Hepatotoxicity of Contemporary Antiretroviral Drugs: A Review and Evaluation of Published Clinical Data
Abstract
:1. Introduction
2. Non-Nucleoside Reverse Transcriptase Inhibitors
2.1. Efavirenz
2.2. Etravirine
2.3. Rilpivirine
2.4. Doravirine
3. Nucleoside Reverse Transcriptase Inhibitors
3.1. Abacavir
3.2. Emtricitabine and Lamivudine
3.3. Tenofovir
4. Integrase Strand Transfer Inhibitors
4.1. Raltegravir
4.2. Elvitegravir/Cobicistat
4.3. Dolutegravir
4.4. Bictegravir
4.5. Cabotegravir
5. Protease Inhibitors
5.1. Atazanavir Sulfate
5.2. Lopinavir/Ritonavir
5.3. Darunavir
6. Entry Inhibitors
6.1. Maraviroc
6.2. Ibalizumab
6.3. Fostemsavir
7. Summary and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV. Department of Health and Human Services. Available online: https://clinicalinfo.hiv.gov/sites/default/files/inline-files/AdultandAdolescentGL.pdf (accessed on 28 March 2021).
- Fida, M.; Mahmood, M.; Temesgen, Z. Emergence of dual antiretroviral therapy as a viable regimen option for the treatment of patients with HIV infection. Drugs Today 2020, 56, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Overton, E.T.; Richmond, G.; Rizzardini, G.; Jaeger, H.; Orrell, C.; Nagimova, F.; Bredeek, F.; Deltoro, M.G.; Swindells, S.; Andrade-Villanueva, J.F.; et al. Long-acting cabotegravir and rilpivirine dosed every 2 months in adults with HIV-1 infection (ATLAS-2M), 48-week results: A randomised, multicentre, open-label, phase 3b, non-inferiority study. Lancet 2020, 396, 1994–2005. [Google Scholar] [CrossRef]
- Núñez, M. Hepatotoxicity of antiretrovirals: Incidence, mechanisms and management. J. Hepatol. 2006, 44, S132–S139. [Google Scholar] [CrossRef]
- Qin, F.; Jiang, J.; Qin, C.; Huang, Y.; Liang, B.; Xu, Y.; Huang, J.; Xu, Z.; Ning, C.; Liao, Y.; et al. Liver damage in patients living with HIV on antiretroviral treatment with normal baseline liver function and without HBV/HCV infection: An 11-year retrospective cohort study in Guangxi, China. BMJ Open 2019, 9, e023140. [Google Scholar] [CrossRef] [Green Version]
- Dieterich, D.T.; Robinson, P.A.; Love, J.; Stern, J.O. Drug-induced liver injury associated with the use of non-nucleoside reverse transcriptase inhibitors. Clin. Infect. Dis. 2004, 38 (Suppl. 2), S80–S89. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosado, R.; Pérez-Olmeda, M.; García-Samaniego, J.; Soriano, V. Management of hepatitis C in HIV-infected persons. Antivir. Res. 2001, 52, 189–198. [Google Scholar] [CrossRef]
- Neff, G.W.; Jayaweera, D.; Sherman, K.E. Drug-induced liver injury in HIV patients. Gastroenterol. Hepatol. 2006, 2, 430–437. [Google Scholar]
- Rivero, A.; Mira, J.A.; Pineda, J.A. Liver toxicity induced by non-nucleoside reverse transcriptase inhibitors. J. Antimicrob. Chem. 2007, 59, 8342–8346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulkowski, M.S.; Thomas, D.L.; Mehta, S.H.; Chaisson, R.E.; Moore, R.D. Hepatotoxicity associated with nevirapine or efavirenz–containing antiretroviral therapy: Role of hepatitis C and B infections. Hepatology 2002, 35, 182–189. [Google Scholar] [CrossRef]
- Van Leth, F.; Phanuphak, P.; Ruxrungtham, K.; Baraldi, E.; Miller, S.; Gazzard, B.; Cahn, P.; Lalloo, U.G.; Van der Westhuizen, I.P.; Malan, D.R.; et al. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: A randomised open-label trial, the 2NN Study. Lancet 2004, 363, 1253–1263. [Google Scholar] [CrossRef]
- Girard, P.M.; Campbell, T.B.; Grinsztejn, B.; Hartikainen, J.; Rachline, A.; Nijs, S.; Witek, J. Pooled week 96 results of the phase III DUET-1 and DUET-2 trials of etravirine: Further analysis of adverse events and laboratory abnormalities of special interest. HIV Med. 2012, 13, 427–435. [Google Scholar] [CrossRef]
- Molina, J.-M.; Cahn, P.; Grinsztejn, B.; Lazzarin, A.; Mills, A.; Saag, M.; Supparatpinyo, K.; Walmsley, S.; Crauwels, H.; Rimsky, L.T.; et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): A phase 3 randomised double-blind active-controlled trial. Lancet 2011, 378, 238–246. [Google Scholar] [CrossRef]
- Cohen, C.J.; Andrade-Villanueva, J.; Clotet, B.; Fourie, J.; Johnson, M.A.; Ruxrungtham, K.; Wu, H.; Zorrilla, C.; Crauwels, H.; Rimsky, L.T.; et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naïve adults infected with HIV-1 (THRIVE): A phase 3, randomized, non-inferiority trial. Lancet 2011, 378, 229–237. [Google Scholar] [CrossRef]
- Nelson, M.; Amaya, G.; Clumeck, N.; Da Cunha, C.A.; Jayaweera, D.; Junod, P.; Li, T.; Tebas, P.; Stevens, M.; Buelens, A.; et al. Efficacy and safety of rilpivirine in treatment-naive, HIV-1-infected patients with hepatitis B virus/hepatitis C virus coinfection enrolled in the Phase III randomized, double-blind ECHO and THRIVE trials. J. Antimicrob. Chemother. 2012, 67, 2020–2028. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.M.; Squires, K.; Sax, P.E.; Cahn, P.; Lombaard, J.; DeJesus, E.; Lai, M.T.; Xu, X.; Rodgers, A.; Lupinacci, L.; et al. Doravirine versus ritonavir-boosted darunavir in antiretroviral-naïve adults with HIV-1 (DRIVE-FORWARD): 96-week results of a randomized, double-blind, non-inferiority, phase 3 trial. Lancet HIV 2020, 7, e16–e26. [Google Scholar] [CrossRef]
- Orkin, C.; Squires, K.E.; Molina, J.-M.; Sax, P.E.; Sussmann, O.; Lin, G.; Kumar, S.; Hanna, G.J.; Hwang, C.; Martin, E.; et al. Doravirine/Lamivudine/Tenofovir Disoproxil Fumarate (TDF) Versus Efavirenz/Emtricitabine/TDF in Treatment-naive Adults With Human Immunodeficiency Virus Type 1 Infection: Week 96 Results of the Randomized, Double-blind, Phase 3 DRIVE-AHEAD Noninferiority Trial. Clin. Infect. Dis. 2020. [Google Scholar] [CrossRef]
- Johnson, M.; Kumar, P.; Molina, J.-M.; Rizzardini, G.; Cahn, P.; Bickel, M.; Mallolas, J.; Zhou, Y.; Morais, C.; Kumar, S.; et al. Switching to Doravirine/Lamivudine/Tenofovir Disoproxil Fumarate (DOR/3TC/TDF) Maintains HIV-1 Virologic Suppression Through 48 Weeks: Results of the DRIVE-SHIFT Trial. JAIDS J. Acquir. Immune Defic. Syndr. 2019, 81, 463–472. [Google Scholar] [CrossRef]
