Liver Fibrosis during Antiretroviral Treatment in HIV-Infected Individuals. Truth or Tale?
Abstract
:1. Introduction
2. Liver Fibrosis in HIV-Infected Individuals
3. ART and Liver Fibrosis
4. Nucleoside Reverse Transcriptase Inhibitors (NRTIs)
5. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)
6. Protease Inhibitors (PIs)
7. Integrase Strand Transfer Inhibitors (INSTIs)
8. Entry Inhibitors
First Author, Year | Type of Study | Nr of pts | Assessment of LF | ART Drug/Class Correlated with LF | Outcome |
---|---|---|---|---|---|
McGovern BH, 2006 [85] | Retrospective | 183 | LB | NRTIs | NRTIs, especially DDI and d4T, associated with liver steatosis and fibrosis |
Sulkowski MS, 2005 [97] | Cross-sectional | 112 | LB | NRTIs | d4T associated with liver steatosis and eventually LF |
Focà E, 2016 [84] | Retrospective | 1433 | FIB-4 | NRTIs NNRTIs PIs | Prolonged exposure to NRTIs predicted LF progression; possible protective effect of NNRTIs and PIs |
Merchante N, 2010 [87] | Prospective | 258 | TE | DDI | Duration of DDI use associated with significant LF |
Loko MA, 2011 [88] | Prospective | 671 | TE | DDI | Use of DDI for more than 5 months predisposed for significant LF |
Kapogiannis BG, 2016 [86] | Prospective | 1785 | FIB-4 APRI | DDI | DDI use correlated with a worse FIB-4 and APRI scores |
Kooij KW, 2016 [66] | Cross-sectional | 598 | FIB-4 | DDI | Prior use of DDI associated with worse LF measured by FIB-4 score |
Anadol E, 2018 [25] | Cross-sectional | 333 | APRI FIB-4 TE | DDI | History of exposure to DDI associated with significant LF and cirrhosis |
Boyd A, 2017 [90] | Prospective | 167 | Fibrotest | AZT | LF progression under AZT treatment |
Brunet L, 2016 [96] | Prospective | 314 | APRI | Abacavir, 3TC | Abacavir/3TC as backbone associated with higher APRI |
Vinikoor M, 2017 [91] | Prospective | 463 | TE | TDF | TDF use associated with improvement in TE score |
Ding Y, 2017 [31] | Retrospective | 3900 | FIB-4 | TDF | TDF was a negative predictor for LF improvement |
Benhamou Y, 2001 [128] | Retrospective | 182 | LB | PIs | PIs associated with lower LF stage |
Macías J, 2004 [107] | Cross Sectional | 152 | LB | PIs NVR EFV | NVR use associated with severe LF; duration of exposure not correlated with LF grade PI-based ART led to less LF when compared to no ART |
Fernández-Montero JV, 2014 [109] | Retrospective | 545 | TE | PIs (mainly Lopinavir) NVR | NVR associated with protection and PI use (mainly Lopinavir) associated with progression of LF |
Berenguer J, 2008 [108] | Cross Sectional | 201 | LB | NNRTIs PIs | NNRTIs (especially NVR) associated with low probability of significant LF |
Macías J, 2017 [140] | Prospective | 39 | TE | EFV, Raltegravir | Switching Efavirenz to Raltegravir showed decreases in the degree of hepatic steatosis |
Calza L, 2019 [130] | Prospective | 61 | TE FIB-4 | PIs | Change from ritonavir-boosted PI-based ART to raltegravir-based ART led to a lower liver steatosis but not LF grade |
Rossetti B, 2019 [151] | Prospective | 150 | FIB-4 APRI | MVC | Switch from MVC-free to MVC+Darunavir/ritonavir led to a better APRI score after 48 weeks |
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UNAIDS. Global HIV & AIDS Statistics—2020 Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 30 March 2021).
- Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: A collaborative analysis of 14 cohort studies. Lancet 2008, 372, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Antiretroviral Therapy Cohort Collaboration. Causes of death in HIV-1-infected patients treated with antiretroviral therapy, 1996-2006: Collaborative analysis of 13 HIV cohort studies. Clin. Infect. Dis. 2010, 50, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Joshi, D.; O’Grady, J.; Dieterich, D.; Gazzard, B.; Agarwal, K. Increasing burden of liver disease in patients with HIV infection. Lancet 2011, 377, 1198–1209. [Google Scholar] [CrossRef]
- Smith, C.J.; Ryom, L.; Weber, R.; Morlat, P.; Pradier, C.; Reiss, P.; Kowalska, J.D.; de Wit, S.; Law, M.; el Sadr, W.; et al. Trends in underlying causes of death in people with HIV from 1999 to 2011 (D:A:D): A multicohort collaboration. Lancet 2014, 384, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Alejos, B.; Hernando, V.; López-Aldeguer, J.; Segura, F.; Oteo, J.A.; Rubio, R.; Sanvisens, A.; Sobrino, P.; Del Amo, J.; Coris, C. Overall and cause-specific mortality in HIV-positive subjects compared to the general population. J. Int. Aids Soc. 2014, 17, 19711. [Google Scholar] [CrossRef]
- Hernando, V.; Perez-Cachafeiro, S.; Lewden, C.; Gonzalez, J.; Segura, F.; Oteo, J.A.; Rubio, R.; Dalmau, D.; Moreno, S.; Amo, J.D. All-cause and liver-related mortality in HIV positive subjects compared to the general population: Differences by HCV co-infection. J. Hepatol. 2012, 57, 743–751. [Google Scholar] [CrossRef]
- Weber, R.; Sabin, C.A.; Friis-Møller, N.; Reiss, P.; El-Sadr, W.M.; Kirk, O.; Dabis, F.; Law, M.G.; Pradier, C.; De Wit, S.; et al. Liver-related deaths in persons infected with the human immunodeficiency virus: The D:A:D study. Arch. Intern. Med. 2006, 166, 1632–1641. [Google Scholar] [CrossRef] [Green Version]
- Eyawo, O.; Franco-Villalobos, C.; Hull, M.W.; Nohpal, A.; Samji, H.; Sereda, P.; Lima, V.D.; Shoveller, J.; Moore, D.; Montaner, J.S.; et al. Changes in mortality rates and causes of death in a population-based cohort of persons living with and without HIV from 1996 to 2012. BMC Infect. Dis. 2017, 17, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croxford, S.; Kitching, A.; Desai, S.; Kall, M.; Edelstein, M.; Skingsley, A.; Burns, F.; Copas, A.; Brown, A.E.; Sullivan, A.K.; et al. Mortality and causes of death in people diagnosed with HIV in the era of highly active antiretroviral therapy compared with the general population: An analysis of a national observational cohort. Lancet Public Health 2017, 2, e35–e46. [Google Scholar] [CrossRef] [Green Version]
