PARP10 Multi-Site Auto- and Histone MARylation Visualized by Acid-Urea Gel Electrophoresis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Proteins
2.2. Enzymatic Reactions
2.3. General Electrophoresis
2.4. Acid-Urea PAGE
2.5. Mass Spectrometry
3. Results and Discussion
3.1. PARP10 Auto-MARylation Can Be Visualized by Acid-Urea Polyacrylamide Gel Electrophoresis (AU-PAGE)
3.2. ADP-Ribosyl Glycohydrolases Reduce the Band Shifts Observed with AU-PAGE
3.3. Mass Spectrometry of PARP10 Isolated from AU-PAGE Gels Identifies New Target Residues
3.4. Three Auto-MARylation Target Residues Are not Essential for Catalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. AU-PAGE Protocol
Appendix A.1. Gel Preparation
- Assemble the glass plates with spacers in a casting station. Use 1.5 mm spacers for optimal resolution.
- Check the assembly for possible leaks by filling with bi-distilled water.
- Prepare the resolving gel (4 M urea, 5% glacial acetic acid, 15% acrylamide): Place 2.4 g of urea in a 15 mL tube and add 4.5 mL of a 40% acrylamide-bisacrylamide (29:1 ratio) solution and 0.5 mL of acetic acid. Add bi-distilled water up to a volume of 9.75 mL and dissolve the urea. Finally, add 200 μL of 10% ammonium persulfate and 40 μL of TEMED, mixing gently after each addition. Pour the resolving gel in the glass plate assembly. Overlay the gel carefully with bi-distilled water for optimal polymerization. Polymerization will take around 30 to 45 min. at room temperature.
- Verify polymerization by checking residual solution in the tube.
- Remove the water just before pouring the stacking gel. To completely dry out the top of the glass plates use a piece of filter paper, being careful not to touch the surface of the resolving gel.
- Prepare the stacking gel (8 M urea, 5% glacial acetic acid, 7.5% acrylamide). Place 2.4 g of urea in a 15 mL tube and add 1.25 mL of a 40% acrylamide-bisacrylamide (29:1 ratio) solution and 0.25 mL of acetic acid. Add bi-distilled water up to a volume of 4.75 mL and dissolve the urea. Add 200 μL of 10% ammonium persulfate and 40 μL of TEMED, mix gently and pour the stacking gel on top of the resolving gel, immediately insert a comb and allow polymerization.
- Confirm polymerization again, checking residual stacking gel solution.
- It is advisable to prepare the gels immediately before use to avoid loss of resolution.
Appendix A.2. Electrophoresis Protocol
Appendix A.2.1. Pre-Electrophoresis of the Gel and Further Preparations
- Prepare running buffer (RB): 5% acetic acid in bi-distilled water.
- Place the gel inside an upright electrophoresis chamber, and fill both upper and lower reservoirs with RB.
- Once the gel is immersed, carefully remove the comb.
- Rinse wells gently with RB to remove any residuals from the polymerization process.
- Prepare the pre-equilibration loading buffer (4 M urea, 10% PEG 8000): Mix 500 μL of an 8 M urea solution (8 M urea, 10 mM Tris–HCl pH 7.5) with 500 μL of a 20% PEG 8000 solution. Prepare fresh pre-equilibration buffer just before every pre-equilibration step.
- Load 10 µl of pre-equilibration loading buffer into every well.
- Connect the electrodes to a power supply with the cathode (−) at the bottom of the gel and the anode (+) at the top of the system. In AU-PAGE, proteins have an overall positive charge and migrate towards the cathode (−).
- Pre-run the gel overnight (16 h) at 150 V. The current will drop from ~30 mA to ~10 mA during the run.
- Replace the RB and remove any residual pre-equilibration solution from the wells by carefully rinsing with RB.
- Prepare the CGP staining solution (0.05% Coomassie Brilliant Blue G-250, 2% polyvinylpyrrolidone MW 40,000 and 20% citric acid). For 1 L of staining solution, weigh out 0.5 g of Coomassie Brilliant Blue G-250, 20 g of PVP-40 and 200 g of citric acid, add water up to 1 L and stir the solution for 2 h or overnight.
Appendix A.2.2. Electrophoresis:
- After replacing the RB in both upper and lower reservoirs, make sure that no debris or residual pre-equilibration loading buffer is present in any of the wells.