- Abrescia, N.; D’Abbraccio, M.; Figoni, M.; Busto, A.; Butrico, E.; De Marco, M.; Viglietti, R. Fulminant hepatic failure after the start of an efavirenz-based HAART regimen in a treatment-naive female AIDS patient without hepatitis virus co-infection. J. Antimicrob. Chemother. 2002, 50, 763–765. [Google Scholar] [CrossRef] [Green Version]
- Casado, J.L. Liver toxicity in HIV-infected patients receiving novel second-generation nonnucleoside reverse transcriptase inhibitors etravirine and rilpivirine. AIDS Rev. 2013, 15, 139–145. [Google Scholar]
- Casado, J.; Mena, A.; Bañon, S.; Castro, A.; Quereda, C.; Moreno, A.; Pedreira, J.; Moreno, S. Liver toxicity and risk of discontinuation in HIV/hepatitis C virus-coinfected patients receiving an etravirine-containing antiretroviral regimen: Influence of liver fibrosis. HIV Med. 2015, 17, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Bagella, P.; De Socio, G.V.; Ricci, E.; Menzaghi, B.; Martinelli, C.; Squillace, N.; Maggi, P.; Orofino, G.; Calza, L.; Carenzi, L.; et al. Durability, safety, and efficacy of rilpivirine in clinical practice: Results from the SCOLTA Project. Infect. Drug Resist. 2018, 11, 615–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.J.; Berry, P.; D’Errico, F.; Miquel, R.; Kulasegaram, R. A case of rilpivirine drug-induced liver injury. Sex. Transm. Infect. 2020, 96, 618–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schürmann, D.; Sobotha, C.; Gilmartin, J.; Robberechts, M.; De Lepeleire, I.; Yee, K.L.; Guo, Y.; Liu, R.; Wagner, F.; Wagner, J.A.; et al. A randomized, double-blind, placebo-controlled, short-term monotherapy study of doravirine in treatment-naive HIV-infected individuals. AIDS 2016, 30, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, D. Managing Antiretroviral-Associated Liver Disease. JAIDS J. Acquir. Immune Defic. Syndr. 2003, 34, S34–S39. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; Churchill, D.R.; Gilleece, Y. Abacavir-induced hepatotoxicity: A report of two cases. AIDS 2008, 22, 2557–2558. [Google Scholar] [CrossRef]
- Di Filippo, E.; Ripamonti, D.; Rizzi, M. Abacavir-induced liver toxicity in an HIV-infected patient. AIDS 2014, 28, 613. [Google Scholar] [CrossRef]
- Pezzani, M.D.; Resnati, C.; Di Cristo, V.; Riva, A.; Gervasonia, C. Abacavir-induced liver toxicity. Braz. J. Infect. Dis. 2016, 20, 502–504. [Google Scholar] [CrossRef] [Green Version]
- Schiano, T.D.; Lissoos, T.W.; Ahmed, A.; Siano, C.; Zaitman, D.; Cohn, G.; Ehrenpreis, E.D. Lamivudine-stavudine-induced liver failure in hepatitis B cirrhosis. Am. J. Gastroenterol. 1997, 92, 1563–1564. [Google Scholar]
- Ormseth, E.J.; Holtzmuller, K.C.; Goodman, Z.D.; Colonna, J.O.; Batty, D.S.; Sjogren, M.H. Hepatic decompensation associated with lamivudine: A case report and review of lamivudine-induced hepatotoxicity. Am. J. Gastroenterol. 2001, 96, 1619–1622. [Google Scholar] [CrossRef]
- Mayer, K.H.; Molina, J.-M.; Thompson, M.A.; Anderson, P.L.; Mounzer, K.C.; De Wet, J.J.; DeJesus, E.; Jessen, H.; Grant, R.M.; Ruane, P.J.; et al. Emtricitabine and tenofovir alafenamide vs emtricitabine and tenofovir disoproxil fumarate for HIV pre-exposure prophylaxis (DISCOVER): Primary results from a randomised, double-blind, multicentre, active-controlled, phase 3, non-inferiority trial. Lancet 2020, 396, 239–254. [Google Scholar] [CrossRef]
- Jain, M.K. Drug-Induced Liver Injury Associated with HIV Medications. Clin. Liver Dis. 2007, 11, 615–639. [Google Scholar] [CrossRef] [PubMed]
- Sulkowski, M.S. Management of hepatic complications in HIV-infected persons. J. Infect. Dis. 2008, 197 (Suppl. 3), S279–S393. [Google Scholar] [CrossRef]
- Gish, R.G.; Trinh, H.; Leung, N.; Chan, F.K.; Fried, M.W.; Wright, T.L.; Wang, C.; Anderson, J.; Mondou, E.; Snow, A.; et al. Safety and antiviral activity of emtricitabine (FTC) for the treatment of chronic hepatitis B infection: A two-year study. J. Hepatol. 2005, 43, 60–66. [Google Scholar] [CrossRef]
- Lim, S.G.; Ng, T.M.; Kung, N.; Krastev, Z.; Volfova, M.; Husa, P.; Lee, S.S.; Chan, S.; Shiffman, M.L.; Washington, M.K.; et al. A Double-blind Placebo-Controlled Study of Emtricitabine in Chronic Hepatitis B. Arch. Intern. Med. 2006, 166, 49–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrault, N.A.; Lok, A.S.; McMahon, B.J.; Chang, K.-M.; Hwang, J.P.; Jonas, M.M., Jr.; Bzowej, N.H.; Wong, J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018, 67, 1560–1599. [Google Scholar] [CrossRef]
- Mondou, E.; Sorbel, J.; Anderson, J.; Marin, H.M.; Rigney, A.; Rousseau, F. Posttreatment Exacerbation of Hepatitis B Virus (HBV) Infection in Long-Term HBV Trials of Emtricitabine. Clin. Infect. Dis. 2005, 41, e45–e47. [Google Scholar] [CrossRef]
- Karras, A.; Rabian, C.; Zylberberg, H.; Hermine, O.; Duchatelle, V.; Durand, F.; Valla, D.; Viard, J.P. Severe anoxic hepatic necrosis in an HIV-1-hepatitis C virus-co-infected patient starting antiretroviral triple combination therapy. AIDS 1998, 12, 827–829. [Google Scholar] [PubMed]
- Vermund, S.H. Safety and Tolerability of Tenofovir for Preexposure Prophylaxis among Men Who Have Sex with Men. JAIDS J. Acquir. Immune Defic. Syndr. 2013, 64, 3–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grohskopf, L.A.; Chillag, K.L.; Gvetadze, R.; Liu, A.Y.; Thompson, M.; Mayer, K.H.; Collins, B.M.; Pathak, S.R.; O’Hara, B.; Ackers, M.L.; et al. Randomized Trial of Clinical Safety of Daily Oral Tenofovir Disoproxil Fumarate Among HIV-Uninfected Men Who Have Sex With Men in the United States. JAIDS J. Acquir. Immune Defic. Syndr. 2013, 64, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Fulco, P.P.; Kirian, M.A. Effect of Tenofovir on Didanosine Absorption in Patients with HIV. Ann. Pharmacother. 2003, 37, 1325–1328. [Google Scholar] [CrossRef]