- May, M.T.; Justice, A.C.; Birnie, K.; Ingle, S.M.; Smit, C.; Smith, C.; Neau, D.; Guiguet, M.; Schwarze-Zander, C.; Moreno, S.; et al. Injection Drug Use and Hepatitis C as Risk Factors for Mortality in HIV-Infected Individuals: The Antiretroviral Therapy Cohort Collaboration. J. Acquir. Immune Defic. Syndr. 2015, 69, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Ingle, S.M.; May, M.T.; Gill, M.J.; Mugavero, M.J.; Lewden, C.; Abgrall, S.; Fätkenheuer, G.; Reiss, P.; Saag, M.S.; Manzardo, C.; et al. Impact of risk factors for specific causes of death in the first and subsequent years of antiretroviral therapy among HIV-infected patients. Clin. Infect. Dis. 2014, 59, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Suárez-García, I.; Sobrino-Vegas, P.; Dalmau, D.; Rubio, R.; Iribarren, J.A.; Blanco, J.R.; Gutierrez, F.; Montero Alonso, M.; Bernal, E.; Vinuesa García, D.; et al. Clinical outcomes of patients infected with HIV through use of injected drugs compared to patients infected through sexual transmission: Late presentation, delayed anti-retroviral treatment and higher mortality. Addiction 2016, 111, 1235–1245. [Google Scholar] [CrossRef]
- Sellier, P.; Hamet, G.; Brun, A.; Ponscarme, D.; De Castro, N.; Alexandre, G.; Rozenbaum, W.; Molina, J.M.; Abgrall, S. Mortality of People Living with HIV in Paris Area from 2011 to 2015. AIDS Res. Hum Retrovir. 2020, 36, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Soriano, V.; Barreiro, P.; Sherman, K.E. The changing epidemiology of liver disease in HIV patients. AIDS Rev. 2013, 15, 25–31. [Google Scholar] [PubMed]
- Wekesa, C.; Kirk, G.D.; Aizire, J.; Benson, E.M.; Karabarinde, A.; Parkes-Ratanshi, R.; Ocama, P. Prevalence and Factors Associated With Liver Fibrosis Among Adult HIV-Infected Patients Attending Urban and Rural Care Clinics in Uganda. Open Forum Infect. Dis. 2020, 7, ofaa483. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, N.; Audsley, J.; Rupali, P.; Sasadeusz, J.; Paul, T.V.; Thomas, N.; Lewin, S.R. A gathering storm: HIV infection and nonalcoholic fatty liver disease in low and middle-income countries. Aids 2019, 33, 1105–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iogna Prat, L.; Roccarina, D.; Lever, R.; Lombardi, R.; Rodger, A.; Hall, A.; Luong, T.V.; Bhagani, S.; Tsochatzis, E.A. Etiology and Severity of Liver Disease in HIV-Positive Patients With Suspected NAFLD: Lessons From a Cohort With Available Liver Biopsies. J. Acquir. Immune Defic. Syndr. 2019, 80, 474–480. [Google Scholar] [CrossRef]
- Macías, J.; Pineda, J.A.; Real, L.M. Non-Alcoholic Fatty Liver Disease in HIV Infection. AIDS Rev. 2017, 19, 35–46. [Google Scholar]
- Rockstroh, J.K. Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH) in HIV. Curr. HIV/AIDS Rep. 2017, 14, 47–53. [Google Scholar] [CrossRef]
- Squillace, N.; Soria, A.; Bozzi, G.; Gori, A.; Bandera, A. Nonalcoholic fatty liver disease and steatohepatitis in people living with HIV. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 643–650. [Google Scholar] [CrossRef]
- Cappell, M.S. Hepatobiliary manifestations of the acquired immune deficiency syndrome. Am. J. Gastroenterol. 1991, 86, 1–15. [Google Scholar] [PubMed]
- Crum-Cianflone, N.; Collins, G.; Medina, S.; Asher, D.; Campin, R.; Bavaro, M.; Hale, B.; Hames, C. Prevalence and factors associated with liver test abnormalities among human immunodeficiency virus-infected persons. Clin. Gastroenterol. Hepatol. 2010, 8, 183–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coronel-Castillo, C.E.; Qi, X.; Contreras-Carmona, J.; Ramírez-Pérez, O.L.; Méndez-Sánchez, N. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in HIV infection: A metabolic approach of an infectious disease. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Anadol, E.; Lust, K.; Boesecke, C.; Schwarze-Zander, C.; Mohr, R.; Wasmuth, J.C.; Rockstroh, J.K.; Trebicka, J. Exposure to previous cART is associated with significant liver fibrosis and cirrhosis in human immunodeficiency virus-infected patients. PLoS ONE 2018, 13, e0191118. [Google Scholar] [CrossRef] [Green Version]
- Androutsakos, T.; Schina, M.; Pouliakis, A.; Kontos, A.; Sipsas, N.; Hatzis, G. Causative factors of liver fibrosis in HIV-infected patients. A single center study. BMC Gastroenterol. 2020, 20, 91. [Google Scholar] [CrossRef]
- Bilal, U.; Lau, B.; Lazo, M.; McCaul, M.E.; Hutton, H.E.; Sulkowski, M.S.; Moore, R.D.; Chander, G. Interaction Between Alcohol Consumption Patterns, Antiretroviral Therapy Type, and Liver Fibrosis in Persons Living with HIV. AIDS Patient Care STDS 2016, 30, 200–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, F.; Barreiro, P.; Ryan, P.; Vispo, E.; Martín-Carbonero, L.; Tuma, P.; Labarga, P.; Medrano, J.; González-Lahoz, J.; Soriano, V. Risk factors for advanced liver fibrosis in HIV-infected individuals: Role of antiretroviral drugs and insulin resistance. J. Viral Hepat. 2011, 18, 11–16. [Google Scholar] [CrossRef]
- Castellares, C.; Barreiro, P.; Martín-Carbonero, L.; Labarga, P.; Vispo, M.E.; Casado, R.; Galindo, L.; García-Gascó, P.; García-Samaniego, J.; Soriano, V. Liver cirrhosis in HIV-infected patients: Prevalence, aetiology and clinical outcome. J. Viral Hepat. 2008, 15, 165–172. [Google Scholar] [CrossRef]
- Dharan, N.J.; Neuhaus, J.; Rockstroh, J.K.; Peters, L.; Gordin, F.; Arenas-Pinto, A.; Emerson, C.; Marks, K.; Hidalgo, J.; Sarmento-Castro, R.; et al. Benefit of Early versus Deferred Antiretroviral Therapy on Progression of Liver Fibrosis among People with HIV in the START Randomized Trial. Hepatology 2019, 69, 1135–1150. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Duan, S.; Ye, R.; Yang, Y.; Yao, S.; Wang, J.; Cao, D.; Liu, X.; Lu, L.; Jia, M.; et al. More improvement than progression of liver fibrosis following antiretroviral therapy in a longitudinal cohort of HIV-infected patients with or without HBV and HCV co-infections. J. Viral Hepat. 2017, 24, 412–420. [Google Scholar] [CrossRef]
