The Role of Prostaglandins in Different Types of Cancer
Abstract
:1. Introduction
1.1. A Piece of History
1.2. Structure of Prostaglandins
1.3. Prostaglandin Synthesis
1.4. Mechanism of Action of Prostaglandins. Transport and Degradation
1.5. General Functions of Prostaglandins
1.6. Prostaglandin Inhibitors
2. Cancer and Prostaglandins
2.1. Prostaglandins in Skin and Bone Cancer
2.2. Prostaglandins in Breast Cancer
2.3. Prostaglandins in Lung Cancer
2.4. Prostaglandins in Liver Cancer
2.5. Prostaglandins in Digestive System and Pancreas Cancer
2.6. Prostaglandins in Renal and Urinary Cancer
2.7. Prostaglandins in Nervous System Cancer
2.8. Prostaglandins in Immune Cancer
2.9. Prostaglandins in Endocrine Tissue Cancer
2.10. Prostaglandins in Other Cancer
2.11. Prostaglandins in Tumor Microenvironment and Metastasis
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Alpha-MSH | alpha-melanocyte stimulating hormone |
8-iso-PGF2α | 8-Iso-prostaglandin F2 alpha |
15d-PGJ2 | 15-deoxy-Delta (12,14)-prostaglandin J2 |
15-PGDH | tumor suppressor 15-hydroxyprostaglandin dehydrogenase |
17β-HSD | 17β-hydroxysteroid dehydrogenase |
17-PT-PGE2 | 17-phenyltrinor-prostaglandin E2 |
AA | arachidonic acid |
AC | Adenylyl cyclase |
ACSL3 | long-chain acyl-CoA synthetase |
ACOX-1 | acilcoenzyme A peroxisomal A oxidase 1 |
AH23848 | (4Z)-7-[(rel-1S, 2S, 5R)-5-((1,1′-Biphenyl-4-il) methoxy)-2-(4-morfolinil) 3-oxocyclopentil] |
AIF | apoptosis inducer factor |
AKR | aldo-keto reductase enzymes |
AKR1C3 | aldo-keto reductase enzyme 1 C3 |
AKT | protein kinase B (PKB) |
ALL | acute lymphoblastic leukemia |
AML | acute myeloid leukemia |
AMPK | AMP-activated protein kinase |
ASA | acetylsalicylic acid |
AXAXB | protein 4 similar to BCL2 |
BAX | BCL-2-like protein 4 |
BAY11e7082 | NF-kB inhibitor |
BCL2 | B-cell lymphoma 2 |
BM | bone marrow |
cAMP | cyclic adenosine monophosphate |
cAMP-kinase A | cAMP-dependent protein kinase A (PKA) |
Cd | Cadmium |
cDc | classic dendritic cells |
CD4 | cluster of differentiation 4 |
CD45 | leukocyte common antigen |
CD80 | cluster of differentiation 80 |
CITED2 | cAMP-responsive element-binding protein (CBP) |
COX1/2/3 | cyclooxygenase 1/2/3 |
COXi | COX inhibitor |
COXIB2 (celecoxib) | selective cyclooxygenase type 2 inhibitors |
CREB | cAMP response element-binding |
CRTC1 | transcriptional coactivator regulated by CREB1 |
CUGBP1 | CUG triplet repeat, RNA binding protein 1 |
CXCL8 | chemokine (C-X-C motif) ligand 8 |
CYP2C | P450 arachidonic acid epoxygenase 2C |
CYP4A | cytochrome P450 4A fatty acid omega hydroxylase |
CYP2J | P450 arachidonic acid epoxygenase 2J |
DAG | diacylglycerol |
DAPS | 2.5-diacetyloxyphenylsulfonate |
DC | Dendritic cells |
DGLA | Dihomo-γ-linolenic acid |
DHETE | dihydroxyeicosatrienoic acid |
DMC | 2,5-dimethylcelecoxib |
DP1 and DP2 | PGD2 receptors |
DR5 | death receptor 5 |
EET | epoxyeicosatrienoic acid |
EGR1 | early growth response protein 1 |
EGR3 | early growth response protein 3 |
EMT | epithelial-to-mesenchymal transition |
EP1, EP2, EP3 AND EP4 | PGE2 RECEPTORS |
EPHA2 | Ephrin type-A receptor 2 |
ER | ESTROGEN RECEPTOR |
ERG | ETS-related gene |
ERK1/2-MAPK | extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase |
ETS | erythroblast transformation specific |
FATP2 | Fatty acid transport protein 2 |
FGF | fibroblast growth factor |
FOXP3 | fork head box protein 3 |
FP | PGF2a receptor |
G | guanine nucleotide-binding protein |
G12 | G protein that link cell surface G protein-coupled receptors primarily to guanine nucleotide exchange factors for the Rho small GTPases |
Gi | G protein that transmits an inhibitory signal from membrane receptors to adenylyl cyclase |
Gs | G protein that stimulates the cAMP-dependent pathway by activating adenylyl cyclase |
Gq | G protein heterotrimeric that activates beta isoforms of phospholipase C |
GTPase | guanosine triphosphatase |
GW627368X | 4-(4,9-diethoxy-1,3-dihydro-1-oxo-2H-benz[f]isoindol-2-yl)-N-(phenylsulfonyl)-benzeneacetamide |
HETE | hydroeicosateraenoic acids |
HBV | hepatitis B virus |
HCC | hepatocarcinoma |
HO-1 | heme oxygenase 1 |
Hypo-pRb1 | underphosphorylated retinoblastoma 1 |
GRK2 | G-protein-coupled receptor kinase 2 |
HPV | human papillomavirus |
IFNγ | interferon gamma |
IL-6 | Interleukin 6 |
IL-1β | Interleukin 1β |
IP | PGI2 receptor |
IP6 | inositol hexaphosphate |
IS | immune system |
JNK | c-Jun N-terminal kinase |
Ki-67 | nuclear protein related to cell proliferation |
LKB1 | hepatic kinase B1. Serine-threonine kinase that directly phosphorylates and activates AMPK |
LOX | Lipoxygenase |
LPS | lipopolysaccharide |
LPIAT1 | lysophosphatidylinositol-acyltransferase 1 |
LTB | Leukotriene B |
LXA | lipoxin A |
MCL-1 | cell differentiation protein from induced myeloid leukemia |
MCF-7 | Michigan Cancer Foundation-7 cell line |
MDSC | myeloid-derived suppressor cells |
MHC-II | major histocompatibility complex-II |
miR-31-5p | microRNA-31-5p |
miR-574-5p | microRNA-574-5p |
M-MDSC | immature monocytic derived suppressor cells |
MMP | cell matrix metalloprotease |
MTII | Melanotan II |
mTOR | muscular target of rapamycin |
MYC | myelocytomatosis and tumor transcription factor |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NFκB | nuclear transcription factor kB |
NK cells | natural Killer cells |
