] [CrossRef] [Green Version]
- Haridas, V.; Katta, R.; Nalawade, A.; Kharkar, S.; Zhdan, V.; Garmish, O.; Lopez-Lazaro, L.; Batra, S.S.; Kankanwadi, S. Pharmacokinetic Similarity and Comparative Pharmacodynamics, Safety, Efficacy, and Immunogenicity of DRL_RI Versus Reference Rituximab in Biologics-Naïve Patients with Moderate-to-Severe Rheumatoid Arthritis: A Double-Blind, Randomized, Three-Arm Study. BioDrugs 2020, 34, 183–196. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.S.; Cohen, S.B.; Tony, H.-P.; Scheinberg, M.; Kivitz, A.; Balanescu, A.; Gomez-Reino, J.; Cen, L.; Poetzl, J.; Shisha, T.; et al. Efficacy and safety of Sandoz biosimilar rituximab for active rheumatoid arthritis: 52-week results from the randomized controlled ASSIST-RA trial. Rheumatology 2021, 60, 256–262. [Google Scholar] [CrossRef]
- Burmester, G.-R.; Chien, D.; Chow, V.; Gessner, M.; Pan, J.; Cohen, S. A Randomized, Double-Blind Study Comparing Pharmacokinetics and Pharmacodynamics of Proposed Biosimilar ABP 798 With Rituximab Reference Product in Subjects With Moderate to Severe Rheumatoid Arthritis. Clin. Pharmacol. Drug Dev. 2020, 9, 1003–1014. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.C.; Božić-Majstorović, L.; Kasay, A.B.; El-Khouri, E.C.; Irazoque-Palazuelos, F.; Molina, F.F.C.; Medina-Rodriguez, F.G.; Miranda, P.; Shesternya, P.; Chavez-Corrales, J.; et al. Efficacy and safety of switching from rituximab to biosimilar CT-P10 in rheumatoid arthritis: 72-week data from a randomized Phase 3 trial. Rheumatol. 2019, 58, 2193–2202. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.S.; Landewe, R.; Breedveld, F.C.; Buch, M.; Burmester, G.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gossec, L.; Nam, J.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2013 update. Ann. Rheum. Dis. 2014, 73, 492–509. [Google Scholar] [CrossRef]
- McCamish, M.; Woollett, G. Worldwide experience with biosimilar development. mAbs 2011, 3, 209–217. [Google Scholar] [CrossRef] [Green Version]
- Mysler, E.; Pineda, C.; Horiuchi, T.; Singh, E.; Mahgoub, E.; Coindreau, J.; Jacobs, I. Clinical and regulatory perspectives on biosimilar therapies and intended copies of biologics in rheumatology. Rheumatol. Int. 2016, 36, 613–625. [Google Scholar] [CrossRef] [Green Version]
- Jørgensen, K.K.; Olsen, I.C.; Goll, G.L.; Lorentzen, M.; Bolstad, N.; A Haavardsholm, E.; E A Lundin, K.; Mørk, C.; Jahnsen, J.; Kvien, T.K.; et al. Switching from originator infliximab to biosimilar CT-P13 compared with maintained treatment with originator infliximab (NOR-SWITCH): A 52-week, randomised, double-blind, non-inferiority trial. Lancet 2017, 389, 2304–2316. [Google Scholar] [CrossRef]
- Doevendans, E.; Schellekens, H. Immunogenicity of Innovative and Biosimilar Monoclonal Antibodies. Antibodies 2019, 8, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biosimilars–Position Paper. Updatingposition statement from the European League Against Rheumatism (EULAR) Standing Committee of People with Arthritis/Rheumatism in Europe (PARE). [cited 2018 August]; EULAR. Available online: https://www.eular.org/myUploadData/files/biosimilars_paper_updated_2018_09_14_dw.pdf (accessed on 31 July 2018).