- Blanchard, J.N.; Wohlfeiler, M.; Canas, A.; King, K.; Lonergan, J.T. Pancreatitis Treated with Didanosine and Tenofovir Disoproxil Fumarate. Clin. Infect. Dis. 2003, 37, e57–e62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozniak, A.L.; Gallant, J.E.; DeJesus, E.; Arribas, J.R.; Gazzard, B.; Campo, R.E.; Chen, S.S.; McColl, D.; Enejosa, J.; Toole, J.J.; et al. Tenofovir disoproxil fumarate, emtricitabine, and efavirenz versus fixed-dose zidovudine/lamivudine and efavirenz in antiretroviral-naive patients: Virologic, immunologic, and morphologic changes—A 96-week analysis. J. Acquir. Immune Defic. Syndr. 2006, 43, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Kolakowska, A.; Maresca, A.F.; COllins, I.J.; Cailhol, J. Update on adverse effects of HIV integrase inhibitors. Curr. Treat Options Infect. Dis. 2019, 11, 372–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelchen-Matthews, A.; Larsen, J.F.; Shepherd, L.; Begovac, J.; Pedersen, K.B.H.; Curtis, L.; De Wit, S.; Horban, A.; Jablonowska, E.; Johnson, M.; et al. The occurrence of hypersensitivity reaction and hepatotoxicity in individuals receiving integrase strand transfer inhibitors: Results from the EuroSIDA study. In Centre of Excellence for Health, Immunity and Infections (CHIP); John Wiley & Sons ltd.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Steigbigel, R.T.; Cooper, D.A.; Teppler, H.; Eron, J.J.; Gatell, J.M.; Kumar, P.N.; Rockstroh, J.K.; Schechter, M.; Katlama, C.; Markowitz, M.; et al. Long-term efficacy and safety of Raltegravir combined with optimized background therapy in treatment experienced patients with drug-resistant HIV infection: Week 96 results of the BENCHMRK 1 and 2 Phase III trials. Clin. Infect. Dis. 2010, 50, 605–612. [Google Scholar] [CrossRef]
- Lennox, J.L.; DeJesus, E.; Berger, D.S.; Lazzarin, A.; Pollard, R.B.; Madruga, J.V.R.; Zhao, J.; Wan, H.; Gilbert, C.L.; Teppler, H.; et al. Raltegravir Versus Efavirenz Regimens in Treatment-Naive HIV-1–Infected Patients: 96-Week Efficacy, Durability, Subgroup, Safety, and Metabolic Analyses. JAIDS J. Acquir. Immune Defic. Syndr. 2010, 55, 39–48. [Google Scholar] [CrossRef]
- DeJesus, E.; Rockstroh, J.K.; Henry, K.; Molina, J.M.; Gathe, J.; Ramanathan, S.; GS-236-0103 Study Team. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: A randomised, double-blind, phase 3, non-inferiority trial. Lancet 2012, 379, 2429–2438. [Google Scholar]
- Sax, P.E.; DeJesus, E.; Mills, A.; Zolopa, A.; Cohen, C.; Wohl, D.; Gallant, J.E.; Liu, H.C.; Zhong, L.; Yale, K.; et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: A randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet 2012, 379, 2439–2448. [Google Scholar] [CrossRef]
- Squillace, N.; Ricci, E.; Quirino, T.; Gori, A.; Bandera, A.; Carenzi, L.; De Socio, G.V.; Orofino, G.; Martinelli, C.; Madeddu, G.; et al. Safety and tolerability of Elvitegravir/Cobicistat/Emtricitabine/Tenofovir Disoproxil fumarate in a real life setting: Data from surveillance cohort long-term toxicity antiretrovirals/antivirals (SCOLTA) project. PLoS ONE 2017, 12, e0179254. [Google Scholar] [CrossRef]
- Min, S.; Sloan, L.; DeJesus, E.; Hawkins, T.; McCurdy, L.; Song, I.; Stroder, R.; Chen, S.; Underwood, M.; Fujiwara, T.; et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. AIDS 2011, 25, 1737–1745. [Google Scholar] [CrossRef]
- Van Lunzen, J.; Maggiolo, F.; Arribas, J.R.; Rakhmanova, A.; Yeni, P.; Young, B.; Rockstroh, J.K.; Almond, S.; Song, I.; Brothers, C.; et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naive adults with HIV: Planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. Lancet Infect. Dis. 2012, 12, 111–118. [Google Scholar] [CrossRef]
- Raffi, F.; Rachlis, A.; Stellbrink, H.-J.; Hardy, W.D.; Torti, C.; Orkin, C.; Bloch, M.; Podzamczer, D.; Pokrovsky, V.; Pulido, F.; et al. Once-daily dolutegravir versus raltegravir in antiretroviral-naive adults with HIV-1 infection: 48 week results from the randomised, double-blind, non-inferiority SPRING-2 study. Lancet 2013, 381, 735–743. [Google Scholar] [CrossRef]
- Sax, P.E.; DeJesus, E.; Crofoot, G.; Ward, D.; Benson, P.; Dretler, R.; Mills, A.; Brinson, C.; Peloquin, J.; Wei, X.; et al. Bictegravir versus dolutegravir, each with emtricitabine and tenofovir alafenamide, for initial treatment of HIV-1 infection: A randomised, double-blind, phase 2 trial. Lancet HIV 2017, 4, e154–e160. [Google Scholar] [CrossRef]
- Gallant, J.; Lazzarin, A.; Mills, A.; Orkin, C.; Podzamczer, D.; Tebas, P.; Girard, P.-M.; Brar, I.; Daar, E.S.; Wohl, D.; et al. Bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir, abacavir, and lamivudine for initial treatment of HIV-1 infection (GS-US-380-1489): A double-blind, multicentre, phase 3, randomised controlled non-inferiority trial. Lancet 2017, 390, 2063–2072. [Google Scholar] [CrossRef]
- Sax, P.E.; Pozniak, A.; Montes, M.L.; Koenig, E.; DeJesus, E.; Stellbrink, H.J.; Antinori, A.; Workowski, K.; Slim, J.; Reynes, J.; et al. Coformulated bictegravir, emtricitabine, and tenofovir alafenamide versus dolutegravir with emtricitabine and tenofovir alafenamide, for initial treatment of HIV-1 infection (GS-US-380-1490): A randomised, double-blind, multicentre, phase 3, non-inferiority trial. Lancet 2017, 290, 2073–2082. [Google Scholar]
- Markowitz, M.; Frank, I.; Grant, R.M.; Mayer, K.H.; Elion, R.; Goldstein, D.; Fisher, C.; Sobieszczyk, M.E.; Gallant, J.E.; Van Tieu, H.; et al. Safety and tolerability of long-acting cabotegravir injections in HIV-uninfected men (ECLAIR): A multicentre, double-blind, randomised, placebo-controlled, phase 2a trial. Lancet HIV 2017, 4, e331–e340. [Google Scholar] [CrossRef]
- Rizzardini, G.; Overton, E.T.; Orkin, C.; Swindells, S.; Arasteh, K.; Hernández-Mora, M.G.; Pokrovsky, V.; Girard, P.-M.; Oka, S.; Andrade-Villanueva, J.F.; et al. Long-Acting Injectable Cabotegravir + Rilpivirine for HIV Maintenance Therapy: Week 48 Pooled Analysis of Phase 3 ATLAS and FLAIR Trials. JAIDS J. Acquir. Immune Defic. Syndr. 2020, 85, 498–506. [Google Scholar] [CrossRef]
- Cooper, D.A.; Steigbigel, R.T.; Gatell, J.M.; Rockstroh, J.K.; Katlama, C.; Yeni, P.; Lazzarin, A.; Clotet, B.; Kumar, P.N.; Eron, J.E.; et al. Subgroup and Resistance Analyses of Raltegravir for Resistant HIV-1 Infection. N. Engl. J. Med. 2008, 359, 355–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teppler, H.; Brown, D.D.; Leavitt, R.Y.; Sklar, P.; Wan, H.; Xu, X.; Lievano, H.P.; Lehman, H.P.; Mast, T.C.; Nguyen, B.-Y.T. Long-Term Safety from the Raltegravir Clinical Development Program. Curr. HIV Res. 2011, 9, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Lennox, J.L.; DeJesus, E.; Lazzarin, A.; Pollard, R.B.; Madruga, J.V.R.; Berger, D.S.; Zhao, J.; Xu, X.; Williams-Diaz, A.; Rodgers, A.J.; et al. Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: A multicentre, double-blind randomised controlled trial. Lancet 2009, 374, 796–806. [Google Scholar] [CrossRef]