NO | nitric oxide |
NS-398 | nifluric acid |
NSAIDs | nonsteroidal anti-inflammatory drugs |
NSCLC | non-small-cell lung carcinoma |
PARP | poly-ADP-ribose polymerase |
Parthenolide | NF-kB inhibitor |
PD-L1 | programmed death-ligand 1 |
PET | positron emission tomography |
pDC | plasmacytoid dendritic cells |
PG | prostaglandin |
PGD2 | prostaglandin D2 |
PGDH | 15-hydroxy-prostaglandin dehydrogenase |
PGE1 | prostaglandin E1 |
PGE2 | prostaglandin E2 |
PGE3 | prostaglandin E3 |
mPGES-1 | microsomal PG synthetase 1 |
PGES-1 | PG synthetase 1 |
PGF2a | prostaglandin F-2α |
PGF2β | prostaglandin F-2β |
PGI2 | prostacyclin |
PGIS | prostacyclin synthetase |
PGM | PG urinary metabolite |
PGT/SLCO2A1 | PG transporter |
PGH2 | prostaglandin H2 |
PI3K | phosphatidylinositol 3-kinase |
PIP2 | phosphatidylinositol 4,5-bisphosphate |
PIP3 | phosphatidylinositol (3,4,5)-trisphosphate |
PKA-II | protein kinase A type 2 |
PLC | phospholipase C |
PMN-MDSC | granulocytic derived suppressor cells |
PPARγ | peroxisome proliferator-activated receptor |
PSA | PROSTATE ANTIGEN |
PTEN | FOSFATIDILINOSITOL-3,4,5-TRISFOSFATO 3-FOSFATASA |
PTGER4 | prostaglandin E receptor 4 [Homo sapiens (human)] |
RGS10 | Regulator of G-protein signaling 10 |
RHO | Ras homologous GTPase protein |
ROS | reactive oxygen species |
SC-236 | 4-[5-[5-(4-chlorophenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide |
SCLC | small-cell lung carcinoma |
Se | selenium |
sEH | soluble enzyme epoxide hydrolase |
Snail | zinc finger transcriptional repressor |
SND1 | staphylococcal nuclease domain containing 1 |
SOX2 | sex-determining region of Y chromosome (SRY)-related high-mobility-group box 2 |
SIK1/2 | salt-inducible kinases 1/2 |
SRY | sex-determining region of Y chromosome |
STAT3 | signal transducer and activator of transcription 3 |
TDO | tryptophan 2,3-dioxygenase |
TCF4 | transcription factor 4 |
TMPRSS2 | (Transmembrane protease, serine 2) |
TNFα | tumor necrosis factor Alpha |
TNM stage | classification of malignant tumors and the extent of spread of cancer |
TPA | tissue polypeptide antigen |
TRAF2 | TNF receptor associated factor 2 |
TRAIL | TNF-related apoptosis-inducing ligand |
TXA | thromboxane A |
TNF | tumor necrosis factor |
XRCC5 | X-Ray Repair Cross Complementing 5 |
uPAR | urokinase plasminogen activator surface receptor |
UVB | ultraviolet radiation B |
VEGF | vascular endothelium growth factor |
YAP | Yes1 associated transcriptional regulator |
ZEB1 | zinc finger E-box-binding homeobox 1 |
ZIP | zinc Interacting Protein |
ZBTB46 | zinc finger and BTB Domain Containing 46 |
WNT | wingless and Int-1 |
References
- Raphael Kurzrok, C.C. Biochemical Studies of Human Semen. II. The Action of Semen on the Human Uterus. Proc. Soc. Exp. Biol. Med. 1930, 28, 268–272. [Google Scholar] [CrossRef]
- Igic, R. Remembrances of Ulf Svante von Euler. Acta Physiol. 2018, 224, e13098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergstrom, S.; Duner, H.; von Euler, U.; Pernow, B.; Sjovall, J. Observations on the effects of infusion of prostaglandin E in man. Acta Physiol. Scand. 1959, 45, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Nugteren, D.H.; Van Dorp, D.A.; Bergstrom, S.; Hamberg, M.; Samuelsson, B. Absolute configuration of the prostaglandins. Nature 1966, 212, 38–39. [Google Scholar] [CrossRef]
- Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971, 231, 232–235. [Google Scholar] [CrossRef]
- Nagy, G. The prostaglandins. Ther. Hung. 1981, 29, 61–67. [Google Scholar]
- Holdcroft, A. Prostaglandins—A review. Anaesth. Intensive Care 1975, 3, 105–113. [Google Scholar] [CrossRef]
- Calder, P.C. Eicosanoids. Essays Biochem. 2020, 64, 423–441. [Google Scholar] [CrossRef]
- Nelson, N.A. Prostaglandin nomenclature. J. Med. Chem. 1974, 17, 911–918. [Google Scholar] [CrossRef]
- Crofford, L.J. COX-1 and COX-2 tissue expression: Implications and predictions. J. Rheumatol. Suppl. 1997, 49, 15–19. [Google Scholar]
- Vane, J.R.; Bakhle, Y.S.; Botting, R.M. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 1998, 38, 97–120. [Google Scholar] [CrossRef]
- Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: Structural, cellular, and molecular biology. Annu. Rev. Biochem. 2000, 69, 145–182. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.S.; Mann, M.; DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 1999, 18, 7908–7916. [Google Scholar] [CrossRef] [Green Version]
- Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res. 1998, 47 (Suppl. S2), S78–S87. [Google Scholar] [CrossRef]
- Bennett, A. Anti-inflammatory drugs, cyclooxygenases and other factors. Expert Opin. Pharmacother. 2001, 2, 1–2. [Google Scholar] [CrossRef]
- Botting, J.H. Nonsteroidal antiinflammatory agents. Drugs Today 1999, 35, 225–235. [Google Scholar] [CrossRef]
- Dannhardt, G.; Kiefer, W. Cyclooxygenase inhibitors—Current status and future prospects. Eur. J. Med. Chem. 2001, 36, 109–126. [Google Scholar] [CrossRef]
- Eschwege, P.; de Ledinghen, V.; Camilli, T.; Kulkarni, S.; Dalbagni, G.; Droupy, S.; Jardin, A.; Benoit, G.; Weksler, B.B. Cyclooxygenase inhibitors. Presse Med. 2001, 30, 515–517. [Google Scholar]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [Green Version]