- Scheinberg, M.; Castañeda-Hernández, G. Anti-tumor necrosis factor patent expiration and the risks of biocopies in clinical practice. Arthritis Res. Ther. 2014, 16, 501. [Google Scholar] [CrossRef] [Green Version]
- Castañeda-Hernández, G.; González-Ramírez, R.; Kay, J.; A Scheinberg, M. Biosimilars in rheumatology: What the clinician should know. RMD Open 2015, 1, e000010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassett, B.; Scheinberg, M.; Castaneda-Hernandez, G.; Li, M.; Rao, U.R.K.; Singh, E.; Mahgoub, E.; Coindreau, J.; O’Brien, J.; Vicik, S.M.; et al. Variability of intended copies for etanercept (Enbrel(R)): Data on multiple batches of seven products. MAbs 2018, 10, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, S.C.; Benavides, J.A.; Roa, P.A.B.; Galarza-Maldonado, C.; Caballero-Uribe, C.V.; Soriano, E.R.; Pineda, C.; Azevedo, V.F.; Avila-Pedretti, G.; Babini, A.M.; et al. PANLAR consensus statement on biosimilars. Clin. Rheumatol. 2019, 38, 1485–1496. [Google Scholar] [CrossRef] [Green Version]
- Dávila-Fajardo, C.L.; Márquez, A.; Pascual-Salcedo, D.; Ramos, M.J.M.; García-Portales, R.; Magro, C.; Alegre-Sancho, J.J.; Balsa, A.; Cabeza-Barrera, J.; Raya, E.; et al. Confirmation of −174G/C interleukin-6 gene promoter polymorphism as a genetic marker predicting antitumor necrosis factor treatment outcome. Pharmacogenetics Genom. 2014, 24, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Jančić, I.; Arsenović-Ranin, N.; Šefik-Bukilica, M.; Živojinović, S.; Damjanov, N.; Spasovski, V.; Srzentić, S.; Stanković, B.; Pavlović, S. -174G/C interleukin-6 gene promoter polymorphism predicts therapeutic response to etanercept in rheumatoid arthritis. Rheumatol. Int. 2012, 33, 1481–1486. [Google Scholar] [CrossRef] [PubMed]
- Damen, M.S.M.A.; Schraa, K.; Tweehuysen, L.; Broeder, A.A.D.; Netea, M.G.; Popa, C.D.; Joosten, L.A. Genetic variant in IL-32 is associated with the ex vivo cytokine production of anti-TNF treated PBMCs from rheumatoid arthritis patients. Sci. Rep. 2018, 8, 14050. [Google Scholar] [CrossRef] [Green Version]
- Marotte, H.; Arnaud, B.; Diasparra, J.; Zrioual, S.; Miossec, P. Association between the level of circulating bioactive tumor necrosis factor α and the tumor necrosis factor α gene polymorphism at −308 in patients with rheumatoid arthritis treated with a tumor necrosis factor α inhibitor. Arthritis Rheum. 2008, 58, 1258–1263. [Google Scholar] [CrossRef] [PubMed]
- Padyukov, L.; Lampa, J.; Heimbürger, M.; Ernestam, S.; Cederholm, T.; Lundkvist, I.; Andersson, P.; Hermansson, Y.; Harju, A.; Klareskog, L.; et al. Genetic markers for the efficacy of tumour necrosis factor blocking therapy in rheumatoid arthritis. Ann. Rheum. Dis. 2003, 62, 526–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolusso, B.; Pietrapertosa, D.; Morelli, A.; De Santis, M.; Gremese, E.; Farina, G.; Carniello, S.G.; Del Frate, M.; Ferraccioli, G. IL-1B and IL-1RN gene polymorphisms in rheumatoid arthritis: Relationship with protein plasma levels and response to therapy. Pharmacogenomics 2006, 7, 683–695. [Google Scholar] [CrossRef]