- Hasson, H.; Merli, M.; Galli, L.; Gallotta, G.; Carbone, A.; Messina, E.; Bagaglio, S.; Morsica, G.; Salpietro, S.; Castagna, A.; et al. Non-invasive fibrosis biomarkers—APRI and Forns—Are associated with liver stiffness in HIV-monoinfected patients receiving antiretroviral drugs. Liver Int. 2013, 33, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Kirk, G.D.; Mehta, S.H.; Astemborski, J.; Galai, N.; Washington, J.; Higgins, Y.; Balagopal, A.; Thomas, D.L. HIV, age, and the severity of hepatitis C virus-related liver disease: A cohort study. Ann. Intern. Med. 2013, 158, 658–666. [Google Scholar] [CrossRef] [Green Version]
- Maponga, T.G.; Andersson, M.I.; van Rensburg, C.J.; Arends, J.E.; Taljaard, J.; Preiser, W.; Glashoff, R.H. HBV and HIV viral load but not microbial translocation or immune activation are associated with liver fibrosis among patients in South Africa. BMC Infect. Dis. 2018, 18, 214. [Google Scholar] [CrossRef] [Green Version]
- Pineda, J.A.; González, J.; Ortega, E.; Tural, C.; Macías, J.; Griffa, L.; Burgos, A. Prevalence and factors associated with significant liver fibrosis assessed by transient elastometry in HIV/hepatitis C virus-coinfected patients. J. Viral Hepat. 2010, 17, 714–719. [Google Scholar] [CrossRef]
- Pokorska-Śpiewak, M.; Stańska-Perka, A.; Popielska, J.; Ołdakowska, A.; Coupland, U.; Zawadka, K.; Szczepańska-Putz, M.; Marczyńska, M. Prevalence and predictors of liver disease in HIV-infected children and adolescents. Sci. Rep. 2017, 7, 12309. [Google Scholar] [CrossRef] [Green Version]
- Vermehren, J.; Vermehren, A.; Mueller, A.; Carlebach, A.; Lutz, T.; Gute, P.; Knecht, G.; Sarrazin, C.; Friedrich-Rust, M.; Forestier, N.; et al. Assessment of liver fibrosis and associated risk factors in HIV-infected individuals using transient elastography and serum biomarkers. BMC Gastroenterol. 2012, 12, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, T.F.; Rosen, E.; Carr, R.; Brashear, M.; Simon, L.; Theall, K.P.; Ronis, M.J.; Welsh, D.A.; Molina, P.E. Associations of Liver Disease with Alcohol Use among People Living with HIV and the Role of Hepatitis C: The New Orleans Alcohol Use in HIV Study. Alcohol 2020, 55, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Jaquet, A.; Wandeler, G.; Nouaman, M.; Ekouevi, D.K.; Tine, J.; Patassi, A.; Coffie, P.A.; Tanon, A.; Seydi, M.; Attia, A.; et al. Alcohol use, viral hepatitis and liver fibrosis among HIV-positive persons in West Africa: A cross-sectional study. J. Int. AIDS Soc. 2017, 19, 21424. [Google Scholar] [CrossRef] [PubMed]
- Canan, C.E.; Lau, B.; McCaul, M.E.; Keruly, J.; Moore, R.D.; Chander, G. Effect of alcohol consumption on all-cause and liver-related mortality among HIV-infected individuals. HIV Med. 2017, 18, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Perazzo, H.; Cardoso, S.W.; Yanavich, C.; Nunes, E.P.; Morata, M.; Gorni, N.; da Silva, P.S.; Cardoso, C.; Almeida, C.; Luz, P.; et al. Predictive factors associated with liver fibrosis and steatosis by transient elastography in patients with HIV mono-infection under long-term combined antiretroviral therapy. J. Int. AIDS Soc. 2018, 21, e25201. [Google Scholar] [CrossRef] [PubMed]
- Saracino, A.; Cozzi-Lepri, A.; Shanyinde, M.; Ceccherini Silberstein, F.; Nozza, S.; Di Biagio, A.; Cassola, G.; Bruno, G.; Capobianchi, M.; Puoti, M.; et al. HIV-1 co-receptor tropism and liver fibrosis in HIV-infected patients. PLoS ONE 2018, 13, e0190302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, R.; Schierwagen, R.; Schwarze-Zander, C.; Boesecke, C.; Wasmuth, J.C.; Trebicka, J.; Rockstroh, J.K. Liver Fibrosis in HIV Patients Receiving a Modern cART: Which Factors Play a Role? Medicine (Baltimore) 2015, 94, e2127. [Google Scholar] [CrossRef] [PubMed]
- Maggi, P.; Altizio, S.; A, D.I.B.; Nicolini, L.; Volpe, A.; Tancorre, T.; Leone, A.; Bellacosa, C.; Ladisa, N.; Angarano, G. Prevalence and Risk Factors for Significant Liver Fibrosis in Patients with HIV Infection. In Vivo 2015, 29, 771–775. [Google Scholar]
- Kirkegaard-Klitbo, D.M.; Bendtsen, F.; Lundgren, J.; de Knegt, R.J.; Kofoed, K.F.; Nielsen, S.D.; Benfield, T. Increased prevalence of liver fibrosis in people living with HIV without viral hepatitis compared to population controls. J. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- DallaPiazza, M.; Amorosa, V.K.; Localio, R.; Kostman, J.R.; Lo Re, V., 3rd. Prevalence and risk factors for significant liver fibrosis among HIV-monoinfected patients. BMC Infect. Dis. 2010, 10, 116. [Google Scholar] [CrossRef] [Green Version]
- Sudjaritruk, T.; Bunupuradah, T.; Aurpibul, L.; Kosalaraksa, P.; Kurniati, N.; Sophonphan, J.; Trinavarat, P.; Visrutaratna, P.; Srinakarin, J.; Chaijitraruch, N.; et al. Nonalcoholic fatty liver disease and hepatic fibrosis among perinatally HIV-monoinfected Asian adolescents receiving antiretroviral therapy. PLoS ONE 2019, 14, e0226375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, L.; Cardona Maya, W.; Moreno-Fernandez, M.E.; Ma, G.; Shata, M.T.; Sherman, K.E.; Chougnet, C.; Blackard, J.T. Low-level HIV infection of hepatocytes. Virol. J. 2012, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.K.; Yukl, S.A. Tissue reservoirs of HIV. Curr. Opin. HIV AIDS 2016, 11, 362–370. [Google Scholar] [CrossRef]
- Ganesan, M.; Poluektova, L.Y.; Kharbanda, K.K.; Osna, N.A. Liver as a target of human immunodeficiency virus infection. World J. Gastroenterol. 2018, 24, 4728–4737. [Google Scholar] [CrossRef] [PubMed]
- Nomiyama, H.; Hieshima, K.; Nakayama, T.; Sakaguchi, T.; Fujisawa, R.; Tanase, S.; Nishiura, H.; Matsuno, K.; Takamori, H.; Tabira, Y.; et al. Human CC chemokine liver-expressed chemokine/CCL16 is a functional ligand for CCR1, CCR2 and CCR5, and constitutively expressed by hepatocytes. Int. Immunol. 2001, 13, 1021–1029. [Google Scholar] [CrossRef] [Green Version]