- Hla, T.; Bishop-Bailey, D.; Liu, C.H.; Schaefers, H.J.; Trifan, O.C. Cyclooxygenase-1 and -2 isoenzymes. Int. J. Biochem. Cell Biol. 1999, 31, 551–557. [Google Scholar] [CrossRef]
- Panigrahy, D.; Kaipainen, A.; Greene, E.R.; Huang, S. Cytochrome P450-derived eicosanoids: The neglected pathway in cancer. Cancer Metastasis Rev. 2010, 29, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Fu, X.; Chen, Q.; Patra, J.K.; Wang, D.; Wang, Z.; Gai, Z. Arachidonic Acid Metabolism and Kidney Inflammation. Int. J. Mol. Sci. 2019, 20, 3683. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Q.; Liang, X.; Dai, J.; Guan, X. Prostaglandin transporter, SLCO2A1, mediates the invasion and apoptosis of lung cancer cells via PI3K/AKT/mTOR pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 9175–9181. [Google Scholar] [PubMed]
- Xun, C.Q.; Ensor, C.M.; Tai, H.H. Regulation of synthesis and activity of NAD(+)-dependent 15-hydroxy-prostaglandin dehydrogenase (15-PGDH) by dexamethasone and phorbol ester in human erythroleukemia (HEL) cells. Biochem. Biophys. Res. Commun 1991, 177, 1258–1265. [Google Scholar] [CrossRef]
- Moreno, J.J. Eicosanoid receptors: Targets for the treatment of disrupted intestinal epithelial homeostasis. Eur. J. Pharmacol. 2017, 796, 7–19. [Google Scholar] [CrossRef]
- Clasadonte, J.; Poulain, P.; Hanchate, N.K.; Corfas, G.; Ojeda, S.R.; Prevot, V. Prostaglandin E2 release from astrocytes triggers gonadotropin-releasing hormone (GnRH) neuron firing via EP2 receptor activation. Proc. Natl. Acad. Sci. USA 2011, 108, 16104–16109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.L. Functions of prostaglandins. Pathobiol. Annu. 1972, 2, 359–380. [Google Scholar] [PubMed]
- Lupulescu, A. Prostaglandins, their inhibitors and cancer. Prostaglandins Leukot. Essent. Fatty Acids 1996, 54, 83–94. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, S.C. An update on eicosanoids and inhibitors of cyclooxygenase enzyme systems. Indian J. Exp. Biol. 1997, 35, 1025–1031. [Google Scholar]
- Kerola, M.; Vuolteenaho, K.; Kosonen, O.; Kankaanranta, H.; Sarna, S.; Moilanen, E. Effects of nimesulide, acetylsalicylic acid, ibuprofen and nabumetone on cyclooxygenase-1- and cyclooxygenase-2-mediated prostanoid production in healthy volunteers ex vivo. Basic Clin. Pharmacol. Toxicol. 2009, 104, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Summ, O.; Evers, S. Mechanism of action of indomethacin in indomethacin-responsive headaches. Curr. Pain Headache Rep. 2013, 17, 327. [Google Scholar] [CrossRef] [PubMed]
- Zarghi, A.; Arfaei, S. Selective COX-2 Inhibitors: A Review of Their Structure-Activity Relationships. Iran. J. Pharm. Res. 2011, 10, 655–683. [Google Scholar] [PubMed]
- Kim, D.; Garza, L.A. A new target for squamous cell skin cancer? Exp. Dermatol. 2015, 24, 14–15. [Google Scholar] [CrossRef] [Green Version]
- Lai, Y.H.; Liu, H.; Chiang, W.F.; Chen, T.W.; Chu, L.J.; Yu, J.S.; Chen, S.J.; Chen, H.C.; Tan, B.C. MiR-31-5p-ACOX1 Axis Enhances Tumorigenic Fitness in Oral Squamous Cell Carcinoma Via the Promigratory Prostaglandin E2. Theranostics 2018, 8, 486–504. [Google Scholar] [CrossRef]
- Bie, Q.; Dong, H.; Jin, C.; Zhang, H.; Zhang, B. 15d-PGJ2 is a new hope for controlling tumor growth. Am. J. Transl. Res. 2018, 10, 648–658. [Google Scholar]
- Gomes, R.N.; Felipe da Costa, S.; Colquhoun, A. Eicosanoids and cancer. Clinics 2018, 73, e530s. [Google Scholar] [CrossRef]
- Kiraly, A.J.; Soliman, E.; Jenkins, A.; Van Dross, R.T. Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostaglandins Leukot. Essent. Fatty Acids 2016, 104, 44–53. [Google Scholar] [CrossRef]
- Campione, E.; Paterno, E.J.; Candi, E.; Falconi, M.; Costanza, G.; Diluvio, L.; Terrinoni, A.; Bianchi, L.; Orlandi, A. The relevance of piroxicam for the prevention and treatment of nonmelanoma skin cancer and its precursors. Drug Des. Devel. Ther. 2015, 9, 5843–5850. [Google Scholar] [CrossRef] [Green Version]
- Thyagarajan, A.; Saylae, J.; Sahu, R.P. Acetylsalicylic acid inhibits the growth of melanoma tumors via SOX2-dependent-PAF-R-independent signaling pathway. Oncotarget 2017, 8, 49959–49972. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.C.; Tsai, H.E.; Hsiao, Y.H.; Wu, J.S.; Wu, C.S.; Tai, M.H. Topical MTII Therapy Suppresses Melanoma through PTEN Upregulation and Cyclooxygenase II Inhibition. Int. J. Mol. Sci. 2020, 21, 681. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Wang, A.; Yin, B.; Wu, D.; Han, S.; Zhang, W.; Liu, J.; Sun, K. SND1 promotes the proliferation of osteosarcoma cells by upregulating COX2/PGE2 expression via activation of NF-κB. Oncol. Rep. 2019, 41, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.C.; Ma, N.; Liu, W.; Wang, P.J. EP1 receptor is involved in prostaglandin E2-induced osteosarcoma growth. Bosn. J. Basic Med. Sci. 2019, 19, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Nour Eldin, E.E.M.; Nour Eldein, M.M.; El-Readi, M.Z.; Mirza, A.A.; Fatani, S.H.; Al-Amodi, H.S.; Althubiti, M.A.; Al-Ezzi, E.M.; Eid, S.Y.; Kamel, H.F.M. Evaluation of the Diagnostic and Predicative Values of 8-Iso-Prostaglandin F2α as a Biomarker of Breast Cancer. Oncol. Res. Treat. 2020, 43, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Yiannakopoulou, E. Aspirin and NSAIDs for breast cancer chemoprevention. Eur. J. Cancer Prev. 2015, 24, 416–421. [Google Scholar] [CrossRef]