- Canet, L.M.; Sánchez-Maldonado, J.M.; Cáliz, R.; Rodríguez-Ramos, A.; Lupiañez, C.B.; Canhão, H.; Martínez-Bueno, M.; Escudero, A.; Segura-Catena, J.; Sorensen, S.B.; et al. Polymorphisms at phase I-metabolizing enzyme and hormone receptor loci influence the response to anti-TNF therapy in rheumatoid arthritis patients. Pharmacogenomics J. 2018, 19, 83–96. [Google Scholar] [CrossRef]
- Ferreiro-Iglesias, A.; Montes, A.; Perez-Pampin, E.; Cañete, J.D.; Raya, E.; Magro-Checa, C.; Vasilopoulos, Y.; Caliz, R.; Ferrer, M.A.; Joven, B.; et al. Evaluation of 12 GWAS-drawn SNPs as biomarkers of rheumatoid arthritis response to TNF inhibitors. A potential SNP association with response to etanercept. PLoS ONE 2019, 14, e0213073. [Google Scholar] [CrossRef]
- Bogunia-Kubik, K.; Wysoczańska, B.; Piątek, D.; Iwaszko, M.; Ciechomska, M.; Świerkot, J. Significance of Polymorphism and Expression of miR-146a and NFkB1 Genetic Variants in Patients with Rheumatoid Arthritis. Arch. Immunol. et Ther. Exp. 2016, 64, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Degner, J.; Davis, J.W.; Idler, K.B.; Nader, A.; Mostafa, N.M.; Waring, J.F. Identification of HLA-DRB1 association to adalimumab immunogenicity. PLoS ONE 2018, 13, e0195325. [Google Scholar] [CrossRef] [Green Version]
- Radstake, T.R.D.J.; Svenson, M.; Eijsbouts, A.M.; Hoogen, F.H.J.V.D.; Enevold, C.; Van Riel, P.L.C.M.; Bendtzen, K. Formation of antibodies against infliximab and adalimumab strongly correlates with functional drug levels and clinical responses in rheumatoid arthritis. Ann. Rheum. Dis. 2008, 68, 1739–1745. [Google Scholar] [CrossRef]
- Traylor, M.; Knevel, R.; Cui, J.; Taylor, J.; Harm-Jan, W.; Conaghan, P.G.; Cope, A.P.; Curtis, C.; Emery, P.; Newhouse, S.; et al. Genetic associations with radiological damage in rheumatoid arthritis: Meta-analysis of seven genome-wide association studies of 2775 cases. PLoS ONE 2019, 14, e0223246. [Google Scholar] [CrossRef]
- Pal, I.; Szamosi, S.; Hodosi, K.; Szekanecz, Z.; Varoczy, L. Effect of Fcgamma-receptor 3a (FCGR3A) gene polymorphisms on rituximab therapy in Hungarian patients with rheumatoid arthritis. RMD Open 2017, 3, e000485. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.H.; Bae, S.-C.; Song, G.G. Functional FCGR3A 158 V/F and IL-6 −174 C/G polymorphisms predict response to biologic therapy in patients with rheumatoid arthritis: A meta-analysis. Rheumatol. Int. 2014, 34, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Talotta, R.; Bagnato, G.L.; Atzeni, F.; Ditto, M.C.; Bitto, A.; Squadrito, F.; Gullo, A.L.; Sarzi-Puttini, P. Polymorphic alleles in exon 1 of the CTLA4 gene do not predict the response to abatacept. Clin. Exp. Rheumatol. 2013, 31, 813. [Google Scholar] [PubMed]
- Leng, R.-X.; Di, D.-S.; Ni, J.; Wu, X.-X.; Zhang, L.-L.; Wang, X.-F.; Liu, R.-S.; Huang, Q.; Fan, Y.-G.; Pan, H.-F.; et al. Identification of new susceptibility loci associated with rheumatoid arthritis. Ann. Rheum. Dis. 2020, 79, 1565–1571. [Google Scholar] [CrossRef] [PubMed]