- Vlahakis, S.R.; Villasis-Keever, A.; Gomez, T.S.; Bren, G.D.; Paya, C.V. Human immunodeficiency virus-induced apoptosis of human hepatocytes via CXCR4. J. Infect. Dis. 2003, 188, 1455–1460. [Google Scholar] [CrossRef]
- Lin, W.; Weinberg, E.M.; Tai, A.W.; Peng, L.F.; Brockman, M.A.; Kim, K.A.; Kim, S.S.; Borges, C.B.; Shao, R.X.; Chung, R.T. HIV increases HCV replication in a TGF-beta1-dependent manner. Gastroenterology 2008, 134, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Rani, M.; Khan, N.; Jameel, S. HIV-1 infected peripheral blood mononuclear cells modulate the fibrogenic activity of hepatic stellate cells through secreted TGF-β and JNK signaling. PLoS ONE 2014, 9, e91569. [Google Scholar] [CrossRef]
- Bruno, R.; Galastri, S.; Sacchi, P.; Cima, S.; Caligiuri, A.; DeFranco, R.; Milani, S.; Gessani, S.; Fantuzzi, L.; Liotta, F.; et al. gp120 modulates the biology of human hepatic stellate cells: A link between HIV infection and liver fibrogenesis. Gut 2010, 59, 513–520. [Google Scholar] [CrossRef]
- Tuyama, A.C.; Hong, F.; Saiman, Y.; Wang, C.; Ozkok, D.; Mosoian, A.; Chen, P.; Chen, B.K.; Klotman, M.E.; Bansal, M.B. Human immunodeficiency virus (HIV)-1 infects human hepatic stellate cells and promotes collagen I and monocyte chemoattractant protein-1 expression: Implications for the pathogenesis of HIV/hepatitis C virus-induced liver fibrosis. Hepatology 2010, 52, 612–622. [Google Scholar] [CrossRef] [Green Version]
- Begriche, K.; Massart, J.; Robin, M.A.; Bonnet, F.; Fromenty, B. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 2013, 58, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Mosoian, A.; Schwartz, M.E.; Florman, S.S.; Gunasekaran, G.; Schiano, T.; Fiel, M.I.; Jiang, W.; Shen, Q.; Branch, A.D.; et al. HIV infection modulates IL-1β response to LPS stimulation through a TLR4-NLRP3 pathway in human liver macrophages. J. Leukoc. Biol. 2019, 105, 783–795. [Google Scholar] [CrossRef]
- Balagopal, A.; Philp, F.H.; Astemborski, J.; Block, T.M.; Mehta, A.; Long, R.; Kirk, G.D.; Mehta, S.H.; Cox, A.L.; Thomas, D.L.; et al. Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. Gastroenterology 2008, 135, 226–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenchley, J.M.; Douek, D.C. HIV infection and the gastrointestinal immune system. Mucosal Immunol. 2008, 1, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Martín-Carbonero, L.; Benhamou, Y.; Puoti, M.; Berenguer, J.; Mallolas, J.; Quereda, C.; Arizcorreta, A.; Gonzalez, A.; Rockstroh, J.; Asensi, V.; et al. Incidence and predictors of severe liver fibrosis in human immunodeficiency virus-infected patients with chronic hepatitis C: A European collaborative study. Clin. Infect. Dis. 2004, 38, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Mariné-Barjoan, E.; Saint-Paul, M.C.; Pradier, C.; Chaillou, S.; Anty, R.; Michiels, J.F.; Sattonnet, C.; Ouzan, D.; Dellamonica, P.; Tran, A. Impact of antiretroviral treatment on progression of hepatic fibrosis in HIV/hepatitis C virus co-infected patients. Aids 2004, 18, 2163–2170. [Google Scholar] [CrossRef]
- Benhamou, Y.; Bochet, M.; Di Martino, V.; Charlotte, F.; Azria, F.; Coutellier, A.; Vidaud, M.; Bricaire, F.; Opolon, P.; Katlama, C.; et al. Liver fibrosis progression in human immunodeficiency virus and hepatitis C virus coinfected patients. The Multivirc Group. Hepatology 1999, 30, 1054–1058. [Google Scholar] [CrossRef]
- Fuster, D.; Planas, R.; Muga, R.; Ballesteros, A.L.; Santos, J.; Tor, J.; Sirera, G.; Guardiola, H.; Salas, A.; Cabré, E.; et al. Advanced liver fibrosis in HIV/HCV-coinfected patients on antiretroviral therapy. AIDS Res. Hum. Retroviruses 2004, 20, 1293–1297. [Google Scholar] [CrossRef]
- Blackard, J.T.; Welge, J.A.; Taylor, L.E.; Mayer, K.H.; Klein, R.S.; Celentano, D.D.; Jamieson, D.J.; Gardner, L.; Sherman, K.E. HIV mono-infection is associated with FIB-4—A noninvasive index of liver fibrosis—In women. Clin. Infect. Dis. 2011, 52, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Kooij, K.W.; Wit, F.W.; van Zoest, R.A.; Schouten, J.; Kootstra, N.A.; van Vugt, M.; Prins, M.; Reiss, P.; van der Valk, M. Liver fibrosis in HIV-infected individuals on long-term antiretroviral therapy: Associated with immune activation, immunodeficiency and prior use of didanosine. Aids 2016, 30, 1771–1780. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Lin, H.; Ding, Y.; Liu, X.; Wu, Q.; Shen, W.; Gao, M.; He, N. Liver fibrosis after antiretroviral therapy in a longitudinal cohort of sexually infected HIV patients in eastern China. Biosci. Trends 2017, 11, 274–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorpe, J.; Saeed, S.; Moodie, E.E.; Klein, M.B. Antiretroviral treatment interruption leads to progression of liver fibrosis in HIV-hepatitis C virus co-infection. Aids 2011, 25, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Tural, C.; Fuster, D.; Tor, J.; Ojanguren, I.; Sirera, G.; Ballesteros, A.; Lasanta, J.A.; Planas, R.; Rey-Joly, C.; Clotet, B. Time on antiretroviral therapy is a protective factor for liver fibrosis in HIV and hepatitis C virus (HCV) co-infected patients. J. Viral Hepat. 2003, 10, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.C.; Tsai, H.C.; Wu, K.S.; Sy, C.L.; Chen, J.K.; Chen, Y.S.; Lee, S.S. Highly active antiretroviral therapy-related hepatotoxicity in human immunodeficiency virus and hepatitis C virus co-infected patients with advanced liver fibrosis in Taiwan. J. Microbiol. Immunol. Infect. 2016, 49, 546–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cihlar, T.; Ray, A.S. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Res. 2010, 85, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Margolis, A.M.; Heverling, H.; Pham, P.A.; Stolbach, A. A review of the toxicity of HIV medications. J. Med. Toxicol. 2014, 10, 26–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schouten, J.N.; Van der Ende, M.E.; Koëter, T.; Rossing, H.H.; Komuta, M.; Verheij, J.; van der Valk, M.; Hansen, B.E.; Janssen, H.L. Risk factors and outcome of HIV-associated idiopathic noncirrhotic portal hypertension. Aliment. Pharmacol. Ther. 2012, 36, 875–885. [Google Scholar] [CrossRef]