- Yoda, T.; Kikuchi, K.; Miki, Y.; Onodera, Y.; Hata, S.; Takagi, K.; Nakamura, Y.; Hirakawa, H.; Ishida, T.; Suzuki, T.; et al. 11β-Prostaglandin F2α, a bioactive metabolite catalyzed by AKR1C3, stimulates prostaglandin F receptor and induces slug expression in breast cancer. Mol. Cell Endocrinol. 2015, 413, 236–247. [Google Scholar] [CrossRef]
- Suh, J.; Kim, D.H.; Kim, E.H.; Park, S.A.; Park, J.M.; Jang, J.H.; Kim, S.J.; Na, H.K.; Kim, N.D.; Kim, N.J.; et al. 15-Deoxy-Delta(12,14)-prostaglandin J2 activates PI3K-Akt signaling in human breast cancer cells through covalent modification of the tumor suppressor PTEN at cysteine 136. Cancer Lett. 2018, 424, 30–45. [Google Scholar] [CrossRef]
- Olesch, C.; Sha, W.; Angioni, C.; Sha, L.K.; Acaf, E.; Patrignani, P.; Jakobsson, P.J.; Radeke, H.H.; Grosch, S.; Geisslinger, G.; et al. MPGES-1-derived PGE2 suppresses CD80 expression on tumor-associated phagocytes to inhibit anti-tumor immune responses in breast cancer. Oncotarget 2015, 6, 10284–10296. [Google Scholar] [CrossRef] [Green Version]
- Pennock, N.D.; Martinson, H.A.; Guo, Q.; Betts, C.B.; Jindal, S.; Tsujikawa, T.; Coussens, L.M.; Borges, V.F.; Schedin, P. Ibuprofen supports macrophage differentiation, T cell recruitment, and tumor suppression in a model of postpartum breast cancer. J. Immunother. Cancer 2018, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Shaashua, L.; Shabat-Simon, M.; Haldar, R.; Matzner, P.; Zmora, O.; Shabtai, M.; Sharon, E.; Allweis, T.; Barshack, I.; Hayman, L.; et al. Perioperative COX-2 and β-Adrenergic Blockade Improves Metastatic Biomarkers in Breast Cancer Patients in a Phase-II Randomized Trial. Clin. Cancer Res. 2017, 23, 4651–4661. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Suh, J.Y.; Kim, D.H.; Na, H.K.; Surh, Y.J. 15-Deoxy-Delta(12,14)-prostaglandin J2 Induces Epithelial-to-mesenchymal Transition in Human Breast Cancer Cells and Promotes Fibroblast Activation. J. Cancer Prev. 2020, 25, 152–163. [Google Scholar] [CrossRef]
- De Paz Linares, G.A.; Opperman, R.M.; Majumder, M.; Lala, P.K. Prostaglandin E2 Receptor 4 (EP4) as a Therapeutic Target to Impede Breast Cancer-Associated Angiogenesis and Lymphangiogenesis. Cancers 2021, 13, 942. [Google Scholar] [CrossRef]
- Saliakoura, M.; Reynoso-Moreno, I.; Pozzato, C.; Rossi Sebastiano, M.; Galie, M.; Gertsch, J.; Konstantinidou, G. The ACSL3-LPIAT1 signaling drives prostaglandin synthesis in non-small cell lung cancer. Oncogene 2020, 39, 2948–2960. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Han, C.C.; Wang, Y.; Cui, D.Q.; Luo, T.T.; Zhang, Y.W.; Ma, Y.; Wei, W. Combined PGE2 with TNF-α promotes laryngeal carcinoma progression by enhancing GRK2 and TRAF2 interaction. Neoplasma 2020, 67, 354–363. [Google Scholar] [CrossRef]
- Cao, C.; Gao, R.; Zhang, M.; Amelio, A.L.; Fallahi, M.; Chen, Z.; Gu, Y.; Hu, C.; Welsh, E.A.; Engel, B.E.; et al. Role of LKB1-CRTC1 on glycosylated COX-2 and response to COX-2 inhibition in lung cancer. J. Natl. Cancer Inst. 2015, 107, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saul, M.J.; Baumann, I.; Bruno, A.; Emmerich, A.C.; Wellstein, J.; Ottinger, S.M.; Contursi, A.; Dovizio, M.; Donnini, S.; Tacconelli, S.; et al. miR-574-5p as RNA decoy for CUGBP1 stimulates human lung tumor growth by mPGES-1 induction. FASEB J. 2019, 33, 6933–6947. [Google Scholar] [CrossRef]
- Li, H.Y.; McSharry, M.; Walker, D.; Johnson, A.; Kwak, J.; Bullock, B.; Neuwelt, A.; Poczobutt, J.M.; Sippel, T.R.; Keith, R.L.; et al. Targeted overexpression of prostacyclin synthase inhibits lung tumor progression by recruiting CD4+ T lymphocytes in tumors that express MHC class II. Oncoimmunology 2018, 7, e1423182. [Google Scholar] [CrossRef] [Green Version]
- Pawitan, Y.; Yin, L.; Setiawan, A.; Auer, G.; Smedby, K.E.; Czene, K. Distinct effects of anti-inflammatory and anti-thrombotic drugs on cancer characteristics at diagnosis. Eur. J. Cancer 2015, 51, 751–757. [Google Scholar] [CrossRef]
- Price, N.; Belani, C.P.; Jain, V.K. Cyclooxygenase-2 inhibitors as chemopreventive agents in lung cancer. Clin. Lung Cancer 2004, 5, 333–336. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, W.; Xu, J.; Li, J.; Hong, Z.; Yin, Z.; Wang, X. Activated hepatic stellate cells promote liver cancer by induction of myeloid-derived suppressor cells through cyclooxygenase-2. Oncotarget 2016, 7, 8866–8878. [Google Scholar] [CrossRef] [Green Version]
- Martin-Sanz, P.; Casado, M.; Bosca, L. Cyclooxygenase 2 in liver dysfunction and carcinogenesis: Facts and perspectives. World J. Gastroenterol. 2017, 23, 3572–3580. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Peng, L.; Wang, X.; Tang, N. 2,5-dimethylcelecoxib improves immune microenvironment of hepatocellular carcinoma by promoting ubiquitination of HBx-induced PD-L1. J. Immunother. Cancer 2020, 8, e001377. [Google Scholar] [CrossRef] [PubMed]
- Nagaraju, G.P.; El-Rayes, B.F. Cyclooxygenase-2 in gastrointestinal malignancies. Cancer 2019, 125, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Dong, J.; Zhang, L.; Liu, D.; He, J.; She, Y.; Ma, C.; Liu, Y. 15-PGDH Expression in Gastric Cancer: A Potential Role in Anti-Tumor Immunity. Cancer Manag. Res. 2020, 12, 7419–7426. [Google Scholar] [CrossRef] [PubMed]