- Rockstroh, J.; Teppler, H.; Zhao, J.; Sklar, P.; Harvey, C.; Strohmaier, K.; Leavitt, R.; Nguyen, B.-Y. Safety and efficacy of raltegravir in patients with HIV-1 and hepatitis B and/or C virus coinfection. HIV Med. 2011, 13, 127–131. [Google Scholar] [CrossRef]
- Rockstroh, J.K.; Lennox, J.L.; DeJesus, E.; Saag, M.S.; Lazzarin, A.; Wan, H.; Walker, M.L.; Xu, X.; Zhao, J.; Teppler, H.; et al. Long-term treatment with raltegravir or efavirenz combined with tenofovir/emtricitabine for treatment-naive human immunodeficiency virus-1-infected patients: 156-week results from STARTMRK. Clin. Infect. Dis. 2011, 53, 807–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rockstroh, J.; Sklar, P.; Wan, H.; Teppler, H.; Harvey, C.; Strohmaier, K.; Leavitt, R.; Nguyen, B. Safety and efficacy of raltegravir in patients co-infected with HIV and hepatitis B and/or C virus: Complete data from Phase III double-blind studies. J. Int. AIDS Soc. 2012, 15, 1–2. [Google Scholar] [CrossRef]
- Iwamoto, M.; Hanley, W.D.; Petry, A.S.; Friedman, E.J.; Kost, J.T.; Breidinger, S.A.; Lasseter, K.C.; Robson, R.; Lunde, N.M.; Wenning, L.A.; et al. Lack of a Clinically Important Effect of Moderate Hepatic Insufficiency and Severe Renal Insufficiency on Raltegravir Pharmacokinetics. Antimicrob. Agents Chemother. 2009, 53, 1747–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeJesus, E.; Berger, D.; Markowitz, M.; Cohen, C.; Hawkins, T.; Ruane, P.; Elion, R.; Farthing, C.; Zhong, L.; Cheng, A.K.; et al. Antiviral Activity, Pharmacokinetics, and Dose Response of the HIV-1 Integrase Inhibitor GS-9137 (JTK-303) in Treatment-Naive and Treatment-Experienced Patients. JAIDS J. Acquir. Immune Defic. Syndr. 2006, 43, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gallant, J.; Brunetta, J.; Crofoot, G.; Benson, P.; Mills, A.; Brinson, C.; Oka, S.; Cheng, A.; Garner, W.; Fordyce, M.; et al. Brief Report: Efficacy and Safety of Switching to a Single-Tablet Regimen of Elvitegravir/Cobicistat/Emtricitabine/Tenofovir Alafenamide in HIV-1/Hepatitis B–Coinfected Adults. JAIDS J. Acquir. Immune Defic. Syndr. 2016, 73, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Abbott, L.; Childs, K.; Taylor, C.; Agarwal, K.; Cormack, I.; Miquel, R.; Suddle, A. Dolutegravir-induced liver injury leading to sub-acute liver failure requiring transplantation: A case report and review of literature. Int. J. STD AIDS 2018, 29, 414–417. [Google Scholar] [CrossRef]
- Nhean, S.; Yoong, D.; Wong, D.K.; Gough, K.; Tseng, A.L. Probably hepatotoxicity with dolutegravir: Report of two cases and review of the literature. AIDS 2019, 33, 1261–1263. [Google Scholar] [CrossRef]
- Orkin, C.; DeJesus, E.; Sax, P.E.; Arribas, J.R.; Gupta, S.K.; Martorell, C.; Stephens, J.L.; Stellbrink, H.J.; Wohl, D.; Maggiolo, F.; et al. Fixed-dose combination bictegravir, emtricitabine and tenofovir alafenamide versus dolutegravir-containing regimens for initial treatment of HIV-1 infection: Week 144 results from two randomised, double-blind, multicentre, phase 3, non-inferiority trials. Lancet HIV 2020, 7, e389–e400. [Google Scholar] [CrossRef]
- Cabenuva [Package Insert]. Research Triangle Park, NC: GlaxoSmithKline; Revised 1/2021. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/212888s000lbl.pdf (accessed on 17 March 2021).
- Vocabria [Package Insert]. Research Triangle Park, NC: GlaxoSmithKline; Revised 1/2021. Available online: https://gskpro.com/content/dam/global/hcpportal/en_US/Prescribing_Information/Vocabria/pdf/VOCABRIA-PI-PIL.PDF (accessed on 17 March 2021).
- Shaik, J.S.B.; Ford, S.L.; Lou, Y.; Zhang, Z.; Bakshi, K.K.; Tenorio, A.R.; Trezza, C.; Spreen, W.R.; Patel, P. A Phase 1 Study to Evaluate the Pharmacokinetics and Safety of Cabotegravir in Patients with Hepatic Impairment and Healthy Matched Controls. Clin. Pharmacol. Drug Dev. 2019, 8, 664–673. [Google Scholar] [CrossRef]
- Sulkowski, M.S.; Thomas, D.L.; Chaisson, R.E.; Moore, R.D. Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection. JAMA 2000, 283, 74–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsiodras, S.; Mantzoros, C.; Hammer, S.; Samore, M. Effects of Protease Inhibitors on Hyperglycemia, Hyperlipidemia, and Lipodystrophy. Arch. Intern. Med. 2000, 160, 2050–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulkowski, M.S. Drug-induced liver injury associated with antiretroviral thearpy that includes HIV-1 protease inhibitors. Clin. Infect. Dis. 2004, 38 (Suppl. 2), S90–S97. [Google Scholar] [CrossRef] [PubMed]
- Torti, C.; Lapadula, G.; Antinori, A.; Quirino, T.; Maserati, R.; Castelnuovo, F.; Maggiolo, F.; De Luca, A.; Paraninfo, G.; Antonucci, F.; et al. Hyperbilirubinemia during Atazanavir Treatment in 2404 Patients in the Italian Atazanavir Expanded Access Program and MASTER Cohorts. Infection 2009, 37, 244–249. [Google Scholar] [CrossRef] [PubMed]
- McDonald, C.; Uy, J.; Hu, W.; Wirtz, V.; Juethner, S.; Butcher, D.; McGrath, D.; Farajallah, A.; Moyle, G. Clinical Significance of Hyperbilirubinemia Among HIV-1–Infected Patients Treated with Atazanavir/Ritonavir Through 96 Weeks in the CASTLE Study. AIDS Patient Care STDs 2012, 26, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Gallant, J.; Moyle, G.; Berenguer, J.; Shalit, P.; Cao, H.; Liu, Y.-P.; Myers, J.; Rosenblatt, L.; Yang, L.; Szwarcberg, J. Atazanavir Plus Cobicistat: Week 48 and Week 144 Subgroup Analyses of a Phase 3, Randomized, Double-Blind, Active-Controlled Trial. Curr. HIV Res. 2017, 15, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaletra [Package Insert]. North Chicago, IL: Abbott Laboratories; Revised 11/2016. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/021251s052_021906s046lbl.pdf (accessed on 17 March 2021).