- Prepare 2× sample loading buffer (LB; 8 M urea, 10 mM Tris–HCl pH 7.5, 5% 2-mercaptoethanol, 5% glacial acetic acid): Weigh out 0.48 g of urea into a 1.5 mL microfuge tube, add 800 μL of bi-distilled water, 10 μL of 1 M Tris–HCl pH 7.5, 50 μL of 2-mercaptoethanol and 50 μL of glacial acetic acid. Mix solution thoroughly and adjust volume to 1 mL with water. Make fresh LB just before every electrophoresis run.
- To get a colored electrophoretic front, 5 mg of methyl green can be added to the sample loading buffer.
- Mix protein samples 1:1 with LB. Do not heat the samples. Storing the samples for future use is not recommended.
- Load appropriate aliquots of the sample-LB mixture into wells. Empty wells should be loaded with LB.
- Verify correct connection of the electrodes—the cathode (−) at the bottom and the anode (+) at the top of the system.
- For the analysis of PARP10 catalytic domain auto-MARylation activity, electrophoresis was carried out for 5 h 30 min. at a constant current of 15 mA and variable voltage (with a limit at 290 V). For the analysis of H3.1 MARylation, electrophoresis was carried out for 4 h with the same settings.
- The electrophoresis progression can be monitored following the green and blue dye components of the methyl green reagent. The green dye migrates ahead of the electrophoretic front and leaves the gel after approximately 1 h of electrophoresis (under the above conditions). The blue dye migrates slower and leaves the gel after ~2 h of electrophoresis.
- After electrophoresis is completed, disassemble the PAGE system, remove the stacking gel, and equilibrate the resolving gel by gently shaking in water for 5–10 min.
- Stain the gel in the CGP staining solution. Incubate the gel in the staining solution for 30 min. at room temperature under constant shaking. Destain the gel in water overnight.
References
- Kim, M.S.; Pinto, S.M.; Getnet, D.; Nirujogi, R.S.; Manda, S.S.; Chaerkady, R.; Madugundu, A.K.; Kelkar, D.S.; Isserlin, R.; Jain, S.; et al. A draft map of the human proteome. Nature 2014, 509, 575–581. [Google Scholar] [CrossRef] [Green Version]
- Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434, 913–917. [Google Scholar] [CrossRef]
- Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434, 917–921. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, M.J. Targeting the DNA Damage Response in Cancer. Mol. Cell 2015, 60, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Leidecker, O.; Bonfiglio, J.J.; Colby, T.; Zhang, Q.; Atanassov, I.; Zaja, R.; Palazzo, L.; Stockum, A.; Ahel, I.; Matic, I. Serine is a new target residue for endogenous ADP-ribosylation on histones. Nature Chem. Biol. 2016, 12, 998–1000. [Google Scholar] [CrossRef] [Green Version]
- Suskiewicz, M.J.; Palazzo, L.; Hughes, R.; Ahel, I. Progress and outlook in studying the substrate specificities of PARPs and related enzymes. FEBS J. 2020. [Google Scholar] [CrossRef] [PubMed]
- Munnur, D.; Bartlett, E.; Mikolcevic, P.; Kirby, I.T.; Rack, J.G.M.; Mikoc, A.; Cohen, M.S.; Ahel, I. Reversible ADP-ribosylation of RNA. Nucl. Acids Res. 2019, 47, 5658–5669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter-O’Connell, I.; Jin, H.; Morgan, R.K.; Zaja, R.; David, L.L.; Ahel, I.; Cohen, M.S. Identifying Family-Member-Specific Targets of Mono-ARTDs by Using a Chemical Genetics Approach. Cell Rep. 2016, 14, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Carter-O’Connell, I.; Jin, H.; Morgan, R.K.; David, L.L.; Cohen, M.S. Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. J. Am. Chem. Soc. 2014, 136, 5201–5204. [Google Scholar] [CrossRef] [Green Version]