- Nanda, N.; Dhawan, D.K. Role of Cyclooxygenase-2 in colorectal cancer patients. Front. Biosci. (Landmark Ed.) 2021, 26, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, Y.; Aparicio, T.; Ourabah, S.; Baraille, F.; Martin, A.; Wind, P.; Dentin, R.; Postic, C.; Guilmeau, S. Dysregulated CRTC1 activity is a novel component of PGE2 signaling that contributes to colon cancer growth. Oncogene 2016, 35, 2602–2614. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, F.; Yu, Z.; Hao, J.; Chen, M.; Yu, W.; Guo, W.; Chen, Y.; Huang, W.; Duan, Z.; et al. XRCC5 cooperates with p300 to promote cyclooxygenase-2 expression and tumor growth in colon cancers. PLoS ONE 2017, 12, e0186900. [Google Scholar] [CrossRef]
- Singh Ranger, G. The role of aspirin in colorectal cancer chemoprevention. Crit. Rev. Oncol. Hematol. 2016, 104, 87–90. [Google Scholar] [CrossRef]
- Gottschall, H.; Schmocker, C.; Hartmann, D.; Rohwer, N.; Rund, K.; Kutzner, L.; Nolte, F.; Ostermann, A.I.; Schebb, N.H.; Weylandt, K.H. Aspirin alone and combined with a statin suppresses eicosanoid formation in human colon tissue. J. Lipid Res. 2018, 59, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Fink, S.P.; Dawson, D.M.; Zhang, Y.; Kresak, A.; Lawrence, E.G.; Yang, P.; Chen, Y.; Barnholtz-Sloan, J.S.; Willis, J.E.; Kopelovich, L.; et al. Sulindac reversal of 15-PGDH-mediated resistance to colon tumor chemoprevention with NSAIDs. Carcinogenesis 2015, 36, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Kapral, M.; Wawszczyk, J.; Sosnicki, S.; Jesse, K.; Weglarz, L. Modulating effect of inositol hexaphosphate on arachidonic acid-dependent pathways in colon cancer cells. Prostaglandins Other Lipid Mediat. 2017, 131, 41–48. [Google Scholar] [CrossRef]
- Chang, H.H.; Young, S.H.; Sinnett-Smith, J.; Chou, C.E.; Moro, A.; Hertzer, K.M.; Hines, O.J.; Rozengurt, E.; Eibl, G. Prostaglandin E2 activates the mTORC1 pathway through an EP4/cAMP/PKA- and EP1/Ca2+-mediated mechanism in the human pancreatic carcinoma cell line PANC-1. Am. J. Physiol. Cell Physiol. 2015, 309, C639–C649. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, K.; Jimenez-Martinez, M.; Jimenez-Segovia, A.; Chico-Calero, I.; Conde, E.; Galan-Martinez, J.; Ruiz, J.; Pascual, A.; Barrocal, B.; Lopez-Perez, R.; et al. Prostaglandins induce early growth response 1 transcription factor mediated microsomal prostaglandin E2 synthase up-regulation for colorectal cancer progression. Oncotarget 2015, 6, 39941–39959. [Google Scholar] [CrossRef]
- Altobelli, E.; Angeletti, P.M.; Latella, G. Role of Urinary Biomarkers in the Diagnosis of Adenoma and Colorectal Cancer: A Systematic Review and Meta-Analysis. J. Cancer 2016, 7, 1984–2004. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, R.; Kawada, K.; Sakai, Y. Prostaglandin E2/EP Signaling in the Tumor Microenvironment of Colorectal Cancer. Int. J. Mol. Sci. 2019, 20, 6254. [Google Scholar] [CrossRef] [Green Version]
- Gorchs, L.; Ahmed, S.; Mayer, C.; Knauf, A.; Fernandez Moro, C.; Svensson, M.; Heuchel, R.; Rangelova, E.; Bergman, P.; Kaipe, H. The vitamin D analogue calcipotriol promotes an anti-tumorigenic phenotype of human pancreatic CAFs but reduces T cell mediated immunity. Sci. Rep. 2020, 10, 17444. [Google Scholar] [CrossRef]
- Shi, H.; Sun, X.; Kong, A.; Ma, H.; Xie, Y.; Cheng, D.; Wong, C.K.C.; Zhou, Y.; Gu, J. Cadmium induces epithelial-mesenchymal transition and migration of renal cancer cells by increasing PGE2 through a cAMP/PKA-COX2 dependent mechanism. Ecotoxicol. Environ. Saf. 2021, 207, 111480. [Google Scholar] [CrossRef]
- Verratti, V.; Brunetti, L.; Ferrante, C.; Orlando, G.; Recinella, L.; Chiavaroli, A.; Leone, S.; Wang, R.; Berardinelli, F. Physiological and pathological levels of prostaglandin E2 in renal parenchyma and neoplastic renal tissue. Prostaglandins Other Lipid Mediat. 2019, 141, 11–13. [Google Scholar] [CrossRef]
- Woolbright, B.L.; Pilbeam, C.C.; Taylor, J.A., 3rd. Prostaglandin E2 as a therapeutic target in bladder cancer: From basic science to clinical trials. Prostaglandins Other Lipid Mediat. 2020, 148, 106409. [Google Scholar] [CrossRef]
- Larsson, K.; Kock, A.; Kogner, P.; Jakobsson, P.J. Targeting the COX/mPGES-1/PGE2 Pathway in Neuroblastoma. Adv. Exp. Med. Biol. 2019, 1161, 89–100. [Google Scholar] [CrossRef]
- Pozzoli, G.; Marei, H.E.; Althani, A.; Boninsegna, A.; Casalbore, P.; Marlier, L.; Lanzilli, G.; Zonfrillo, M.; Petrucci, G.; Rocca, B.; et al. Aspirin inhibits cancer stem cells properties and growth of glioblastoma multiforme through Rb1 pathway modulation. J. Cell Physiol. 2019, 9, 15459–15471. [Google Scholar] [CrossRef]
- Zhang, J.; He, J.; Zhang, L. The down-regulation of microRNA-137 contributes to the up-regulation of retinoblastoma cell proliferation and invasion by regulating COX-2/PGE2 signaling. Biomed. Pharmacother. 2018, 106, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Colquhoun, A. Cell biology-metabolic crosstalk in glioma. Int. J. Biochem. Cell Biol. 2017, 89, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Ochs, K.; Ott, M.; Rauschenbach, K.J.; Deumelandt, K.; Sahm, F.; Opitz, C.A.; von Deimling, A.; Wick, W.; Platten, M. Tryptophan-2,3-dioxygenase is regulated by prostaglandin E2 in malignant glioma via a positive signaling loop involving prostaglandin E receptor-4. J. Neurochem. 