- Orkin, C.; DeJesus, E.; Khanlou, H.; Stoehr, A.; Supparatpinyo, K.; Lathouwers, E.; Lefebvre, E.; Opsomer, M.; Van De Casteele, T.; Tomaka, F. Final 192-week efficacy and safety of once-daily darunavir/ritonavir compared with lopinavir/ritonavir in HIV-1-infected treatment-naïve patients in the ARTEMIS trial. HIV Med. 2012, 14, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Madruga, J.V.; Berger, D.; McMurchie, M.; Suter, F.; Banhegyi, D.; Ruxrungtham, K.; Norris, D.; Lefebvre, E.; de Béthune, M.P.; Tomaka, F.; et al. Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: A randomized controlled phase III trial. Lancet 2007, 70, 49–58. [Google Scholar] [CrossRef]
- Arasteh, K.; Yeni, P.; Pozniak, A.; Grinsztejn, B.; Jayaweera, D.; Roberts, A.; Hoy, J.; De Meyer, S.; Vangeneugden, T.; Tomaka, F. Efficacy and safety of darunavir/ritonavir in treatment-experienced HIV type-1 patients in the POWER 1, 2 and 3 trials at week 96. Antivir. Ther. 2009, 14, 859. [Google Scholar] [CrossRef] [Green Version]
- Bentue-Ferrer, D.; Arvieux, C.; Tribut, O.; Ruffault, A.; Bellissant, E. Clinical pharmacology, effifacy and safety of atazanavir: A review. Expert Opin. Drug Metab. Toxicol. 2009, 5, 1455–1468. [Google Scholar] [CrossRef] [PubMed]
- Reyataz [Package Insert]. Princeton, NJ: Bristol-Myers Squibb; Revised 9/2020. Available online: https://packageinserts.bms.com/pi/pi_reyataz.pdf (accessed on 17 March 2021).
- Evotaz (Atazanavir Sulfate/Cobicistat). Prescribing Information (USA). Princeton, NJ: Bristol-Myers Squibb Company; Revised 2020. Available online: https://packageinserts.bms.com/pi/pi_evotaz.pdf (accessed on 17 March 2021).
- Mandelbrot, L.; Mazy, F.; Floch-Tudal, C.; Meier, F.; Azria, E.; Crenn-Hebert, C.; Treluyer, J.M.; Herinomenzanahary, E.; Ferreira, C.; Peytavin, G. Atazanavir in pregnancy: Impact on neonatal hyperbilirubinemia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2011, 157, 18–21. [Google Scholar] [CrossRef]
- Caniglia, E.C.; Patel, K.; Huo, Y.; Williams, P.L.; Kapetanovic, S.; Rich, K.C.; Sirois, P.A.; Jacobson, D.L.; Hernandez-Diaz, S.; Hernán, M.A.; et al. Atazanavir exposure in utero and neurodevelopment in infants: A comparative safety study. AIDS 2016, 30, 1267–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, B.; King, M.; Cernohous, P.; Brun, S. Lopinavir/Ritonavir Safety, Tolerability and Efficacy in Hepatitis C and/or Hepatitis B-infected Patients: Review of Clinical Trials. In Program and Abstracts of the Fifteenth International AIDS Conference, Bangkok, 2004. Abstract MoPeB3285. International AIDS Society, Geneva, Switzerland. Available online: http://www.iasociety.org/ejias/search.asp? (accessed on 17 March 2021).
- González-Requena, D.; Núñez, M.; Jiménez-Nacher, I.; González-Lahoz, J.; Soriano, V. Liver toxicity of lopinavir-containing regimens in HIV-infected patietns with or without hepatitis C coinfection. AIDS Res. Hum. Retrovir. 2004, 20, 698–700. [Google Scholar] [CrossRef] [PubMed]
- Canta, F.; Marrone, R.; Bonora, S.; D’Avolio, A.; Sciandra, M.; Sinicco, A.; De Rosa, F.G.; Di Perri, G. Pharmacokinetics and hepatotoxicity of lopinavir/ritonavir in non-cirrhotic HIV and hepatitis C virus (HCV) co-infected patients. J. Antimicrob. Chemother. 2005, 55, 280–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clotet, B.; Bellos, N.; Molina, J.-M.; Cooper, D.; Goffard, J.-C.; Lazzarin, A.; Wöhrmann, A.; Katlama, C.; Wilkin, T.; Haubrich, R.; et al. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: A pooled subgroup analysis of data from two randomised trials. Lancet 2007, 369, 1169–1178. [Google Scholar] [CrossRef]
- Di Biagio, A.; Ambra Nicolini, L.; Lorenzini, P.; Puoti, M.; Antinori, A.; Cozzi-Lepri, A.; Gori, A.; Vecchiet, J.; Mussini, C.; Andreoni, M.; et al. Liver enzyme elevation during darunavir-based antiretroviral treatment in HIV-1 infected patients with or without hepatitis C coinfection: Data from the ICONA foundation cohort. HIV Clin. Trials 2014, 15, 151–160. [Google Scholar] [CrossRef]
- Yancheva, N.; Tzonev, R. A case of late presentation of darunavir-related cholestatic hepatitis. Int. J. STD AIDS 2019, 30, 620–622. [Google Scholar] [CrossRef]
- Prezcobix [Package Insert]. Titusville, NJ: Janssen Therapeutics; Revised 12/2020. Available online: https://www.janssenlabels.com/package-insert/product-monograph/prescribing-information/PREZCOBIX-pi.pdf (accessed on 17 March 2021).
- Gulick, R.M.; Fatkenheuer, G.; Burnside, R.; Hardy, W.D.; Nelson, M.R.; Goodrich, J.; Mukwaya, G.; Portsmouth, S.; Heera, J.R. Five-year safety evaluation of maraviroc in HIV-1-infected treatment-experienced patients. J. Acquir. Immune Defic. Syndr. 2014, 65, 78–81. [Google Scholar] [CrossRef]
- Currier, J.; Lazzarin, A.; Sloan, L.; Clumeck, N.; Slims, J.; Mccarty, D.; Steel, H.; Kleim, J.-P.; Bonny, T.; Millard, J. Antiviral activity and safety of aplaviroc with lamivudine/zidovudine in HIV-infected, therapy-naive patients: The ASCENT (CCR102881) study. Antivir. Ther. 2008, 13, 297–306. [Google Scholar]
- Nichols, W.G.; Steel, H.M.; Bonny, T.; Adkison, K.; Curtis, L.; Millard, J.; Kabeya, K.; Clumeck, N. Hepatotoxicity Observed in Clinical Trials of Aplaviroc (GW873140). Antimicrob. Agents Chemother. 2007, 52, 858–865. [Google Scholar] [CrossRef] [Green Version]
- FDA. Office Director Memo: NDA#22-128 Medical Review. 2007. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2007/022128s000_MedR.pdf (accessed on 17 March 2021).