- Ciechomska, M.; O’Reilly, S. Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases. Mediat. Inflamm. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Horsburgh, S.; Ciechomska, M.; O’Reilly, S. CpG-specific methylation at rheumatoid arthritis diagnosis as a marker of treatment response. Epigenomics 2017, 9, 595–597. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Ubreva, J.; De La Calle-Fabregat, C.; Li, T.; Ciudad, L.; Ballestar, M.L.; Català-Moll, F.; Morante-Palacios, O.; Garcia-Gomez, A.; Celis, R.; Humby, F.; et al. Inflammatory cytokines shape a changing DNA methylome in monocytes mirroring disease activity in rheumatoid arthritis. Ann. Rheum. Dis. 2019, 78, 1505–1516. [Google Scholar] [CrossRef]
- Ai, R.; Hammaker, D.; Boyle, D.L.; Morgan, R.; Walsh, A.M.; Fan, S.; Firestein, G.S.; Wang, W. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 2016, 7, 11849. [Google Scholar] [CrossRef]
- Ai, R.; Whitaker, J.W.; Boyle, D.L.; Tak, P.P.; Gerlag, D.M.; Wang, W.; Firestein, G.S. DNA Methylome Signature in Synoviocytes From Patients With Early Rheumatoid Arthritis Compared to Synoviocytes From Patients With Longstanding Rheumatoid Arthritis. Arthritis Rheumatol. 2015, 67, 1978–1980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.-Z.; Zhang, X.-D.; Chen, Y.; Wu, Y.-B. The role of circulating miR-146a in patients with rheumatoid arthritis treated by Tripterygium wilfordii Hook F. Med. 2017, 96, e6775. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Han, Y.; Qu, H.; Fang, J.; Ye, M.; Yin, W. Correlation of microRNA expression profile with clinical response to tumor necrosis factor inhibitor in treating rheumatoid arthritis patients: A prospective cohort study. J. Clin. Lab. Anal. 2019, 33, e22953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciechomska, M.; Bonek, K.; Merdas, M.; Zarecki, P.; Swierkot, J.; Gluszko, P.; Bogunia-Kubik, K.; Maśliński, W. Changes in MiRNA-5196 Expression as a Potential Biomarker of Anti-TNF-α Therapy in Rheumatoid Arthritis and Ankylosing Spondylitis Patients. Arch. Immunol. Ther. Exp. 2018, 66, 389–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sode, J.; Krintel, S.B.; Carlsen, A.L.; Hetland, M.; Johansen, J.S.; Hørslev-Petersen, K.; Stengaard-Pedersen, K.; Ellingsen, T.; Burton, M.; Junker, P.; et al. Plasma MicroRNA Profiles in Patients with Early Rheumatoid Arthritis Responding to Adalimumab plus Methotrexate vs Methotrexate Alone: A Placebo-controlled Clinical Trial. J. Rheumatol. 2017, 45, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Krintel, S.B.; Dehlendorff, C.; Hetland, M.; Hørslev-Petersen, K.; Andersen, K.K.; Junker, P.; Pødenphant, J.; Ellingsen, T.; Ahlquist, P.; Lindegaard, H.; et al. Prediction of treatment response to adalimumab: A double-blind placebo-controlled study of circulating microRNA in patients with early rheumatoid arthritis. Pharm. J. 2015, 16, 141–146. [Google Scholar] [CrossRef] [PubMed]