2016, 136, 1142–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, V.K.; Amin, P.J.; Shankar, B.S. COX-2 inhibitor prevents tumor induced down regulation of classical DC lineage specific transcription factor Zbtb46 resulting in immunocompetent DC and decreased tumor burden. Immunol. Lett. 2017, 184, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Sperandio, M.; Demasi, A.P.D.; Martinez, E.F.; Saad, S.O.; Pericole, F.V.; Vieira, K.P.; Freitas, N.S.; Araujo, V.C.; Brown, A.L.; Clemente-Napimoga, J.T.; et al. 15d-PGJ2 as an endoplasmic reticulum stress manipulator in multiple myeloma in vitro and in vivo. Exp. Mol. Pathol. 2017, 102, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Richartz, N.; Duthil, E.; Ford, A.; Naderi, E.H.; Bhagwat, S.; Gilljam, K.M.; Burman, M.M.; Ruud, E.; Blomhoff, H.K.; Skah, S. Targeting cyclooxygenase by indomethacin decelerates progression of acute lymphoblastic leukemia in a xenograft model. Blood Adv. 2019, 3, 3181–3190. [Google Scholar] [CrossRef]
- Roderick, J.E.; Gallagher, K.M.; Murphy, L.C.; O′Connor, K.W.; Tang, K.; Zhang, B.; Brehm, M.A.; Greiner, D.L.; Yu, J.; Zhu, L.J.; et al. Prostaglandin E2 stimulates cAMP signaling and resensitizes human leukemia cells to glucocorticoid-induced cell death. Blood 2021, 137, 500–512. [Google Scholar] [CrossRef]
- Finch, E.R.; Tukaramrao, D.B.; Goodfield, L.L.; Quickel, M.D.; Paulson, R.F.; Prabhu, K.S. Activation of PPARgamma by endogenous prostaglandin J2 mediates the antileukemic effect of selenium in murine leukemia. Blood 2017, 129, 1802–1810. [Google Scholar] [CrossRef]
- Akbari, N.; Ghorbani, M.; Salimi, V.; Alimohammadi, A.; Khamseh, M.E.; Akbari, H.; Nourbakhsh, M.; Sheikhi, A.; Taghavi, S.F.; Tavakoli-Yaraki, M. Cyclooxygenase enzyme and PGE2 expression in patients with functional and non-functional pituitary adenomas. BMC Endocr. Disord. 2020, 20, 39. [Google Scholar] [CrossRef]
- Parvathareddy, S.K.; Siraj, A.K.; Annaiyappanaidu, P.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Kuraya, K.S. Prognostic Significance of COX-2 Overexpression in BRAF-Mutated Middle Eastern Papillary Thyroid Carcinoma. Int. J. Mol. Sci. 2020, 21, 9498. [Google Scholar] [CrossRef]
- Penning, T.M. AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Mol. Cell Endocrinol. 2019, 489, 82–91. [Google Scholar] [CrossRef]
- Sun, S.Q.; Gu, X.; Gao, X.S.; Li, Y.; Yu, H.; Xiong, W.; Yu, H.; Wang, W.; Li, Y.; Teng, Y.; et al. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation. Oncotarget 2016, 7, 48050–48058. [Google Scholar] [CrossRef] [Green Version]
- Panagiotopoulos, A.A.; Kalyvianaki, K.; Castanas, E.; Kampa, M. Eicosanoids in prostate cancer. Cancer Metastasis Rev. 2018, 37, 237–243. [Google Scholar] [CrossRef]
- Ko, C.J.; Lan, S.W.; Lu, Y.C.; Cheng, T.S.; Lai, P.F.; Tsai, C.H.; Hsu, T.W.; Lin, H.Y.; Shyu, H.Y.; Wu, S.R.; et al. Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene 2017, 36, 4597–4609. [Google Scholar] [CrossRef]
- Alabiad, M.A.; Harb, O.A.; Taha, H.F.; El Shafaay, B.S.; Gertallah, L.M.; Salama, N. Prognostic and Clinic-Pathological Significances of SCF and COX-2 Expression in Inflammatory and Malignant Prostatic Lesions. Pathol. Oncol. Res. 2019, 25, 611–624. [Google Scholar] [CrossRef]
- Hojnik, M.; Kenda Suster, N.; Smrkolj, S.; Frkovic Grazio, S.; Verdenik, I.; Rizner, T.L. AKR1C3 Is Associated with Better Survival of Patients with Endometrial Carcinomas. J. Clin. Med. 2020, 9, 4105. [Google Scholar] [CrossRef]
- Alqinyah, M.; Almutairi, F.; Wendimu, M.Y.; Hooks, S.B. RGS10 Regulates the Expression of Cyclooxygenase-2 and Tumor Necrosis Factor Alpha through a G Protein-Independent Mechanism. Mol. Pharmacol. 2018, 94, 1103–1113. [Google Scholar] [CrossRef] [Green Version]
- Vitale, P.; Panella, A.; Scilimati, A.; Perrone, M.G. COX-1 Inhibitors: Beyond Structure Toward Therapy. Med. Res. Rev. 2016, 36, 641–671. [Google Scholar] [CrossRef]
- Alves, M.R.; Do Amaral, N.S.; Marchi, F.A.; Silva, F.I.B.; Da Costa, A.; Carvalho, K.C.; Baiocchi, G.; Soares, F.A.; De Brot, L.; Rocha, R.M. Prostaglandin D2 expression is prognostic in highgrade serous ovarian cancer. Oncol. Rep. 2019, 41, 2254–2264. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, J.V.; Fernandes, T.A.A.D.M.; De Azevedo, J.C.V.; Cobucci, R.N.O.; De Carvalho, M.G.F.; Andrade, V.S.; De Araujo, J.M.G. Link between chronic inflammation and human papillomavirus-induced carcinogenesis (Review). Oncol. Lett. 2015, 9, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Frejborg, E.; Salo, T.; Salem, A. Role of Cyclooxygenase-2 in Head and Neck Tumorigenesis. Int. J. Mol. Sci. 2020, 21, 9246. [Google Scholar] [CrossRef]
- Santoro, A.; Bufo, P.; Russo, G.; Cagiano, S.; Papagerakis, S.; Bucci, P.; Aquino, G.; Longo, F.; Feola, A.; Giordano, A.; et al. Expression and clinical implication of cyclooxygenase-2 and E-cadherin in oral squamous cell carcinomas. Cancer Biol. Ther. 2020, 21, 667–674. [Google Scholar] [CrossRef]
- Parida, S.; Parekh, A.; Dey, G.; Ghosh, S.C.; Mandal, M. Molecular inhibition of prostaglandin E2 with GW627368X: Therapeutic potential and preclinical safety assessment in mouse sarcoma model. Cancer Biol. Ther. 2015, 16, 922–932. [Google Scholar] [CrossRef] [Green Version]