- Ayoub, A.; Alston, S.; Goodrich, J.; Heera, J.; Hoepelman, A.I.M.; Lalezari, J.; McHale, M.; Nelson, M.; Van Der Ryst, E.; Mayer, H. Hepatic safety and tolerability in the maraviroc clinical development program. AIDS 2010, 24, 2743–2750. [Google Scholar] [CrossRef]
- Cooper, D.A.; Heera, J.; Heera, J.; Goodrich, J.; Tawadrous, M.; Saag, M.; DeJesus, E.; Clumeck, N.; Walmsley, S.; Ting, N.; et al. Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naïve subjects with CCR5-tropic HIV-1 infection. J. Infect. Dis. 2010, 201, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Madero, J.; Di Perri, G.; Wood, R.; Saag, M.; Frank, I.; Craig, C.; Burnside, R.; McCracken, J.; Pontani, D.; Goodrich, J.; et al. Efficacy and safety of maraviroc versus efavirenz, both with zidovudine/lamivudine: 96-week results from the MERIT study. HIV Clin. Trials 2010, 11, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Gulick, R.M.; Lalezari, J.; Goodrich, J.; Clumeck, N.; DeJesus, E.; Horban, A.; Nadler, J.; Clotet, B.; Karlsson, A.; Wohlfeiler, M.; et al. Maraviroc for Previously Treated Patients with R5 HIV-1 Infection. N. Engl. J. Med. 2008, 359, 1429–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardy, W.D.; Gulick, R.M.; Mayer, H.; Fätkenheuer, G.; Nelson, M.; Heera, J.; Rajicic, N.; Goodrich, J. Two-year safety and virologic efficacy of maraviroc in treatment-experienced patients with CCR5-tropic HIV-1 infection: 96-week combined analysis of MOTIVATE 1 and 2. J. Acquir. Immune Defic. Syndr. 2010, 55, 558–564. [Google Scholar] [CrossRef] [Green Version]
- Cooper, D.A.; Heera, J.; Ive, P.; Botes, M.; Dejesus, E.; Burnside, R.; Clumeck, N.; Walmsley, S.; Lazzarin, A.; Mukwaya, G.; et al. Efficacy and safety of maraviroc vs. efavirenz in treatment-naïve patients with HIV-1: 5-year findings. AIDS 2014, 28, 717–725. [Google Scholar] [CrossRef]
- FDA. FDA Adverse Event Reporting System (FAERS) Public Dashboard. 2020. Available online: https://www.fda.gov/drugs/questions-and-answers-fdas-adverse-event-reporting-system-faers/fda-adverse-event-reporting-system-faers-public-dashboard (accessed on 17 March 2021).
- Rizza, S.; Bhatia, R.; Zeuli, J.; Temesgen, Z. Ibalizumab for the treatment of multidrug-resistant HIV-1 infection. Drugs Today 2019, 55, 25–34. [Google Scholar] [CrossRef]
- Emu, B.; Fessel, J.; Schrader, S.; Kumar, P.; Richmond, G.; Win, S.; Weinheimer, S.; Marsolais, C.; Lewis, S. Phase 3 Study of Ibalizumab for Multidrug-Resistant HIV-1. N. Engl. J. Med. 2018, 379, 645–654. [Google Scholar] [CrossRef]
- FDA. FDA Summary Letter: Ibalizumab. 2018. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/761065Orig1s000SumR.pdf (accessed on 17 March 2021).
- Emu, B.; DeJesus, E.; Berhe, M.; Leider, J.; Creticos, C.; Weinheimer, S.; Cohen, Z. 661. Ibalizumab Efficacy and Safety Through 48 Weeks of Treatment: Results of an Expanded Access Protocol (TMB-311). Open Forum Infect. Dis. 2019, 6, S303. [Google Scholar] [CrossRef] [Green Version]
- Emu, B.; Lalezari, J.; Kumar, P. Ibalizumab: 96-Week Data and Efficacy in Patients Resistant to Common Antiretrovirals (Abstract 485); CROI: Seattle, WA, USA, 2019. [Google Scholar]
- Towner, W.; DeJesus, E.; Schrader, S.; De Vente, J.; McGary, C.; Zogheib, M.; Weinheimer, S.; Mesquita, P. 1027. Long-Term Efficacy, Safety, and Durability of Ibalizumab-Based Regimens in Subgroup of TMB-202 Participants. Open Forum Infect. Dis. 2020, 7, S542–S543. [Google Scholar] [CrossRef]
- Thompson, M.; Lalezari, J.P.; Kaplan, R.; Pinedo, Y.; Pena, O.A.S.; Cahn, P.; Stock, D.A.; Joshi, S.R.; Hanna, G.J.; Lataillade, M. Safety and efficacy of the HIV-1 attachment inhibitor prodrug fostemsavir in antiretroviral-experienced subjects: Week 48 analysis of AI438011, a Phase IIb, randomized controlled trial. Antivir. Ther. 2017, 22, 215–223. [Google Scholar] [CrossRef]
- Thompson, M.; Urbina, F.M.; Latiff, G.; Treviño-Pérez, S.; DeJesus, E.; Zakharova, N.; Martins, M.; Bogner, J.; Ye, L.; Pierce, A.; et al. Long-Term Safety and Efficacy of Fostemsavir in Treatment-Experienced HIV Participants; CROI: Seattle, WA, USA, 2019. [Google Scholar]
- Kozal, M.; Aberg, J.; Pialoux, G.; Cahn, P.; Thompson, M.; Molina, J.-M.; Grinsztejn, B.; Diaz, R.; Castagna, A.; Kumar, P.; et al. Fostemsavir in Adults with Multidrug-Resistant HIV-1 Infection. N. Engl. J. Med. 2020, 382, 1232–1243. [Google Scholar] [CrossRef] [PubMed]
- Lataillade, M.; Lalezari, J.P.; Kozal, M.; Aberg, J.A.; Pialoux, G.; Cahn, P.; Thompson, M.; Molina, J.M.; Moreno, S.; Grinsztejn, B.; et al. Safety and efficacy of the HIV-1 attachment inhibitor prodrug fostemsavir in heavily treatment-experienced individuals: Week 96 results of the phase 3 BRIGHTE study. Lancet HIV 2020, 7, e740–e751. [Google Scholar] [CrossRef]
Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NRTIs) | Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) | Protease Inhibitors (PIs) | Integrase Strand Transfer Inhibitors (INSTIs) | CCR5 Antagonist | CD4-Directed Post-Attachment Inhibitor | Attachment Inhibitor |
---|---|---|---|---|---|---|
Abacavir (ABC) | Doravirine (DOR) | Atazanavir (ATV) | Raltegravir (RAL) | Maraviroc (MVC) | Ibalizumab (IBA) | Fostemsavir (FTR) |
Emtricitabine (FTC) | Efavirenz (EFV) | Darunavir (DRV) | Elvitegravir (EVG) | |||
Lamivudine (3TC) | Etravirine (ETR) | Lopinavir (LPV) | Dolutegravir (DTG) | |||