- De La Rosa, I.A.; Perez-Sanchez, C.; Ruiz-Limon, P.; Patiño-Trives, A.; Torres-Granados, C.; Jimenez-Gomez, Y.; Abalos-Aguilera, M.D.C.; Cecchi, I.; Ortega, R.; Caracuel, M.A.; et al. Impaired microRNA processing in neutrophils from rheumatoid arthritis patients confers their pathogenic profile. Modulation by biological therapies. Haematologica 2020, 105, 2250–2261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikari, Y.; Isozaki, T.; Tsubokura, Y.; Kasama, T. Peficitinib Inhibits the Chemotactic Activity of Monocytes via Proinflammatory Cytokine Production in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Cells 2019, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- Toussirot, E.; Wendling, D.; Herbein, G. Biological treatments given in patients with rheumatoid arthritis or ankylosing spondylitis modify HAT/HDAC (histone acetyltransferase/histone deacetylase) balance. Jt. Bone Spine 2014, 81, 544–545. [Google Scholar] [CrossRef]
- Lin, Y.C.; Lin, Y.C.; Wu, C.C.; Huang, M.Y.; Tsai, W.C.; Hung, C.H.; Kuo, P.L. The immunomodulatory effects of TNF-alpha inhibitors on human Th17 cells via RORgammat histone acetylation. Oncotarget 2017, 8, 7559–7571. [Google Scholar] [CrossRef] [Green Version]
- Harrison, C. Focus shifts to antibody cocktails for COVID-19 cytokine storm. Nat. Biotechnol. 2020, 38, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Chun-Quan China Medical Treatment Expert Group for Covid-19; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet 2020, 395, 1407–1409. [Google Scholar] [CrossRef]
- Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA 2020, 117, 10970–10975. [Google Scholar] [CrossRef]
- Klopfenstein, T.; Zayet, S.; Lohse, A.; Selles, P.; Zahra, H.; Kadiane-Oussou, N.J.; Toko, L.; Royer, P.-Y.; Balblanc, J.-C.; Gendrin, V.; et al. Impact of tocilizumab on mortality and/or invasive mechanical ventilation requirement in a cohort of 206 COVID-19 patients. Int. J. Infect. Dis. 2020, 99, 491–495. [Google Scholar] [CrossRef] [PubMed]
- Somers, E.C.; A Eschenauer, G.; Troost, J.P.; Golob, J.L.; Gandhi, T.N.; Wang, L.; Zhou, N.; A Petty, L.; Baang, J.H.; O Dillman, N.; et al. Tocilizumab for Treatment of Mechanically Ventilated Patients With COVID-19. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Lan, S.-H.; Lai, C.-C.; Huang, H.-T.; Chang, S.-P.; Lu, L.-C.; Hsueh, P.-R. Tocilizumab for severe COVID-19: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2020, 56, 106103. [Google Scholar] [CrossRef]
- Shinoda, K.; Tokoyoda, K.; Hanazawa, A.; Hayashizaki, K.; Zehentmeier, S.; Hosokawa, H.; Iwamura, C.; Koseki, H.; Tumes, D.J.; Radbruch, A.; et al. Type II membrane protein CD69 regulates the formation of resting T-helper memory. Proc. Natl. Acad. Sci. 2012, 109, 7409–7414. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, H.; Miyagi, K.; Otsuki, M.; Higure, Y.; Nishiyama, N.; Kinjo, T.; Nakamatsu, M.; Haranaga, S.; Tateyama, M.; Fujita, J. Acute Hypertriglyceridaemia Caused by Tocilizumab in a Patient with Severe COVID-19. Intern. Med. 2020, 59, 2945–2949. [Google Scholar] [CrossRef]
- Stone, J.H.; Frigault, M.J.; Serling-Boyd, N.J.; Fernandes, A.D.; Harvey, L.; Foulkes, A.S.; Horick, N.K.; Healy, B.C.; Shah, R.; Bensaci, A.M.; et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N. Engl. J. Med. 2020, 383, 2333–2344. [Google Scholar] [CrossRef]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available online: https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf (accessed on 3 November 2020).