- Angulo, J.; Cuevas, P.; Cuevas, B.; El Youssef, M.; Fernandez, A.; Martinez-Salamanca, E.; Gonzalez-Corrochano, R.; Gimenez-Gallego, G. Diacetyloxyl derivatization of the fibroblast growth factor inhibitor dobesilate enhances its anti-inflammatory, anti-angiogenic and anti-tumoral activities. J. Transl. Med. 2015, 13, 48. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tighe, S.; Zhu, Y.T. COX-2 Signaling in the Tumor Microenvironment. Adv. Exp. Med. Biol. 2020, 1277, 87–104. [Google Scholar] [CrossRef]
- Rakesh, K.S.; Jagadish, S.; Balaji, K.S.; Zameer, F.; Swaroop, T.R.; Mohan, C.D.; Jayarama, S.; Rangappa, K.S. 3,5-Disubstituted Isoxazole Derivatives: Potential Inhibitors of Inflammation and Cancer. Inflammation 2016, 39, 269–280. [Google Scholar] [CrossRef]
- Sharma, S.; Kalra, H.; Akundi, R.S. Extracellular ATP Mediates Cancer Cell Migration and Invasion through Increased Expression of Cyclooxygenase 2. Front. Pharmacol. 2020, 11, 617211. [Google Scholar] [CrossRef]
- Wu, X.; Hu, W.; Lu, L.; Zhao, Y.; Zhou, Y.; Xiao, Z.; Zhang, L.; Zhang, H.; Li, X.; Li, W.; et al. Repurposing vitamin D for treatment of human malignancies via targeting tumor microenvironment. Acta Pharm. Sin. B 2019, 9, 203–219. [Google Scholar] [CrossRef]
- Almeida, E.B.; Silva, K.P.H.; Paixao, V.; Amaral, J.B.D.; Rossi, M.; Xavier-Navarro, R.A.; Barros, K.V.; Silveira, V.L.F.; Vieira, R.P.; Oliveira, L.V.F.; et al. A Mixture of Polyunsaturated Fatty Acids omega-3 and omega-6 Reduces Melanoma Growth by Inhibiting Inflammatory Mediators in the Murine Tumor Microenvironment. Int. J. Mol. Sci. 2019, 20, 3765. [Google Scholar] [CrossRef] [Green Version]
- Knights, K.M.; Mangoni, A.A.; Miners, J.O. Defining the COX inhibitor selectivity of NSAIDs: Implications for understanding toxicity. Expert Rev. Clin. Pharmacol. 2010, 3, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Jiang, M.; Wang, L.; Yu, S. Combined chemotherapy with cyclooxygenase-2 (COX-2) inhibitors in treating human cancers: Recent advancement. Biomed. Pharmacother. 2020, 129, 110389. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.Y.; Hong, O.Y.; Youn, H.J.; Kim, M.G.; Kim, C.H.; Jung, S.H.; Kim, J.S. 15d-PGJ2 inhibits NF-κB and AP-1-mediated MMP-9 expression and invasion of breast cancer cell by means of a heme oxygenase-1-dependent mechanism. BMB Rep. 2020, 53, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.; Amano, H.; Ito, Y.; Eshima, K.; Satoh, T.; Iwamura, M.; Nakamura, M.; Kitasato, H.; Uematsu, S.; Raouf, J.; et al. Microsomal prostaglandin E synthase-1 promotes lung metastasis via SDF-1/CXCR4-mediated recruitment of CD11b(+)Gr1(+)MDSCs from bone marrow. Biomed. Pharmacother. 2020, 121, 109581. [Google Scholar] [CrossRef]
- Wu, K.; Fukuda, K.; Xing, F.; Zhang, Y.; Sharma, S.; Liu, Y.; Chan, M.D.; Zhou, X.; Qasem, S.A.; Pochampally, R.; et al. Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J. Biol. Chem. 2015, 290, 9842–9854. [Google Scholar] [CrossRef] [Green Version]
- Kanikarla-Marie, P.; Kopetz, S.; Hawk, E.T.; Millward, S.W.; Sood, A.K.; Gresele, P.; Overman, M.; Honn, K.; Menter, D.G. Bioactive lipid metabolism in platelet “first responder” and cancer biology. Cancer Metastasis Rev. 2018, 37, 439–454. [Google Scholar] [CrossRef]
- Sorski, L.; Melamed, R.; Matzner, P.; Lavon, H.; Shaashua, L.; Rosenne, E.; Ben-Eliyahu, S. Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through β-adrenoceptors blockade and COX2 inhibition. Brain Behav. Immun. 2016, 58, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Ye, Y.; Peng, L.; Vattai, A.; Deuster, E.; Kuhn, C.; Dannecker, C.; Mahner, S.; Jeschke, U.; von Schonfeldt, V.; Heidegger, H.H. Prostaglandin E2 receptor 3 (EP3) signaling promotes migration of cervical cancer via urokinase-type plasminogen activator receptor (uPAR). J. Cancer Res. Clin. Oncol. 2020, 146, 2189–2203. [Google Scholar] [CrossRef]
- Porta, C.; Consonni, F.M.; Morlacchi, S.; Sangaletti, S.; Bleve, A.; Totaro, M.G.; Larghi, P.; Rimoldi, M.; Tripodo, C.; Strauss, L.; et al. Tumor-Derived Prostaglandin E2 Promotes p50 NF-κB-Dependent Differentiation of Monocytic MDSCs. Cancer Res. 2020, 80, 2874–2888. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J.; Khullar, K.; Kim, S.; Yegya-Raman, N.; Malhotra, J.; Groisberg, R.; Crayton, S.H.; Silk, A.W.; Nosher, J.L.; Gentile, M.A.; et al. Effect of cyclo-oxygenase inhibitor use during checkpoint blockade immunotherapy in patients with metastatic melanoma and non-small cell lung cancer. J. Immunother. Cancer 2020, 8, e000889. [Google Scholar] [CrossRef]
- Markosyan, N.; Li, J.; Sun, Y.H.; Richman, L.P.; Lin, J.H.; Yan, F.; Quinones, L.; Sela, Y.; Yamazoe, T.; Gordon, N.; et al. Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2). J. Clin. Invest. 2019, 129, 3594–3609. [Google Scholar] [CrossRef] [Green Version]
- Veglia, F.; Tyurin, V.A.; Blasi, M.; De Leo, A.; Kossenkov, A.V.; Donthireddy, L.; To, T.K.J.; Schug, Z.; Basu, S.; Wang, F.; et al. Fatty acid transport protein 2 reprograms neutrophils in cancer. Nature 2019, 569, 73–78. [Google Scholar] [CrossRef]
- Roulis, M.; Kaklamanos, A.; Schernthanner, M.; Bielecki, P.; Zhao, J.; Kaffe, E.; Frommelt, L.S.; Qu, R.; Knapp, M.S.; Henriques, A.; et al. Paracrine orchestration of intestinal tumorigenesis by a mesenchymal niche. Nature 2020, 580, 524–529. [Google Scholar] [CrossRef]
Biological System | PG Mediator | Physiological Effect |
---|---|---|
Digestive system | PGE2, PGI2 | Reduction of acid secretion; Increase of mucous secretion |