Tenofovir disoproxil fumarate (TDF) | Rilpivirine (RPV) | Bictegravir (BIC) | ||||
Tenofovir alafenamide (TAF) | Cabotegravir (CAB) |
Reference | Drug(s) | No. of Study Patients | Hepatic Evaluation | Overall Incidence of Cases/100 Persons Exposed | Study Design | Patient Population |
---|---|---|---|---|---|---|
Sulkowski 2002 [10] | Efavirenz | 312 | Combined Grade 3 and 4 Grade 3: AST/ALT 5.1–10× ULN Grade 4: AST/ALT > 10× ULN | 8 | Prospective | Treatment-naive; 40% HCV-positive; 52% concurrent protease inhibitor use |
van Leth 2004 2NN [11] | Efavirenz | 400 | Combined Grade 3 and 4 Grade 3: AST/ALT 5.1–10× ULN Grade 4: AST/ALT > 10× ULN | 4.5 | Prospective | Treatment-naive; 10% HCV-positive; 4% HBV-positive |
Girard 2012 DUET-1 and DUET 2 (96 Week Pooled Data) [12] | Etravirine | 599 | Grade 3: AST/ALT 5.1–10× ULN Grade 4: AST/ALT > 10× ULN | Grade 3: 4.4 Grade 4: 3.9 | Prospective | Treatment-experienced; 12% HBV- and/or HCV-positive |
Molina 2011 ECHO [13] | Rilpivirine | 346 | Combined Grade 3 and 4 Grade 3: AST/ALT 5.1–10× ULN Grade 4: AST/ALT > 10× ULN | AST: 2 ALT:1 | Prospective | Treatment-naive; 3% HBV-positive; 2% HCV-positive |
Cohen 2011 THRIVE [14] | Rilpivirine | 340 | AST/ALT 5.1–10× ULN | 2 | Prospective | Treatment-naive; 4% HBV-positive; 5% HCV-positive |
Nelson 2012 [15] | Rilpivirine | 686 | Combined Grades 1–4 Grade 1: AST/ALT 1.25–2.4× ULN Grade 2: 2.5–4.9× ULN Grade 3: 5–9.9× ULN Grade 4: ≥ 10× ULN | 2.2 | Prospective | Treatment-naive; 8.4% HBV- and/or HCV-positive |
Molina 2020 DRIVE-FORWARD [16] | Doravirine | 383 | AST/ALT ≥ 5× ULN | ALT: 1 AST: 2 | Prospective | Treatment-naive |
Orkin 2020 DRIVE-AHEAD [17] | Doravirine | 363 | AST/ALT 5–9.9× ULN | ALT: 0.8 AST: 0.6 | Prospective | Treatment-naive; 3% HBV- and/or HCV-positive |
Johnson 2019 DRIVE-SHIFT [18] | Doravirine | 447 | ALT/ALT ≥ 3× ULN plus bilirubin ≥ 2× ULN and alkaline phosphatase < 2× ULN | 0 | Prospective | Treatment-experienced; 3% HBV- and/or HCV-positive |
Reference | Drug(s) | No. of Study Patients | Hepatic Evaluation | Overall Incidence of Cases/100 Persons Exposed | Study Design | Patient Population |
---|---|---|---|---|---|---|
Soni 2008 [26] | Abacavir | 2 | Patient 1: ALT > 10× ULN Patient 2: ALT > 10× ULN | - | Case report | Patient 1: Female; HLA B*5701 negative; baseline ALT 21 IU/L Patient 2: Female; HLA B*5701 negative; baseline ALT 10 IU/L |
Di Filippo 2014 [27] | Abacavir | 1 | AST: < 5× ULN ALT: > 10× ULN | - | Case report | Male; HLA B*5701 negative; baseline AST 27 IU/L and ALT 85 IU/L |
Pezzani 2016 [28] | Abacavir | 1 | AST: 5× ULN ALT: > 10× ULN | - | Case report | Female; HLA B*5701 negative; baseline AST/ALT normal |
Schiano 1997 [29] | Lamivudine | 1 | Total bilirubin: > 10× ULN ALT: > 10× ULN | - | Case report | Male; HBV co-infection; cirrhosis |
Ormseth 2001 [30] | Lamivudine | 1 | Total bilirubin: >10× ULN ALT: > 10× ULN | - | Case report | HBV co-infection; baseline ALT 171 IU/L, bilirubin 3.1 mg/dL |
Mayer 2020 DISCOVER [31] | Tenofovir | Combined grade 3 and 4 AST grade 3: >5.00 to 10.00× ULN grade 4: >10.00× ULN ALT grade 3: >5.00 to 10.00× ULN grade 4: >10.00× ULN | AST: 2 ALT: 1 | Prospective | HIV-uninfected; PrEP |
Reference | Drug(s) | No. of Study Patients | Hepatic Evaluation | Overall Incidence of Cases/100 Persons Exposed | Study Design | Patient Population |
---|---|---|---|---|---|---|
Steigbigel 2010 BENCHMRK-1 and -2 (Week 96 Pooled Data) [46] | Raltegravir | 462 | AST/ALT > 10× ULN | AST: 0.7 ALT: 1.3 | Prospective | Treatment-experienced; multidrug resistant |
Lennox 2010 STARTMRK (Week 96 Data) [47] | Raltegravir | 281 | AST/ALT/ALK Phos > 5× ULN TBILI > 2.5× ULN | AST: 3.2 ALT: 1.8 ALK Phos: 0 TBILI: 0.7 | Prospective | Treatment-naive; 6% HBV and/or HCV |
DeJesus 2012 GS-236-0103 [48] | Elvitegravir/cobicistat | 352 | Combination of all grades for AST/ALT elevations | AST: 17.6 ALT: 15.3 | Prospective | Treatment-naive; 1% HBV; 5% HCV |
Sax 2012 GS-US-236-0102 [49] | Elvitegravir/cobicistat | 347 | Combination of all grades for AST/ALT elevations | AST: 15 ALT: 18 | Prospective | Treatment-naive; 1% HBV; 5% HCV |
Squillace 2017 SCOLTA [50] | Elvitegravir/cobicistat | 280 | Grade 1–2: AST/ALT 1.25–2.4× ULN (if baseline WNL) or baseline (if baseline value abnormal) Grade 3–4: AST/ALT ≥2.5× ULN (if baseline WNL) or baseline (if baseline value abnormal) | Grade 1–2; treatment-naive: 3.8 Grade 1–2; treatment-experienced: 8.5 Grade 3–4; treatment-naive: 1.3 Grade 3–4; treatment-experienced: 1 | Prospective | 72.1% treatment-experienced; 27.9% treatment-naive; 21.8% HCV |
Min 2011 [51] | Dolutegravir | 28 | Combination of all grades for AST/ALT elevations | 0 | Prospective | Treatment-experienced and treatment-naive; integrase strand transfer inhibitor-naive |
van Lunzen 2012 SPRING-1 [52] | Dolutegravir | 205 | AST/ALT ≥ 5× ULN | 0.5 | Prospective | Treatment-naive; 9% HCV |
Raffi 2013 SPRING-2 [53] | Dolutegravir | 411 | AST/ALT ≥ 5× ULN | 0.5 | Prospective | Treatment-naive; 2% HBV; 10% HCV |
Sax 2017 [54] | Bictegravir | 64 | Grade 2–4: AST/ALT ≥ 2.5× ULN | AST: 9 ALT: 6 | Prospective | Treatment-naive |
Gallant 2017 GS-US-380-1489 [55] | Bictegravir | 314 | Grade 3–4: AST/ALT ≥ 5× ULN | AST: 5 ALT: 2 | Prospective | Treatment-naive |