- Feijs, K.L.; Kleine, H.; Braczynski, A.; Forst, A.H.; Herzog, N.; Verheugd, P.; Linzen, U.; Kremmer, E.; Luscher, B. ARTD10 substrate identification on protein microarrays: Regulation of GSK3β by mono-ADP-ribosylation. Cell Comm. Signal. 2013, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Saei, A.A.; Beusch, C.M.; Sabatier, P.; Astorga Wells, J.; Gharibi, H.; Meng, Z.; Chernobrovkin, A.; Rodin, S.; Näreoja, K.; Thorsell, A.-G.; et al. System-wide identification and prioritization of enzyme substrates by thermal analysis. Nat. Comms. 2021, 12, 1296. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, M.; Feijs, K.L.; Luscher, B. Function and regulation of the mono-ADP-ribosyltransferase ARTD10. Curr. Top. Microbiol. Immunol. 2015, 384, 167–188. [Google Scholar] [CrossRef]
- Maris, C.; Dominguez, C.; Allain, F.H. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 2005, 272, 2118–2131. [Google Scholar] [CrossRef]
- Kleine, H.; Poreba, E.; Lesniewicz, K.; Hassa, P.O.; Hottiger, M.O.; Litchfield, D.W.; Shilton, B.H.; Luscher, B. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 2008, 32, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Vyas, S.; Matic, I.; Uchima, L.; Rood, J.; Zaja, R.; Hay, R.T.; Ahel, I.; Chang, P. Family-wide analysis of poly(ADP-ribose) polymerase activity. Nat. Comms. 2014, 5, 4426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorsell, A.G.; Ekblad, T.; Karlberg, T.; Löw, M.; Pinto, A.F.; Trésaugues, L.; Moche, M.; Cohen, M.S.; Schüler, H. Structural Basis for Potency and Promiscuity in Poly(ADP-ribose) Polymerase (PARP) and Tankyrase Inhibitors. J. Med. Chem. 2017, 60, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- McPherson, R.L.; Abraham, R.; Sreekumar, E.; Ong, S.-E.; Cheng, S.-J.; Baxter, V.K.; Kistemaker, H.V.A.; Filippov, D.V.; Griffin, D.E.; Leung, A.K.L. ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence. Proc. Natl. Acad. Sci. USA 2017, 114, 1666–1671. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, L.; Daniels, C.M.; Nettleship, J.E.; Rahman, N.; McPherson, R.L.; Ong, S.-E.; Kato, K.; Nureki, O.; Leung, A.K.L.; Ahel, I. ENPP1 processes protein ADP-ribosylation in vitro. FEBS J. 2016, 283, 3371–3388. [Google Scholar] [CrossRef]
- Rosenthal, F.; Nanni, P.; Barkow-Oesterreicher, S.; Hottiger, M.O. Optimization of LTQ-Orbitrap Mass Spectrometer Parameters for the Identification of ADP-Ribosylation Sites. J. Prot. Res. 2015, 14, 4072–4079. [Google Scholar] [CrossRef]
- Bartlett, E.; Bonfiglio, J.J.; Prokhorova, E.; Colby, T.; Zobel, F.; Ahel, I.; Matic, I. Interplay of Histone Marks with Serine ADP-Ribosylation. Cell Rep. 2018, 24, 3488–3502. [Google Scholar] [CrossRef] [Green Version]
- Hazzalin, C.A.; Mahadevan, L.C. Acid-Urea Gel Electrophoresis and Western Blotting of Histones. Methods Mol. Biol. 2017, 1528, 173–198. [Google Scholar] [CrossRef]
- Gileadi, O.; Burgess-Brown, N.A.; Colebrook, S.M.; Berridge, G.; Savitsky, P.; Smee, C.E.; Loppnau, P.; Johansson, C.; Salah, E.; Pantic, N.H. High throughput production of recombinant human proteins for crystallography. Methods Mol. Biol. 2008, 426, 221–246. [Google Scholar] [CrossRef]
- Mueller-Dieckmann, C.; Kernstock, S.; Lisurek, M.; von Kries, J.P.; Haag, F.; Weiss, M.S.; Koch-Nolte, F. The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation. Proc. Natl. Acad. Sci. USA 2006, 103, 15026–15031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimura, K.; Takebayashi, S.; Taguchi, H.; Takeda, S.; Okumura, K. PARP-1 ensures regulation of replication fork progression by homologous recombination on damaged DNA. J. Cell Biol. 2008, 183, 1203–1212. [Google Scholar] [CrossRef] [Green Version]
