Influence of Antihypertensive Treatment on RAAS Peptides in Newly Diagnosed Hypertensive Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Setting
2.2. Intervention Group
2.3. Normotensive Control Group
2.4. Blood Pressure Measurements
2.5. RAAS Peptide Sampling
2.6. Trial Registration
2.7. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Angiotensin II (1–8) and Angiotensin (1–7) Equilibrium Concentrations
3.2.1. Comparison between Normotensive Controls and Hypertensive Patients before Treatment Initiation
3.2.2. Comparison between the Different Treatment Groups at Baseline and after 4 Weeks of Treatment
Angiotensin II (1–8)
Angiotensin (1–7)
3.2.3. Difference between Baseline and Treatment over Entire Cohort
4. Discussion
4.1. Limitations
4.2. Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mills, K.T.; Bundy, J.D.; Kelly, T.N.; Reed, J.E.; Kearney, P.M.; Reynolds, K.; Chen, J.; He, J. Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies From 90 Countries. Circulation 2016, 134, 441–450. [Google Scholar] [CrossRef]
- Sommerstein, R.; Gräni, C. Rapid Response: Re: Preventing a covid-19 pandemic: ACE inhibitors as a potential risk factor for fatal Covid-19. BMJ 2020. [Google Scholar] [CrossRef] [Green Version]
- Kuster, G.M.; Pfister, O.; Burkard, T.; Zhou, Q.; Twerenbold, R.; Haaf, P.; Widmer, A.F.; Osswald, S. SARS-CoV2: Should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur. Heart J. 2020. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med. 2020. [Google Scholar] [CrossRef]
- Patel, V.B.; Zhong, J.C.; Grant, M.B.; Oudit, G.Y. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure. Circ. Res. 2016, 118, 1313–1326. [Google Scholar] [CrossRef] [Green Version]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Bohm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glinz, D.; Bläsi, C.; Villiger, A.; Meienberg, A.; Socrates, T.; Pfister, O.; Mayr, M.; Haschke, M.; Vischer, A.S.; Burkard, T. Hemodynamic profiles in treatment-naive arterial hypertension and their clinical implication for treatment choice: An exploratory post hoc analysis. J. Hypertens. 2020. [Google Scholar] [CrossRef]
- Basu, R.; Poglitsch, M.; Yogasundaram, H.; Thomas, J.; Rowe, B.H.; Oudit, G.Y. Roles of Angiotensin Peptides and Recombinant Human ACE2 in Heart Failure. J. Am. Coll. Cardiol. 2017, 69, 805–819. [Google Scholar] [CrossRef] [PubMed]
- Pavo, N.; Goliasch, G.; Wurm, R.; Novak, J.; Strunk, G.; Gyongyosi, M.; Poglitsch, M.; Saemann, M.D.; Hulsmann, M. Low- and High-renin Heart Failure Phenotypes with Clinical Implications. Clin. Chem. 2018, 64, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Binder, C.; Poglitsch, M.; Agibetov, A.; Duca, F.; Zotter-Tufaro, C.; Nitsche, C.; Aschauer, S.; Kammerlander, A.A.; Oeztuerk, B.; Hengstenberg, C.; et al. Angs (Angiotensins) of the Alternative Renin-Angiotensin System Predict Outcome in Patients With Heart Failure and Preserved Ejection Fraction. Hypertension 2019, 74, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Waeber, B.; Nussberger, J.; Juillerat, L.; Brunner, H.R. Angiotensin converting enzyme inhibition: Discrepancy between antihypertensive effect and suppression of enzyme activity. J. Cardiovasc. Pharm. 1989, 14 (Suppl. 4), S53–S59. [Google Scholar] [CrossRef]