- Scourfield, A.; Waters, L.; Holmes, P.; Panos, G.; Randell, P.; Jackson, A.; Mandalia, S.; Gazzard, B.; Nelson, M. Non-cirrhotic portal hypertension in HIV-infected individuals. Int. J. STD AIDS 2011, 22, 324–328. [Google Scholar] [CrossRef]
- Jackson, B.D.; Doyle, J.S.; Hoy, J.F.; Roberts, S.K.; Colman, J.; Hellard, M.E.; Sasadeusz, J.J.; Iser, D.M. Non-cirrhotic portal hypertension in HIV mono-infected patients. J. Gastroenterol. Hepatol. 2012, 27, 1512–1519. [Google Scholar] [CrossRef]
- Cachay, E.R.; Peterson, M.R.; Goicoechea, M.; Mathews, W.C. Didanosine Exposure and Noncirrhotic Portal Hypertension in a HIV Clinic in North America: A Follow-up Study. Br. J. Med. Res. 2011, 1, 346–355. [Google Scholar] [CrossRef] [Green Version]
- Kovari, H.; Ledergerber, B.; Peter, U.; Flepp, M.; Jost, J.; Schmid, P.; Calmy, A.; Mueller, N.J.; Muellhaupt, B.; Weber, R. Association of noncirrhotic portal hypertension in HIV-infected persons and antiretroviral therapy with didanosine: A nested case-control study. Clin. Infect. Dis. 2009, 49, 626–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, K.; Hall, P.A.; Chinnery, P.F.; Payne, B.A.I. HIV Treatment and Associated Mitochondrial Pathology: Review of 25 Years of in Vitro, Animal, and Human Studies. Toxicol. Pathol. 2014, 42, 811–822. [Google Scholar] [CrossRef]
- Gaou, I.; Malliti, M.; Guimont, M.C.; Lettéron, P.; Demeilliers, C.; Peytavin, G.; Degott, C.; Pessayre, D.; Fromenty, B. Effect of stavudine on mitochondrial genome and fatty acid oxidation in lean and obese mice. J. Pharmacol. Exp. Ther. 2001, 297, 516–523. [Google Scholar] [PubMed]
- Olano, J.P.; Borucki, M.J.; Wen, J.W.; Haque, A.K. Massive hepatic steatosis and lactic acidosis in a patient with AIDS who was receiving zidovudine. Clin. Infect. Dis. 1995, 21, 973–976. [Google Scholar] [CrossRef]
- Freiman, J.P.; Helfert, K.E.; Hamrell, M.R.; Stein, D.S. Hepatomegaly with severe steatosis in HIV-seropositive patients. Aids 1993, 7, 379–385. [Google Scholar] [CrossRef]
- Lai, K.K.; Gang, D.L.; Zawacki, J.K.; Cooley, T.P. Fulminant hepatic failure associated with 2′,3′-dideoxyinosine (ddI). Ann. Intern. Med. 1991, 115, 283–284. [Google Scholar] [CrossRef] [PubMed]
- Lo Re, V.R.; Zeldow, B.; Kallan, M.J.; Tate, J.P.; Carbonari, D.M.; Hennessy, S.; Kostman, J.R.; Lim, J.K.; Goetz, M.B.; Gross, R.; et al. Risk of liver decompensation with cumulative use of mitochondrial toxic nucleoside analogues in HIV/hepatitis C virus coinfection. Pharmacoepidemiol. Drug Saf. 2017, 26, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Focà, E.; Fabbiani, M.; Prosperi, M.; Quiros Roldan, E.; Castelli, F.; Maggiolo, F.; Di Filippo, E.; Di Giambenedetto, S.; Gagliardini, R.; Saracino, A.; et al. Liver fibrosis progression and clinical outcomes are intertwined: Role of CD4+ T-cell count and NRTI exposure from a large cohort of HIV/HCV-coinfected patients with detectable HCV-RNA: A MASTER cohort study. Medicine (Baltimore) 2016, 95, e4091. [Google Scholar] [CrossRef] [PubMed]
- McGovern, B.H.; Ditelberg, J.S.; Taylor, L.E.; Gandhi, R.T.; Christopoulos, K.A.; Chapman, S.; Schwartzapfel, B.; Rindler, E.; Fiorino, A.M.; Zaman, M.T.; et al. Hepatic steatosis is associated with fibrosis, nucleoside analogue use, and hepatitis C virus genotype 3 infection in HIV-seropositive patients. Clin. Infect. Dis. 2006, 43, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Kapogiannis, B.G.; Leister, E.; Siberry, G.K.; Van Dyke, R.B.; Rudy, B.; Flynn, P.; Williams, P.L. Prevalence of and progression to abnormal noninvasive markers of liver disease (aspartate aminotransferase-to-platelet ratio index and Fibrosis-4) among US HIV-infected youth. Aids 2016, 30, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Merchante, N.; Pérez-Camacho, I.; Mira, J.A.; Rivero, A.; Macías, J.; Camacho, A.; Gómez-Mateos, J.; García-Lázaro, M.; Torre-Cisneros, J.; Pineda, J.A. Prevalence and risk factors for abnormal liver stiffness in HIV-infected patients without viral hepatitis coinfection: Role of didanosine. Antivir. Ther. 2010, 15, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Loko, M.A.; Bani-Sadr, F.; Winnock, M.; Lacombe, K.; Carrieri, P.; Neau, D.; Morlat, P.; Serfaty, L.; Dabis, F.; Salmon, D. Impact of HAART exposure and associated lipodystrophy on advanced liver fibrosis in HIV/HCV-coinfected patients. J. Viral Hepat. 2011, 18, e307–e314. [Google Scholar] [CrossRef]
- Bani-Sadr, F.; Lapidus, N.; Bedossa, P.; De Boever, C.M.; Perronne, C.; Halfon, P.; Pol, S.; Carrat, F.; Cacoub, P. Progression of fibrosis in HIV and hepatitis C virus-coinfected patients treated with interferon plus ribavirin-based therapy: Analysis of risk factors. Clin. Infect. Dis. 2008, 46, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Boyd, A.; Bottero, J.; Miailhes, P.; Lascoux-Combe, C.; Rougier, H.; Girard, P.M.; Serfaty, L.; Lacombe, K. Liver fibrosis regression and progression during controlled hepatitis B virus infection among HIV-HBV patients treated with tenofovir disoproxil fumarate in France: A prospective cohort study. J. Int. AIDS Soc. 2017, 20, 21426. [Google Scholar] [CrossRef] [PubMed]
- Vinikoor, M.J.; Sinkala, E.; Chilengi, R.; Mulenga, L.B.; Chi, B.H.; Zyambo, Z.; Hoffmann, C.J.; Saag, M.S.; Davies, M.A.; Egger, M.; et al. Impact of Antiretroviral Therapy on Liver Fibrosis Among Human Immunodeficiency Virus-Infected Adults With and Without HBV Coinfection in Zambia. Clin. Infect. Dis. 2017, 64, 1343–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.; Portsmouth, S.; Stebbing, J.; Atkins, M.; Barr, A.; Matthews, G.; Pillay, D.; Fisher, M.; Bower, M.; Gazzard, B. An open-label study of tenofovir in HIV-1 and Hepatitis B virus co-infected individuals. Aids 2003, 17, F7–F10. [Google Scholar] [CrossRef]