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with Covid-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef]
- The REMAP-CAP Investigators; Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, R.; Beane, A.; van Bentum-Puijk, W.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19–Preliminary report. medRxiv 2021. [Google Scholar] [CrossRef]
- Shakoory, B.; Carcillo, J.A.; Chatham, W.W.; Amdur, R.L.; Zhao, H.; Dinarello, C.A.; Cron, R.Q.; Opal, S.M. Interleukin-1 Receptor Blockade Is Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome. Crit. Care Med. 2016, 44, 275–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guilpain, P.; Le Bihan, C.; Foulongne, V.; Taourel, P.; Pansu, N.; Maria, A.T.J.; Jung, B.; Larcher, R.; Klouche, K.; Le Moing, V. Response to: ‘Severe COVID-19 associated pneumonia in 3 patients with systemic sclerosis treated with rituximab’ by Avouac et al. Ann. Rheum. Dis. 2020. [Google Scholar] [CrossRef]
- Guilpain, P.; Le Bihan, C.; Foulongne, V.; Taourel, P.; Pansu, N.; Maria, A.; Jung, B.; Larcher, R.; Klouche, K.; Le Moing, V. Rituximab for granulomatosis with polyangiitis in the pandemic of covid-19: Lessons from a case with severe pneumonia. Ann. Rheum. Dis. 2021, 80, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze-Koops, H.; Krueger, K.; Vallbracht, I.; Hasseli, R.; Skapenko, A. Increased risk for severe COVID-19 in patients with inflammatory rheumatic diseases treated with rituximab. Ann. Rheum. Dis. 2020. [Google Scholar] [CrossRef]
- Tepasse, P.R.; Hafezi, W.; Lutz, M.; Kuhn, J.; Wilms, C.; Wiewrodt, R.; Sackarnd, J.; Keller, M.; Schmidt, H.H.; Vollenberg, R. Persisting SARS-CoV-2 viraemia after rituximab therapy: Two cases with fatal outcome and a review of the literature. Br. J. Haematol. 2020, 190, 185–188. [Google Scholar] [CrossRef]
- Haberman, R.; Axelrad, J.; Chen, A.; Castillo, R.; Yan, D.; Izmirly, P.; Neimann, A.; Adhikari, S.; Hudesman, D.; Scher, J.U. Covid-19 in Immune-Mediated Inflammatory Diseases—Case Series from New York. N. Engl. J. Med. 2020, 383, 85–88. [Google Scholar] [CrossRef] [PubMed]
- Favalli, E.G.; Bugatti, S.; Klersy, C.; Biggioggero, M.; Rossi, S.; De Lucia, O.; Bobbio-Pallavicini, F.; Murgo, A.; Balduzzi, S.; Caporali, R.; et al. Impact of corticosteroids and immunosuppressive therapies on symptomatic SARS-CoV-2 infection in a large cohort of patients with chronic inflammatory arthritis. Arthritis Res. Ther. 2020, 22, 290. [Google Scholar] [CrossRef] [PubMed]
- Massalska, M.; Maslinski, W.; Ciechomska, M. Small Molecule Inhibitors in the Treatment of Rheumatoid Arthritis and Beyond: Latest Updates and Potential Strategy for Fighting COVID-19. Cells 2020, 9, 1876. [Google Scholar] [CrossRef] [PubMed]
- Stradner, M.H.; Dejaco, C.; Zwerina, J.; Fritsch-Stork, R.D. Rheumatic Musculoskeletal Diseases and COVID-19 A Review of the First 6 Months of the Pandemic. Front. Med. 2020, 7, 562142. [Google Scholar] [CrossRef] [PubMed]
- Monti, S.; Balduzzi, S.; Delvino, P.; Bellis, E.; Quadrelli, V.S.; Montecucco, C. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann. Rheum. Dis. 2020, 79, 667–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EULAR Guidance for Patients COVID-19 Outbreak. Available online: https://www.eular.org/eular_guidance_for_patients_covid19_outbreak.cfm. (accessed on 17 March 2020).
- Guiding Principles from the American College of Rheumatology for Scarce Resource Allocation During the COVID-19 Pandemic: The Case of IL-1 and IL-6 and JAK Antagonists; American College of Rheumatology: Atlanta, GA, USA, 2020.