- Chalmers, J.P.; Wing, L.M.; West, M.J.; Bune, A.J.; Elliott, J.M.; Morris, M.J.; Cain, M.D.; Graham, J.R.; Southgate, D.O. Effects of enalapril and hydrochlorothiazide on blood pressure, renin-angiotensin system, and atrial natriuretic factor in essential hypertension: A double blind factorial cross-over study. Aust. N. Z. J. Med. 1986, 16, 475–480. [Google Scholar] [CrossRef]
- Hagmann, M.; Nussberger, J.; Naudin, R.B.; Burns, T.S.; Karim, A.; Waeber, B.; Brunner, H.R. SC-52458, an orally active angiotensin II-receptor antagonist: Inhibition of blood pressure response to angiotensin II challenges and pharmacokinetics in normal volunteers. J. Cardiovasc. Pharm. 1997, 29, 444–450. [Google Scholar] [CrossRef]
- Jessup, J.A.; Brosnihan, K.B.; Gallagher, P.E.; Chappell, M.C.; Ferrario, C.M. Differential effect of low dose thiazides on the Renin Angiotensin system in genetically hypertensive and normotensive rats. J. Am. Soc. Hypertens 2008, 2, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Du, H.J.; Hu, W.J.; Shaw, P.X. The influence of long term hydrochlorothiazide administration on the relationship between renin-angiotensin-aldosterone system activity and plasma glucose in patients with hypertension. Oxid. Med. Cell Longev. 2013, 2013, 434618. [Google Scholar] [CrossRef]
- Lijnen, P.; Fagard, R.; Staessen, J.; Amery, A. Effect of chronic diuretic treatment on the plasma renin-angiotensin-aldosterone system in essential hypertension. Br. J. Clin. Pharm. 1981, 12, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Schricker, K.; Hamann, M.; Macher, A.; Krämer, B.K.; Kaissling, B.; Kurtz, A. Effect of amlodipine on renin secretion and renin gene expression in rats. Br. J. Pharm. 1996, 119, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Konda, T.; Enomoto, A.; Aritomi, S.; Niinuma, K.; Koganei, H.; Ogawa, T.; Nitta, K. Different effects of L/N-type and L-type calcium channel blockers on the renin-angiotensin-aldosterone system in SHR/Izm. Am. J. Nephrol 2009, 30, 155–161. [Google Scholar] [CrossRef]
- Aritomi, S.; Niinuma, K.; Ogawa, T.; Konda, T.; Nitta, K. Effects of an N-type calcium antagonist on angiotensin II-renin feedback. Am. J. Nephrol. 2011, 33, 168–175. [Google Scholar] [CrossRef]
- Konoshita, T.; Makino, Y.; Kimura, T.; Fujii, M.; Wakahara, S.; Arakawa, K.; Inoki, I.; Nakamura, H.; Miyamori, I. A new-generation N/L-type calcium channel blocker leads to less activation of the renin-angiotensin system compared with conventional L type calcium channel blocker. J. Hypertens. 2010, 28, 2156–2160. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020. [Google Scholar] [CrossRef]
- ESH Update on Covid-19. Available online: https://www.eshonline.org/spotlights/esh-stabtement-on-covid-19/ (accessed on 25 March 2020).
- Bozkurt, B.; Kovacs, R.; Harrington, B. HFSA/ACC/AHA Statement Addresses Concerns Re: Using RAAS Antagonists in COVID-19. J. Card. Fail. 2020, 5, 370. [Google Scholar] [CrossRef] [PubMed]
- De Simone, G. Position Statement of the ESC Council on Hypertension on ACE-Inhibitors and Angiotensin Receptor Blockers. Available online: https://www.escardio.org/Councils/Council-on-Hypertension-(CHT)/News/position-statement-of-the-esc-council-on-hypertension-on-ace-inhibitors-and-ang (accessed on 25 March 2020).
- A statement from the International Society of Hypertension on COVID-19. Available online: https://ish-world.com/news/a/A-statement-from-the-International-Society-of-Hypertension-on-COVID-19/ (accessed on 25 March 2020).
- Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005, 436, 112–116. [Google Scholar] [CrossRef]
- Wang, R.; Zagariya, A.; Ibarra-Sunga, O.; Gidea, C.; Ang, E.; Deshmukh, S.; Chaudhary, G.; Baraboutis, J.; Filippatos, G.; Uhal, B.D. Angiotensin II induces apoptosis in human and rat alveolar epithelial cells. Am. J. Physiol. 1999, 276, L885–L889. [Google Scholar] [CrossRef]
- Wang, R.; Alam, G.; Zagariya, A.; Gidea, C.; Pinillos, H.; Lalude, O.; Choudhary, G.; Oezatalay, D.; Uhal, B.D. Apoptosis of lung epithelial cells in response to TNF-alpha requires angiotensin II generation de novo. J. Cell Physiol. 2000, 185, 253–259. [Google Scholar] [CrossRef]
- Klein, N.; Gembardt, F.; Supe, S.; Kaestle, S.M.; Nickles, H.; Erfinanda, L.; Lei, X.; Yin, J.; Wang, L.; Mertens, M.; et al. Angiotensin-(1–7) protects from experimental acute lung injury. Crit. Care Med. 2013, 41, e334–e343. [Google Scholar] [CrossRef] [PubMed]
- Benigni, A.; Cassis, P.; Remuzzi, G. Angiotensin II revisited: New roles in inflammation, immunology and aging. Embo Mol. Med. 2010, 2, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Vukelic, S.; Griendling, K.K. Angiotensin II, from vasoconstrictor to growth factor: A paradigm shift. Circ. Res. 2014, 114, 754–757. [Google Scholar] [CrossRef] [Green Version]
- Unger, T.; Paulis, L.; Sica, D.A. Therapeutic perspectives in hypertension: Novel means for renin-angiotensin-aldosterone system modulation and emerging device-based approaches. Eur. Heart J. 2011, 32, 2739–2747. [Google Scholar] [CrossRef] [PubMed]
- Chappell, M.C. Emerging evidence for a functional angiotensin-converting enzyme 2-angiotensin-(1–7)-MAS receptor axis: More than regulation of blood pressure? Hypertension 2007, 50, 596–599. [Google Scholar] [CrossRef] [Green Version]
- Crackower, M.A.; Sarao, R.; Oudit, G.Y.; Yagil, C.; Kozieradzki, I.; Scanga, S.E.; Oliveira-dos-Santos, A.J.; da Costa, J.; Zhang, L.; Pei, Y.; et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002, 417, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Zambelli, V.; Bellani, G.; Borsa, R.; Pozzi, F.; Grassi, A.; Scanziani, M.; Castiglioni, V.; Masson, S.; Decio, A.; Laffey, J.G.; et al. Angiotensin-(1–7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome. Intensive Care Med. Exp. 2015, 3, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Mo, H.; Cai, L.; Kong, T.; Zheng, W.; Ye, J.; Qi, J.; Xiao, Z. Losartan prevents sepsis-induced acute lung injury and decreases activation of nuclear factor kappaB and mitogen-activated protein kinases. Shock 2009, 31, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med. 2005, 11, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Jerng, J.S.; Hsu, Y.C.; Wu, H.D.; Pan, H.Z.; Wang, H.C.; Shun, C.T.; Yu, C.J.; Yang, P.C. Role of the renin-angiotensin system in ventilator-induced lung injury: An in vivo study in a rat model. Thorax 2007, 62, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.S.; Wang, L.F.; Chou, H.C.; Chen, C.M. Angiotensin-converting enzyme inhibitor captopril attenuates ventilator-induced lung injury in rats. J. Appl. Physiol. 2007, 102, 2098–2103. [Google Scholar] [CrossRef] [PubMed]