- Stephan, C.; Berger, A.; Carlebach, A.; Lutz, T.; Bickel, M.; Klauke, S.; Staszewski, S.; Stuermer, M. Impact of tenofovir-containing antiretroviral therapy on chronic hepatitis B in a cohort co-infected with human immunodeficiency virus. J. Antimicrob. Chemother. 2005, 56, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Mallet, V.O.; Dhalluin-Venier, V.; Verkarre, V.; Correas, J.M.; Chaix, M.L.; Viard, J.P.; Pol, S. Reversibility of cirrhosis in HIV/HBV coinfection. Antivir. Ther. 2007, 12, 279–283. [Google Scholar] [PubMed]
- Boyd, A.; Lasnier, E.; Molina, J.M.; Lascoux-Combe, C.; Bonnard, P.; Miailhes, P.; Wendum, D.; Meynard, J.L.; Girard, P.M.; Lacombe, K. Liver fibrosis changes in HIV-HBV-coinfected patients: Clinical, biochemical and histological effect of long-term tenofovir disoproxil fumarate use. Antivir. Ther. 2010, 15, 963–974. [Google Scholar] [CrossRef] [Green Version]
- Brunet, L.; Moodie, E.E.M.; Young, J.; Cox, J.; Hull, M.; Cooper, C.; Walmsley, S.; Martel-Laferrière, V.; Rachlis, A.; Klein, M.B.; et al. Progression of Liver Fibrosis and Modern Combination Antiretroviral Therapy Regimens in HIV-Hepatitis C-Coinfected Persons. Clin. Infect. Dis. 2016, 62, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Sulkowski, M.S.; Mehta, S.H.; Torbenson, M.; Afdhal, N.H.; Mirel, L.; Moore, R.D.; Thomas, D.L. Hepatic steatosis and antiretroviral drug use among adults coinfected with HIV and hepatitis C virus. Aids 2005, 19, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Saag, M.S. Emtricitabine, a new antiretroviral agent with activity against HIV and hepatitis B virus. Clin. Infect. Dis. 2006, 42, 126–131. [Google Scholar] [CrossRef]
- Peletskaya, E.N.; Kogon, A.A.; Tuske, S.; Arnold, E.; Hughes, S.H. Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA. J. Virol. 2004, 78, 3387–3397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, M.; Flexman, J.; French, M.A.H. Hepatitis C virus-associated hepatitis following treatment of HIV-infected patients with HIV protease inhibitors: An immune restoration disease? AIDS 1998, 12, 2289–2293. [Google Scholar] [CrossRef] [PubMed]
- Manegold, C.; Hannoun, C.; Wywiol, A.; Dietrich, M.; Polywka, S.; Chiwakata, C.B.; Günther, S. Reactivation of hepatitis B virus replication accompanied by acute hepatitis in patients receiving highly active antiretroviral therapy. Clin. Infect. Dis. 2001, 32, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Den Brinker, M.; Wit, F.W.; Wertheim-van Dillen, P.M.; Jurriaans, S.; Weel, J.; van Leeuwen, R.; Pakker, N.G.; Reiss, P.; Danner, S.A.; Weverling, G.J.; et al. Hepatitis B and C virus co-infection and the risk for hepatotoxicity of highly active antiretroviral therapy in HIV-1 infection. Aids 2000, 14, 2895–2902. [Google Scholar] [CrossRef]
- Melvin, D.C.; Lee, J.K.; Belsey, E.; Arnold, J.; Murphy, R.L. The impact of co-infection with hepatitis C virus and HIV on the tolerability of antiretroviral therapy. Aids 2000, 14, 463–465. [Google Scholar] [CrossRef] [PubMed]
- Spengler, U.; Lichterfeld, M.; Rockstroh, J.K. Antiretroviral drug toxicity—A challenge for the hepatologist? J. Hepatol. 2002, 36, 283–294. [Google Scholar] [CrossRef]
- Palmon, R.; Koo, B.C.; Shoultz, D.A.; Dieterich, D.T. Lack of hepatotoxicity associated with nonnucleoside reverse transcriptase inhibitors. J. Acquir. Immune Defic. Syndr. 2002, 29, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Van Leth, F.; Phanuphak, P.; Ruxrungtham, K.; Baraldi, E.; Miller, S.; Gazzard, B.; Cahn, P.; Lalloo, U.G.; van der Westhuizen, I.P.; Malan, D.R.; et al. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: A randomised open-label trial, the 2NN Study. Lancet 2004, 363, 1253–1263. [Google Scholar] [CrossRef]
- Macías, J.; Castellano, V.; Merchante, N.; Palacios, R.B.; Mira, J.A.; Sáez, C.; García-García, J.A.; Lozano, F.; Gómez-Mateos, J.M.; Pineda, J.A. Effect of antiretroviral drugs on liver fibrosis in HIV-infected patients with chronic hepatitis C: Harmful impact of nevirapine. Aids 2004, 18, 767–774. [Google Scholar] [CrossRef]
- Berenguer, J.; Bellón, J.M.; Miralles, P.; Alvarez, E.; Castillo, I.; Cosín, J.; López, J.C.; Sánchez Conde, M.; Padilla, B.; Resino, S. Association between exposure to nevirapine and reduced liver fibrosis progression in patients with HIV and hepatitis C virus coinfection. Clin. Infect. Dis. 2008, 46, 137–143. [Google Scholar] [CrossRef]
- Fernández-Montero, J.V.; Barreiro, P.; Vispo, E.; Labarga, P.; Sánchez-Parra, C.; de Mendoza, C.; Treviño, A.; Soriano, V. Liver fibrosis progression in HIV-HCV-coinfected patients treated with distinct antiretroviral drugs and impact of pegylated interferon/ribavirin therapy. Antivir. Ther. 2014, 19, 287–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineda, J.A.; Neukam, K.; Mallolas, J.; López-Cortés, L.F.; Cartón, J.A.; Domingo, P.; Moreno, S.; Iribarren, J.A.; Clotet, B.; Crespo, M.; et al. Hepatic safety of efavirenz in HIV/hepatitis C virus-coinfected patients with advanced liver fibrosis. J. Infect 2012, 64, 204–211. [Google Scholar] [CrossRef]
- Martí-Rodrigo, A.; Alegre, F.; Moragrega Á., B.; García-García, F.; Martí-Rodrigo, P.; Fernández-Iglesias, A.; Gracia-Sancho, J.; Apostolova, N.; Esplugues, J.V.; Blas-García, A. Rilpivirine attenuates liver fibrosis through selective STAT1-mediated apoptosis in hepatic stellate cells. Gut 2020, 69, 920–932. [Google Scholar] [CrossRef]
- Merckand Co., Inc. Crixivan (Indinavir Sulfate) Package Insert; Merckand Co., Inc.: West Point, PA, USA, 1999. [Google Scholar]
- Agouron Pharmaceuticals, Inc. Viracept (Nelfinavirmetylase) Package Insert; Agouron Pharmaceuticals, Inc.: La Jolla, CA, USA, 2001. [Google Scholar]
- Glaxo Smith Kline, Inc. Agenerase (Amprenavir) Package Insert; Glaxo Smith Kline, Inc.: Research Triangle Park, NC, USA, 2002. [Google Scholar]