- Gibson, B.A.; Zhang, Y.; Jiang, H.; Hussey, K.M.; Shrimp, J.H.; Lin, H.; Schwede, F.; Yu, Y.; Kraus, W.L. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 2016, 353, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrio, J.R.; Secrist, J.A., 3rd; Leonard, N.J. A fluorescent analog of nicotinamide adenine dinucleotide. Proc. Natl. Acad. Sci. USA 1972, 69, 2039–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasumitsu, H.; Ozeki, Y.; Kawsar, S.M.; Toda, T.; Kanaly, R. CGP stain: An inexpensive, odorless, rapid, sensitive, and in principle in vitro methylation-free Coomassie Brilliant Blue stain. Analyt. Biochem. 2010, 406, 86–88. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Taus, T.; Köcher, T.; Pichler, P.; Paschke, C.; Schmidt, A.; Henrich, C.; Mechtler, K. Universal and confident phosphorylation site localization using phosphoRS. J. Prot. Res. 2011, 10, 5354–5362. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, F.; Feijs, K.L.; Frugier, E.; Bonalli, M.; Forst, A.H.; Imhof, R.; Winkler, H.C.; Fischer, D.; Caflisch, A.; Hassa, P.O.; et al. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct. Mol. Biol. 2013, 20, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Jankevicius, G.; Hassler, M.; Golia, B.; Rybin, V.; Zacharias, M.; Timinszky, G.; Ladurner, A.G. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat. Struct. Mol. Biol. 2013, 20, 508–514. [Google Scholar] [CrossRef]
- Sharifi, R.; Morra, R.; Appel, C.D.; Tallis, M.; Chioza, B.; Jankevicius, G.; Simpson, M.A.; Matic, I.; Ozkan, E.; Golia, B.; et al. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J. 2013, 32, 1225–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abplanalp, J.; Leutert, M.; Frugier, E.; Nowak, K.; Feurer, R.; Kato, J.; Kistemaker, H.V.A.; Filippov, D.V.; Moss, J.; Caflisch, A.; et al. Proteomic analyses identify ARH3 as a serine mono-ADP-ribosylhydrolase. Nat. Comms. 2017, 8, 2055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontana, P.; Bonfiglio, J.J.; Palazzo, L.; Bartlett, E.; Matic, I.; Ahel, I. Serine ADP-ribosylation reversal by the hydrolase ARH3. eLife 2017, 6. [Google Scholar] [CrossRef] [PubMed]
- Eckei, L.; Krieg, S.; Bütepage, M.; Lehmann, A.; Gross, A.; Lippok, B.; Grimm, A.R.; Kümmerer, B.M.; Rossetti, G.; Luscher, B.; et al. The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases. Sci. Rep. 2017, 7, 41746. [Google Scholar] [CrossRef] [Green Version]
Res. | Peptide Sequence | PARP10 + NAD+ 2 | |||
---|---|---|---|---|---|
Gel Band | Upper | Mid | Lower | All | |
E825 | 823-LAENTGEFQEVVR-835 | 98% (×5) | 96% (×6) | 97% (×4) | 99% (×7) |
R855 | 853-VERVSHPLLQQQYELYR-869 | 100% (×1) | 100% (×1) | 100% (×1) | 100% (×1) |
S857 | 853-VERVSHPLLQQQYELYR-869 | 99% (×1) | 98% (×1) | - | 100% (×1) |
E882 | 879-RPVEQVLYHGTTAPAVPDICAHGFNR-904 | 100% (×1) | 100% (×1) | - | 100% (×1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Saura, A.G.; Schüler, H. PARP10 Multi-Site Auto- and Histone MARylation Visualized by Acid-Urea Gel Electrophoresis. Cells 2021, 10, 654. https://doi.org/10.3390/cells10030654
García-Saura AG, Schüler H. PARP10 Multi-Site Auto- and Histone MARylation Visualized by Acid-Urea Gel Electrophoresis. Cells. 2021; 10(3):654. https://doi.org/10.3390/cells10030654
Chicago/Turabian StyleGarcía-Saura, Antonio Ginés, and Herwig Schüler. 2021. "PARP10 Multi-Site Auto- and Histone MARylation Visualized by Acid-Urea Gel Electrophoresis" Cells 10, no. 3: 654. https://doi.org/10.3390/cells10030654
APA StyleGarcía-Saura, A. G., & Schüler, H. (2021). PARP10 Multi-Site Auto- and Histone MARylation Visualized by Acid-Urea Gel Electrophoresis. Cells, 10(3), 654. https://doi.org/10.3390/cells10030654