- Monteonofrio, L.; Florio, M.C.; AlGhatrif, M.; Lakatta, E.G.; Capogrossi, M.C. Aging- and gender-related modulation of RAAS: Potential implications in COVID-19 disease. Vasc. Biol. 2021, 3, r1–r14. [Google Scholar] [CrossRef] [PubMed]
- Chappell, M.C.; Pirro, N.T.; South, A.M.; Gwathmey, T.M. Concerns on the Specificity of Commercial ELISAs for the Measurement of Angiotensin (1–7) and Angiotensin II in Human Plasma. Hypertension 2021, 77, e29–e31. [Google Scholar] [CrossRef] [PubMed]
Baseline | ACE-I | ARB | CCB | HCT | p-Value 1 | Normotensives |
---|---|---|---|---|---|---|
n (%) | 20 (25.0) | 20 (25.0) | 21 (26.3) | 19 (23.8) | 20 | |
Female sex (%) | 7 (35.0%) | 5 (25.0%) | 3 (14.3%) | 7 (36.8%) | 0.348 2 | 6 (30.0%) |
Age (years) (±SD) | 49 (±13) | 43 (±16) | 48 (±14) | 54 (±13) | 0.090 3 | 49 (±13) |
BMI (kg/m2) (±SD) | 26.1 (±3.3) | 26.1 (±4.1) | 27.0 (±4.0) | 26.7 (±3.6) | 0.828 3 | 23.2 (±2.8) |
sBP mean (mmHg) (±SD) | 139.5 (±7.1) | 143.4 (±9.4) | 139.3 (±7.2) | 145.3 (±11.3) | 0.131 4 | 118.9 (±7.5) |
dBP mean (mmHg) (±SD) | 87.0 (±6.2) | 87.5 (±8.0) | 87.3 (±8.7) | 89.8 (±7.6) | 0.649 3 | 74.4 (±4.5) |
sBP awake (mmHg) (±SD) | 145.0 (±7.2) | 148.2 (±9.2) | 144.4 (±7.9) | 150.3 (±10.3) | 0.122 3 | 123.2 (±7.9) |
dBP awake (mmHg) (±SD) | 91.4 (±6.9) | 91.0 (±8.1) | 91.8 (±9.5) | 93.5 (±6.7) | 0.757 3 | 77.8 (±4.9) |
sBP asleep (mmHg) (±SD) | 124.9 (±11.3) | 130 (±13.0) | 125 (±8.9) | 132.4 (±15.1) | 0.177 4 | 106.4 (±8.1) |
dBP asleep (mmHg) (±SD) | 77.1 (±9.5) | 77.0 (±10.2) | 75.1 (±9.4) | 79.2 (±11.7) | 0.675 3 | 63.4 (±5.6) |
Peptide | Hypertensives n = 79 | Normotensives n = 20 | p-Value |
---|---|---|---|
Ang II 8 a.m. (pmol/L) | 68.9 (35.9–116.3) | 76.9 (62.3–162.9) | 0.141 1 |
Ang II 12 a.m. (pmol/L) | 88.7 (40.0–141.7) | 113.5 (68.4–234.3) | 0.055 1 |
Ang (1–7) 8 a.m. (pmol/L) | <3.0 | <3.0 | 1.000 1 |
Ang (1–7) 8 a.m. (n detectable (%)) | 0 (0.0%) | 0 (0.0%) | 1.000 2 |
Ang (1–7) 12 a.m. (pmol/L) | <3.0 | <3.0 | 0.248 1 |
Ang (1–7) 12 a.m. (n detectable (%)) | 5 (6.4%) | 0 (0.0%) | 0.580 2 |
Ang II | ACE-I | ARB | CCB | HCT | p-Value | |
---|---|---|---|---|---|---|
BL 8 a.m. (pmol/L) | median (IQR) | 66.5 (28.8–100.2) | 54.5 (31.3–122.5) | 82.4 (50.5–135.1) | 78.3 (36.7–149.3) | 0.666 2 |
4W 8 a.m. (pmol/L) | median (IQR) | 48.0 (19.7–111.4) | 222.8 (135.0–649.7) | 97.4 (46.2–126.1) | 172.9 (86.1–234.7) | 0.983 2 |
p-value 8 a.m. (BL vs. 4W) | 0.313 1 | <0.0005 1 | 0.658 1 | 0.002 1 | ||
BL 12 a.m. (pmol/L) | median (IQR) | 101.2 (40.5–139.3) | 63.5 (40.7–164.8) | 89.9 (38.9–143.8) | 121.3 (38.0–136.9) | <0.0005 2 |