- Abbott Laboratories. Norvir (Ritonavir) Package Insert; Abbott Laboratories: North Chicago, IL, USA, 2001. [Google Scholar]
- RocheLaboratories. Fortovase (Saquinavir Soft Gel) Package Insert; RocheLaboratories: Nutley, NY, USA, 2002. [Google Scholar]
- Carr, A.; Samaras, K.; Chisholm, D.J.; Cooper, D.A. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet 1998, 351, 1881–1883. [Google Scholar] [CrossRef]
- Flint, O.P.; Noor, M.A.; Hruz, P.W.; Hylemon, P.B.; Yarasheski, K.; Kotler, D.P.; Parker, R.A.; Bellamine, A. The role of protease inhibitors in the pathogenesis of HIV-associated lipodystrophy: Cellular mechanisms and clinical implications. Toxicol. Pathol. 2009, 37, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Abbott Laboratories. Kaletra TM (Lopinavir/Ritonavir) Package Insert; Abbott Laboratories: North Chicago, IL, USA, 2002. [Google Scholar]
- Overton, E.T.; Arathoon, E.; Baraldi, E.; Tomaka, F. Effect of darunavir on lipid profile in HIV-infected patients. HIV Clin. Trials 2012, 13, 256–270. [Google Scholar] [CrossRef]
- Ofotokun, I.; Na, L.H.; Landovitz, R.J.; Ribaudo, H.J.; McComsey, G.A.; Godfrey, C.; Aweeka, F.; Cohn, S.E.; Sagar, M.; Kuritzkes, D.R.; et al. Comparison of the metabolic effects of ritonavir-boosted darunavir or atazanavir versus raltegravir, and the impact of ritonavir plasma exposure: ACTG 5257. Clin. Infect. Dis. 2015, 60, 1842–1851. [Google Scholar] [CrossRef] [Green Version]
- Cahn, P.E.; Gatell, J.M.; Squires, K.; Percival, L.D.; Piliero, P.J.; Sanne, I.A.; Shelton, S.; Lazzarin, A.; Odeshoo, L.; Kelleher, T.D.; et al. Atazanavir--a once-daily HIV protease inhibitor that does not cause dyslipidemia in newly treated patients: Results from two randomized clinical trials. J. Int. Assoc. Physicians AIDS Care (Chic) 2004, 3, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.A.; Rao, M.; Mulligan, K.; Lo, J.C.; Aweeka, F.; Schwarz, J.M.; Schambelan, M.; Grunfeld, C. Effects of ritonavir and amprenavir on insulin sensitivity in healthy volunteers. Aids 2007, 21, 2183–2190. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, J.; Gohchi, K. Severe hepatitis in patients with AIDS and haemophilia B treated with indinavir. Lancet 1997, 350, 364. [Google Scholar] [CrossRef]
- Bräu, N.; Leaf, H.L.; Wieczorek, R.L.; Margolis, D.M. Severe hepatitis in three AIDS patients treated with indinavir. Lancet 1997, 349, 924–925. [Google Scholar] [CrossRef]
- Vergis, E.; Paterson, D.L.; Singh, N. Indinavir-associated hepatitis in patients with advanced HIV infection. Int. J. STD AIDS 1998, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Sagir, A.; Glaubach, B.; Sahin, K.; Graf, D.; Erhardt, A.; Oette, M.; Häussinger, D. Transient Elastography for the Detection of Liver Damage in Patients with HIV. Infect. Dis. Ther. 2015, 4, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Benhamou, Y.; Di Martino, V.; Bochet, M.; Colombet, G.; Thibault, V.; Liou, A.; Katlama, C.; Poynard, T. Factors affecting liver fibrosis in human immunodeficiency virus-and hepatitis C virus-coinfected patients: Impact of protease inhibitor therapy. Hepatology 2001, 34, 283–287. [Google Scholar] [CrossRef]
- Macías, J.; Mira, J.A.; López-Cortés, L.F.; Santos, I.; Girón-González, J.A.; González-Serrano, M.; Merino, D.; Hernández-Quero, J.; Rivero, A.; Merchante, N.; et al. Antiretroviral therapy based on protease inhibitors as a protective factor against liver fibrosis progression in patients with chronic hepatitis C. Antivir. Ther. 2006, 11, 839–846. [Google Scholar] [PubMed]
- Calza, L.; Colangeli, V.; Borderi, M.; Coladonato, S.; Tazza, B.; Fornaro, G.; Badia, L.; Guardigni, V.; Verucchi, G.; Viale, P. Improvement in liver steatosis after the switch from a ritonavir-boosted protease inhibitor to raltegravir in HIV-infected patients with non-alcoholic fatty liver disease. Infect. Dis. (Lond.) 2019, 51, 593–601. [Google Scholar] [CrossRef]
- Merchante, N.; López-Cortés, L.F.; Delgado-Fernández, M.; Ríos-Villegas, M.J.; Márquez-Solero, M.; Merino, D.; Pasquau, J.; García-Figueras, C.; Martínez-Pérez, M.A.; Omar, M.; et al. Liver toxicity of antiretroviral combinations including fosamprenavir plus ritonavir 1400/100 mg once daily in HIV/hepatitis C virus-coinfected patients. AIDS Patient Care STDS 2011, 25, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Espeseth, A.S.; Felock, P.; Wolfe, A.; Witmer, M.; Grobler, J.; Anthony, N.; Egbertson, M.; Melamed, J.Y.; Young, S.; Hamill, T.; et al. HIV-1 integrase inhibitors that compete with the target DNA substrate define a unique strand transfer conformation for integrase. Proc. Natl. Acad. Sci. USA 2000, 97, 11244–11249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temesgen, Z.; Siraj, D.S. Raltegravir: First in class HIV integrase inhibitor. Ther. Clin. Risk Manag. 2008, 4, 493–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hare, S.; Smith, S.J.; Métifiot, M.; Jaxa-Chamiec, A.; Pommier, Y.; Hughes, S.H.; Cherepanov, P. Structural and functional analyses of the second-generation integrase strand transfer inhibitor dolutegravir (S/GSK1349572). Mol. Pharmacol. 2011, 80, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overton, E.T.; Richmond, G.; Rizzardini, G.; Jaeger, H.; Orrell, C.; Nagimova, F.; Bredeek, F.; García Deltoro, M.; Swindells, S.; Andrade-Villanueva, J.F.; et al. Long-acting cabotegravir and rilpivirine dosed every 2 months in adults with HIV-1 infection (ATLAS-2M), 48-week results: A randomised, multicentre, open-label, phase 3b, non-inferiority study. Lancet 2021, 396, 1994–2005. [Google Scholar] [CrossRef]
- Orkin, C.; Arasteh, K.; Górgolas Hernández-Mora, M.; Pokrovsky, V.; Overton, E.T.; Girard, P.M.; Oka, S.; Walmsley, S.; Bettacchi, C.; Brinson, C.; et al. Long-Acting Cabotegravir and Rilpivirine after Oral Induction for HIV-1 Infection. N. Engl. J. Med. 2020, 382, 1124–1135. [Google Scholar] [CrossRef] [PubMed]
- LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012.