Sax 2017 GS-US-380-1490 [56] | Bictegravir | 314 | Grade 3–4: AST/ALT ≥ 5× ULN | AST: 2 ALT: 3 | Prospective | Treatment-naive; 3% HBV; 2% HCV |
Markowitz 2017 ECLAIR [57] | Cabotegravir | 94 | Grade 2–4: AST/ALT | 1 | Prospective | HIV-uninfected |
Rizzardini 2020 FLAIR and ATLAS (Week 48 Pooled Data) [58] | Cabotegravir | 591 | AST/ALT ≥ 5× ULN | 2 | Prospective | Treatment-experienced; 7% HCV |
Reference | Drug(s) | No. of Study Patients | Hepatic Evaluation | Overall Incidence of Cases/100 Persons Exposed | Study Design | Patient Population |
---|---|---|---|---|---|---|
Torti 2009 MASTER and Italian ATV [77] | Atazanavir | 2404 | Grade 3–4: ALT > 5× ULN Grade 3–4 TBILI > 2.5× ULN | ALT: 6.4 TBILI: 44.6 | Retrospective | Longitudinal multicenter cohort; 47.3% HCV, 7.3% HBV |
McDonald 2012 CASTLE [78] | Atazanavir/ ritonavir | 441 | Grade 3–4: AST/ALT > 5× ULN Grade 3–4 TBILI > 2.5× ULN | AST: 3 ALT: 3 TBILI: 44 | Prospective | Treatment-naive |
Gallant 2017 [79] | Atazanavir/ ritonavir | 348 | Grade 3–4: AST/ALT > 5× ULN Grade 3–4 TBILI > 2.5× ULN GGT > 5× ULN | AST: 3 ALT: 3 TBILI: 66 GGT: 2 | Prospective | Treatment-naive |
Atazanavir/ cobicistat | 344 | AST: 4 ALT: 4 TBILI: 73 GGT: 4 | ||||
Walmsley 2002 Study 863 [80] (M-98-863) | Lopinavir/ritonavir | 326 | Grade 3–4: AST/ALT > 5× ULN | AST or ALT: 4.5 | Prospective | Treatment-naive |
González-García 2010 Study 730 [80] (M05-730) | Lopinavir/ritonavir once daily | 333 | Grade 3–4: AST/ALT > 5× ULN | AST: 1 ALT: 1 | Prospective | Treatment-naive |
Lopinavir/ritonavir twice daily | 331 | AST: 2 ALT: 1 | ||||
Pollard 2004 Study 888 [80] (M98-888) | Lopinavir/ritonavir | 148 | Grade 3–4: AST/ALT > 5× ULN | AST: 5 ALT: 6 | Prospective | Single PI-experienced, NNRTI-naive |
Zajdenverg 2010 Study 802 [80] (M06-802) | Lopinavir/ritonavir once daily | 300 | Grade 3–4: AST/ALT > 5× ULN | AST: 3 ALT: 2 | Prospective | Treatment-experienced |
Lopinavir/ritonavir twice daily | 299 | AST: 2 ALT: 2 | ||||
Orkin 2013 ARTEMIS [81] Week 192 | Lopinavir/ritonavir | 346 | Grade 2–4 AST/ALT Grade 2–4 TBILI | AST: 14.9 ALT: 15.8 TBILI: 5.5 | Prospective | Treatment-naive, HCV or HBV 12.5% (DRV/r) 13.9% (LPV/r) |
Darunavir/ritonavir | 343 | AST: 12.9 ALT: 12.6 TBILI: 1.2 | ||||
Madruga 2007 TITAN [82] | Lopinavir/ritonavir | 297 | Grade 2–4 AST/ALT | AST: 9 ALT: 9 | Prospective | Treatment-experienced, HCV or HBV 13% (LPV/r), 18%(DRV/r) |
Darunavir/ritonavir | 298 | AST: 7 ALT: 9 | ||||
Arasteh 2009 POWER-1, 2, 3 (Week 96 Pooled Data) [83] | Darunavir/ritonavir | 467 | Grade 2–4 AST/ALT Grade 2–4 TBILI | AST: 10 ALT: 9 TBILI: 2 | Prospective | Extensive treatment- experienced |
Phase 1 Multiple-Dose Studies [100] | ||
---|---|---|
ALT | Maraviroc (n = 272) | Placebo (n = 42) |
>2 to ≤ 5× ULN | 8 (2.9%) | 0 |
>5× ULN | 1 (0.4%) | 0 |
Bilirubin—Total | (n = 272) | (n = 41) |
>1.25 to ≤ 2.5× ULN | 3 (1.1%) | 0 |
>2.5× ULN | 0 | 0 |
MERIT Study 96 Week Data [102] | ||
---|---|---|
MVC 300 mg Twice Daily + AZT/3TC n = 353 | EFZ 600 mg Daily + AZT/3TC n = 350 | |
ALT: Maximum value by patient over 96 weeks | ||
Grade 1/2 (≥1.25 to <5× ULN) | 134 (38.0%) | 139 (39.7%) |
Grade 3 (≥5 to <10× ULN) | 11 (3.1%) | 12 (3.4%) |
Grade 4 (≥10× ULN) | 3 (0.8%) | 2 (0.6%) |
Bilirubin-total: Maximum value by patient over 96 weeks | ||
Grade 1/2 (≥1.25 to <2.5× ULN) | 47 (13.3%) | 5 (1.4%) |
Grade 3 (≥2.5 to <5× ULN) | 3 (0.8%) | 0 |
Grade 4 (≥5× ULN) | 0 | 0 |
Discontinuation due to a treatment-related hepatobiliary AE | ||
1 (0.3%) | 2 (0.6%) |
MOTIVATE Studies 96 Week Data [104] | |||
---|---|---|---|
MVC 300 mg Once Daily + OBT n = 408 | MVC 300 mg Twice Daily + OBT n = 421 | Placebo + OBT n = 207 | |
Grade 3/4 Treatment-related hepatobiliary AE | 1 (0.2%) | 2 (0.5%) | 1 (0.5%) |
Discontinuation due to any hepatobiliary AE | 2 (0.5%) | 2 (0.5%) | 1 (0.5%) |
ALT: Events per 100 years of exposure (% incidence of maximum lab value) | |||
Grade 1/2 (≥1.25 to <5× ULN) | 55.4 (50.2%) | 54.2 (51.5%) | 86.8 (50.7%) |
Grade 3 (≥5 to <10× ULN) | 3.5 (4.4%) | 1.9 (2.4%) | 5.2 (3.9%) |
Grade 4 (≥10× ULN) | 0.4 (0.5%) | 0.7 (1.0%) | 1.3 (1.0%) |
Bilirubin-Total: Events per 100 years of exposure (% incidence of maximum lab value) | |||
Grade 1/2 (≥1.25 to <2.5× ULN) | 36.4 (38.2%) | 30.4 (33.3%) | 56.8 (36.2%) |
Grade 3 (≥2.5 to <5× ULN) | 7.7 (9.1%) | 4.7 (5.7%) | 6.7 (4.8%) |
Grade 4 (≥5× ULN) | 1.4 (1.7%) | 0.7 (1.0%) | 1.9 (1.4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otto, A.O.; Rivera, C.G.; Zeuli, J.D.; Temesgen, Z. Hepatotoxicity of Contemporary Antiretroviral Drugs: A Review and Evaluation of Published Clinical Data. Cells 2021, 10, 1263. https://doi.org/10.3390/cells10051263
Otto AO, Rivera CG, Zeuli JD, Temesgen Z. Hepatotoxicity of Contemporary Antiretroviral Drugs: A Review and Evaluation of Published Clinical Data. Cells. 2021; 10(5):1263. https://doi.org/10.3390/cells10051263
Chicago/Turabian StyleOtto, Ashley O., Christina G. Rivera, John D. Zeuli, and Zelalem Temesgen. 2021. "Hepatotoxicity of Contemporary Antiretroviral Drugs: A Review and Evaluation of Published Clinical Data" Cells 10, no. 5: 1263. https://doi.org/10.3390/cells10051263
APA StyleOtto, A. O., Rivera, C. G., Zeuli, J. D., & Temesgen, Z. (2021). Hepatotoxicity of Contemporary Antiretroviral Drugs: A Review and Evaluation of Published Clinical Data. Cells, 10(5), 1263. https://doi.org/10.3390/cells10051263