4W 12 a.m. (pmol/L) | median (IQR) | 42.2 (16.1–100.1) | 530.1 (201.3–1269.5) | 146.2 (88.3–291.5) | 146.9 (89.8–451.0) | <0.0005 2 |
p-value 12 a.m. (BL vs. 4W) | 0.002 1 | <0.0005 1 | 0.012 1 | 0.001 1 |
Ang (1–7) | ACE-I | ARB | CCB | HCT | p-Value | |
---|---|---|---|---|---|---|
BL 8 a.m. (pmol/L) | median (IQR) | <3.0 | <3.0 | <3.0 | <3.0 | 1.000 3 |
Detectable n (%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | NA | |
4W 8 a.m. (pmol/L) | median (IQR) | <3.0 (<3.0–3.1) | <3.0 (<3.0–12.1) | <3.0 | <3.0 | 0.019 3 |
Detectable n (%) | 7 (35.0) | 8 (40.0) | 1 (5.3) | 2 (11.1) | 0.021 4 | |
p-value 8 a.m. (BL vs. 4W) | For pmol/L | 0.018 1 | 0.012 1 | 0.317 1 | 0.180 1 | |
For n | 0.016 2 | 0.008 2 | 1.000 2 | 0.500 2 | ||
BL 12 a.m. (pmol/L) | median (IQR) | <3.0 | <3.0 | <3.0 | <3.0 | 0.553 3 |
Detectable n (%) | 2 (10.0) | 2 (10.0) | 0 (0.0) | 1 (5.3) | 0.747 4 | |
4W 12 a.m. (pmol/L) | median (IQR) | <3.0 (<3.0–16.7) | 6.9 (<3.0–28.0) | <3.0 | <3.0 | <0.0005 3 |
Detectable n (%) | 9 (45.0) | 12 (60.0) | 1 (5.3) | 3 (15.8) | 0.001 5 | |
p-value 12 a.m. (BL vs. 4W) | For pmol/L | 0.008 1 | 0.002 1 | 0.317 1 | 0.109 1 | |
For n | 0.016 2 | 0.002 2 | 1.000 2 | 0.500 2 |
Peptide | ACE-I, Median (IQR) | ARB, Median (IQR) | CCB, Median (IQR) | HCT, Median (IQR) | p-Value 1 |
---|---|---|---|---|---|
Ang II 8 a.m. (%) | −20.3 (−45.6–33.1) | 359.9 (182.9–701.1) | 28.7 (−23.3–95.0) | 133.8 (9.1–192.1) | <0.0005 |
Ang II 12 a.m. (%) | −46.1 (−73.5–(−14.8)) | 607.2 (249.1–1243.0) | 59.2 (−5.7–178.3) | 52.8 (29.8–243.9) | <0.0005 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vischer, A.S.; Kuster, G.M.; Twerenbold, R.; Pfister, O.; Zhou, Q.; Villiger, A.; Poglitsch, M.; Krähenbühl, S.; Mayr, M.; Osswald, S.; et al. Influence of Antihypertensive Treatment on RAAS Peptides in Newly Diagnosed Hypertensive Patients. Cells 2021, 10, 534. https://doi.org/10.3390/cells10030534
Vischer AS, Kuster GM, Twerenbold R, Pfister O, Zhou Q, Villiger A, Poglitsch M, Krähenbühl S, Mayr M, Osswald S, et al. Influence of Antihypertensive Treatment on RAAS Peptides in Newly Diagnosed Hypertensive Patients. Cells. 2021; 10(3):534. https://doi.org/10.3390/cells10030534
Chicago/Turabian StyleVischer, Annina S., Gabriela M. Kuster, Raphael Twerenbold, Otmar Pfister, Qian Zhou, Andrea Villiger, Marko Poglitsch, Stephan Krähenbühl, Michael Mayr, Stefan Osswald, and et al. 2021. "Influence of Antihypertensive Treatment on RAAS Peptides in Newly Diagnosed Hypertensive Patients" Cells 10, no. 3: 534. https://doi.org/10.3390/cells10030534
APA StyleVischer, A. S., Kuster, G. M., Twerenbold, R., Pfister, O., Zhou, Q., Villiger, A., Poglitsch, M., Krähenbühl, S., Mayr, M., Osswald, S., Haschke, M., & Burkard, T. (2021). Influence of Antihypertensive Treatment on RAAS Peptides in Newly Diagnosed Hypertensive Patients. Cells, 10(3), 534. https://doi.org/10.3390/cells10030534