Drug Class | Name (Year Approved) | Current Development in COVID-19 | Biosimilars |
---|---|---|---|
TNF inhibition | Etanercept–Enbrel (1998) | Erelzi (2016 `) Benapali (2016 *) Eticovo (2019 ^) | |
Infliximab-Remicade (1999) | Phase 2 NCT04425538 | Remisima (2013 *) Inflectra (2016 `) Flixabi (2016 *) Renflexis (2017 ^) Ixifi (2017 ^) Zessly (2018 *) Avsola (2019 ^) | |
Adalimumab-Humira (2002) | Phase 2 ISRCTN33260034 Phase 3 IRCT20171105037262N4 Phase 4 ChiCTR2000030089 | Amgevita (2016 `) Cyltezo (2017 `) Imraldi (2017 *) Solymbic (2017 *) Halimatoz (2018 *) Hefiya (2018 *) Hyrimoz (2018 `) Idacio (2018 *) Kromeya (2019 *) Hadlima (2019 ^) Abrilada (2019 ^) Hulio (2020 `) | |
Certolizumab pegol-Cimzia (2009) | |||
Golimumab-Simponi (2009) | |||
IL-6 inhibition | Tocilizumab-Actemra/RoActemra (2010) | Selected Phase 2 NCT04445272, NCT04479358, NCT04317092, NCT04331795, NCT04332094, NCT04377659, NCT04412291, NCT04479358, NCT04317092, NCT04435717, NCT04331795 Selected Phase 3 NCT04345445, NCT04412772, NCT04345445 Phase 4 NCT04377750, NCT02735707 | |
Sarilumab-Kevzara (2017) | Selected Phase 2 NCT04357808, NCT04359901, NCT04315298, NCT04357860, NCT04324073 Phase 3 NCT04315298, NCT04327388, NCT04324073 Phase 4 NCT02735707 | ||
Olokizumab (phase 3) | Phase 3 NCT04452474, NCT04380519 | ||
Clazakizumab (phase 2b) | Phase 2 NCT04381052, NCT04348500, NCT04343989, NCT04363502, NCT04343989 Phase 3 NCT04351724 | ||
Vobarilizumab (phase 3) | |||
Sirukumab (phase 3) | Phase 2 NCT04380961 | ||
IL-1 inhibition | Anakinra-Kineret (2001) | Selected Phase 2 NCT04366232, NCT04462757, NCT04412291, NCT04443881, NCT04357366 Selected Phase 3NCT04424056, NCT04364009, NCT04443881, NCT04362111 Phase 4 NCT02735707 | |
Canakinumab (phase 2) | Phase 2 NCT04365153 Phase 3 NCT04362813, NCT04510493 | ||
Rilonacept (phase 2) | |||
GM-CSF inhibition | Mavrilimumab (phase 2b) | Phase 2 NCT04463004, NCT04399980, NCT04397497, NCT04447469 Phase 3 NCT04447469 | |
Gimsilumab (phase 1) | Phase 2 NCT04351243 | ||
Otilimab (phase 3) | Phase 2 NCT04376684,PER-042-20 EUCTR2020-001759-42-GB | ||
Namilumab (phase 2) | |||
Lenzilumab (phase 2) | Phase 3 NCT04351152, NCT04534725 | ||
T-cell targeted therapy | Abatacept-Orencia (2005) | Phase 2 NCT04477642, NCT04472494 | |
B cell targeted therapy | Rituximab-MabThera/Rituxan (2006) | Truxima (2018 `) Ruxience (2019 `) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonek, K.; Roszkowski, L.; Massalska, M.; Maslinski, W.; Ciechomska, M. Biologic Drugs for Rheumatoid Arthritis in the Context of Biosimilars, Genetics, Epigenetics and COVID-19 Treatment. Cells 2021, 10, 323. https://doi.org/10.3390/cells10020323
Bonek K, Roszkowski L, Massalska M, Maslinski W, Ciechomska M. Biologic Drugs for Rheumatoid Arthritis in the Context of Biosimilars, Genetics, Epigenetics and COVID-19 Treatment. Cells. 2021; 10(2):323. https://doi.org/10.3390/cells10020323
Chicago/Turabian StyleBonek, Krzysztof, Leszek Roszkowski, Magdalena Massalska, Wlodzimierz Maslinski, and Marzena Ciechomska. 2021. "Biologic Drugs for Rheumatoid Arthritis in the Context of Biosimilars, Genetics, Epigenetics and COVID-19 Treatment" Cells 10, no. 2: 323. https://doi.org/10.3390/cells10020323
APA StyleBonek, K., Roszkowski, L., Massalska, M., Maslinski, W., & Ciechomska, M. (2021). Biologic Drugs for Rheumatoid Arthritis in the Context of Biosimilars, Genetics, Epigenetics and COVID-19 Treatment. Cells, 10(2), 323. https://doi.org/10.3390/cells10020323