- Kolakowska, A.; Maresca, A.F.; Collins, I.J.; Cailhol, J. Update on Adverse Effects of HIV Integrase Inhibitors. Curr. Treat. Options Infect. Dis. 2019, 11, 372–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina, J.M.; Clotet, B.; van Lunzen, J.; Lazzarin, A.; Cavassini, M.; Henry, K.; Kulagin, V.; Givens, N.; de Oliveira, C.F.; Brennan, C. Once-daily dolutegravir versus darunavir plus ritonavir for treatment-naive adults with HIV-1 infection (FLAMINGO): 96 week results from a randomised, open-label, phase 3b study. Lancet HIV 2015, 2, e127–e136. [Google Scholar] [CrossRef]
- Macías, J.; Mancebo, M.; Merino, D.; Téllez, F.; Montes-Ramírez, M.L.; Pulido, F.; Rivero-Juárez, A.; Raffo, M.; Pérez-Pérez, M.; Merchante, N.; et al. Changes in Liver Steatosis After Switching From Efavirenz to Raltegravir Among Human Immunodeficiency Virus-Infected Patients With Nonalcoholic Fatty Liver Disease. Clin. Infect. Dis. 2017, 65, 1012–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stellbrink, H.J.; Arribas, J.R.; Stephens, J.L.; Albrecht, H.; Sax, P.E.; Maggiolo, F.; Creticos, C.; Martorell, C.T.; Wei, X.; Acosta, R.; et al. Co-formulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide for initial treatment of HIV-1 infection: Week 96 results from a randomised, double-blind, multicentre, phase 3, non-inferiority trial. Lancet HIV 2019, 6, e364–e372. [Google Scholar] [CrossRef] [PubMed]
- Wohl, D.A.; Yazdanpanah, Y.; Baumgarten, A.; Clarke, A.; Thompson, M.A.; Brinson, C.; Hagins, D.; Ramgopal, M.N.; Antinori, A.; Wei, X.; et al. Bictegravir combined with emtricitabine and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection: Week 96 results from a randomised, double-blind, multicentre, phase 3, non-inferiority trial. Lancet HIV 2019, 6, e355–e363. [Google Scholar] [CrossRef]
- Norwood, J.; Turner, M.; Bofill, C.; Rebeiro, P.; Shepherd, B.; Bebawy, S.; Hulgan, T.; Raffanti, S.; Haas, D.W.; Sterling, T.R.; et al. Brief Report: Weight Gain in Persons With HIV Switched From Efavirenz-Based to Integrase Strand Transfer Inhibitor-Based Regimens. J. Acquir. Immune Defic. Syndr. 2017, 76, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Hartman, T.L.; Buckheit, R.W., Jr. The Continuing Evolution of HIV-1 Therapy: Identification and Development of Novel Antiretroviral Agents Targeting Viral and Cellular Targets. Mol. Biol. Int. 2012, 2012, 401965. [Google Scholar] [CrossRef]
- Kozal, M.; Aberg, J.; Pialoux, G.; Cahn, P.; Thompson, M.; Molina, J.M.; Grinsztejn, B.; Diaz, R.; Castagna, A.; Kumar, P.; et al. Fostemsavir in Adults with Multidrug-Resistant HIV-1 Infection. N. Engl. J. Med. 2020, 382, 1232–1243. [Google Scholar] [CrossRef]
- Mostashari Rad, T.; Saghaie, L.; Fassihi, A. HIV-1 Entry Inhibitors: A Review of Experimental and Computational Studies. Chem. Biodivers. 2018, 15, e1800159. [Google Scholar] [CrossRef]
- Crespo, M.; Navarro, J.; Moreno, S.; Sanz, J.; Márquez, M.; Zamora, J.; Ocampo, A.; Iribaren, J.A.; Rivero, A.; Llibre, J.M. Hepatic safety of maraviroc in HIV-1-infected patients with hepatitis C and/or B co-infection. The Maraviroc Cohort Spanish Group. Enferm. Infecc. Microbiol. Clin. 2017, 35, 493–498. [Google Scholar] [CrossRef]
- Manfredi, R.; Calza, L.; Marinacci, G.; Cascavilla, A.; Colangeli, V.; Salvadori, C.; Martelli, G.; Appolloni, L.; Puggioli, C.; Viale, P. A prospective evaluation of maraviroc administration in patients with advanced HIV disease and multiple comorbidities: Focus on efficacy and tolerability issues. Infez. Med. 2015, 23, 36–43. [Google Scholar]
- Rockstroh, J.K.; Plonski, F.; Bansal, M.; Fätkenheuer, G.; Small, C.B.; Asmuth, D.M.; Gilles, B.; Rebecca, Z.-R.; Ronnie, W.; Juan, P.; et al. Hepatic safety of maraviroc in patients with HIV-1 and hepatitis C and/or B virus: 144-week results from a randomized, placebo-controlled trial. Antivir. Ther. 2017, 22, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, N.; Perna, A.; Lucariello, A.; Martini, S.; Macera, M.; Carleo, M.A.; Guerra, G.; Esposito, V.; De Luca, A. Effects of treatment with Maraviroc a CCR5 inhibitor on a human hepatic stellate cell line. J. Cell Physiol. 2018, 233, 6224–6231. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, B.; Gagliardini, R.; Sterrantino, G.; Colangeli, V.; Latini, A.; Colafigli, M.; Vignale, F.; Rusconi, S.; Di Biagio, A.; Orofino, G.; et al. The Effect of Switching to Maraviroc + Darunavir/Ritonavir Dual Therapy in Virologically Suppressed Patients on the Progression of Liver Fibrosis: Findings From a Randomized Study. J. Acquir. Immune Defic. Syndr. 2019, 81, e17–e21. [Google Scholar] [CrossRef] [PubMed]
ART Drug Classes | Mechanism of Liver Damage |
---|---|
NRTIs | Mitochondrial toxicity Liver steatosis Hypersensitivity reactions |
NNRTIs | Mitochondrial toxicity Hypersensitivity reactions |
PIs | Liver steatosis Direct drug toxicity (rare) Hypersensitivity reactions |
INSTIs | Hepatotoxic metabolic by-products |
Entry inhibitors | Drug-drug interactions Hypersensitivity reactions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakasis, A.-D.; Androutsakos, T. Liver Fibrosis during Antiretroviral Treatment in HIV-Infected Individuals. Truth or Tale? Cells 2021, 10, 1212. https://doi.org/10.3390/cells10051212
Bakasis A-D, Androutsakos T. Liver Fibrosis during Antiretroviral Treatment in HIV-Infected Individuals. Truth or Tale? Cells. 2021; 10(5):1212. https://doi.org/10.3390/cells10051212
Chicago/Turabian StyleBakasis, Athanasios-Dimitrios, and Theodoros Androutsakos. 2021. "Liver Fibrosis during Antiretroviral Treatment in HIV-Infected Individuals. Truth or Tale?" Cells 10, no. 5: 1212. https://doi.org/10.3390/cells10051212
APA StyleBakasis, A. -D., & Androutsakos, T. (2021). Liver Fibrosis during Antiretroviral Treatment in HIV-Infected Individuals. Truth or Tale? Cells, 10(5), 1212. https://doi.org/10.3390/cells10051212