PGE2 | Longitudinal smooth muscle contraction; Circulatory smooth muscle contraction | |
Respiratory system | PGI2, PGE2 | Bronchodilator |
PGH2, PGF2α | Bronchoconstriction | |
Cardiovascular system | PGE2, PGI2 | Arterial vasodilation |
PGF2α | Inhibition of platelet adhesion and leukocyte aggregation | |
Renal system | PGI2, PGE2 | Medullary blood flow, pressure diuresis |
PGI2, PGE2 | Renin release | |
PGE2 | Natriuresis, diuresis | |
Immune system | PGE2, PGI2 | Inhibition of proliferation and activation of T and B lymphocytes |
Central nervous system | PGE2 | Inflammation |
PGD2, PGI2 | Induction of sleep | |
Female reproductive system | PGE2, PGI2, PGF2α | Ovulation, implantation, endometrial contraction, and synergism with oxytocin |
Male reproductive system | PGE1, PGE2, PGE3, PGF2α | Fertility |
Tissue/Organ | Type of Cancer and Scenario | Cellular-Molecular Factors/Therapeutics | Molecular/Cellular Effect | Physiological/Pathological Impact |
---|---|---|---|---|
Skin | Squamous | AKR1C3+ | PGD2 decrease. | Promotion of neovascularization |
PGF2α increase | ||||
15d-PGJ2 | Inhibition of STAT-3 pathway | Reduction of cell growth | ||
PGI2 increases | Higher 5-year survival rate | |||
miR-31-5p increases | ACOX-1 decrease. | Increase of tumor migration and invasion | ||
PGE2 increase | ||||
PGE2 | PGE2 increase, larger stage | Possible biomarker of progression? | ||
Non-melanoma | Apigenin | COX-2 and PGE1-EP1/EP2 decrease | Inhibition of neoplastic progression | |
Piroxicam | COX-2 decrease | Useful in prevention | ||
Melanoma | PGF2α | Blocking AAS action | Prevention of tumor apoptosis | |
PGF2α antagonist | Inhibition of ASA blockade | Promotion of tumor apoptosis | ||
Topical Melanotan II | Inhibition of COX-2 expression and PGE2 production | Inhibition of the migration, invasion, and colony-forming capability | ||
Bones | Osteosarcoma | SND1 | Increase of PGE2 | Antitumor strategy using COX2 inhibitors. |
Potential biomarker of the therapeutic strategies | ||||
PGE2 | >EP1 pathway | Increase of proliferation and decrease of apoptosis of cells | ||
17-PT-PGE2 | ||||
Lungs | CRTC1+/LKB1 cancer | CRTC1+/LKB1− | Activation of cAMP/CREB y PGE2 | Promotion of tumor development |
Niflumic acid (NS-398) | PGE2 decrease | Hindrance of tumor development | ||
Non-small cell cancer | miR-574-5p | Decrease of CUGBP1 and increase of mPGES-1 and PGE2 | Promotion of tumor development | |
15d-PGJ2 | Increase of ROS and activation of caspases | Increase of apoptosis | ||
PGD2 | ||||
mPGES-1 inhibitors | PGE2 decrease | Cancelation of miR-574-5p effects | ||
MHC-II+ lung cancer | PGIs | Increase of T-CD4+ lymphocytes | Inhibition of tumor growth | |
Primary lung tumors | ACSL3 | Increase of LPIAT1 activity | Prediction of poor patient survival. | |
Anchorage-independent growth | ||||
Lung squamous cell carcinoma | PGE2 | Activation of TNF-alpha-TRAF2-MMP-9 | Progression of lung cancer | |
TNF-alpha | ||||
General lung cancer | NSAIDs | Inhibition of COX enzymes | Smaller tumor size and fewer metastasis. | |
Mammary gland | Breast cancer | AKR1C3+ | PGF2α- FP and Ki-67 increase | Increase of cell proliferation |
AKR1C3 inhibitor | PGF2α decrease | Reduction of cell expansion | ||
PGF2α-FP increase | Activation of ERK1/2-MAPK pathway and activation of NF-κB | Increase of resistance to QT | ||
FP inhibitor | Inhibition of ERK1/2-MAPK pathway | Reduction of resistance to QT | ||
NF-kB inhibitor | Inhibition of NF-κB factor | |||
15d-PGJ2 | Activation of AKT-AP-1 pathway | Promotion of tumor expansion. | ||
15d-PGJ2 | Up-regulation of Snail and CXCL8 expression | Epithelial-to-mesenchymal transition (EMT). | ||
Tumor-stroma interaction | ||||
8-iso-PGF2α | Serum non-invasive marker | Oxidative stress and subsequent damaging of DNA | ||
C136S-PTEN (mutated) | Not affected by 15d-PGJ2 | Resistant? | ||
DGLA * | Activation of caspases, PARP and COX-2 | Decrease of tumor migration and invasion. Greater efficacy of treatment with 5-fluouracil. | ||
PGE2-EP2 increase | CD80 decrease on macrophages | Reduced macrophage polarization | ||
PGESm-1 Knock out | PGE2-EP2 decrease and CD80 increase | Normal macrophage polarization | ||
PGI2 increase | Shorter survival time | |||
Ibuprofen | PGE2 decrease | Less tumor volume (dose-dependent), more mature macrophages, more CD-45+ T-lymphocytes, and fewer immature monocytes | ||
Propanolol + Etodolac (Peri-QX) | Inhibition of STAT and EGR3 pathways | Less tumor dissemination, more NK lymphocytes, more B cells, fewer monocytes, and less IL-6. | ||
Liver | HCC | Increase of stellate cells | COX2-PGE2-EP4 increase | Fewer regulatory T-lymphocytes, more MDSCs |
SC-236 (COX-2 inhibitor) | Stellate cells ** decrease | Stop the spread of cancer | ||
AH23848 (EP4 inhibitor) | ||||
PGE2 | EP4-G-Adenylate increase and activation of cyclase-cAMP-kinase A-CREB pathway and oncogene MYC | Facilitation of tumor expansion | ||
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). | 2,5-dimethylcelecoxib (DMC). PD-L1 | Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1)/PGE2 production | DMC combined with atezolizumab: more antitumor effect and stronger blockage of immunosuppression effect on PD-L1 | |
Digestive system | Esophageal squamous cancer | ZIP5 inhibitor | Cyclin D1 decrease. COX-2 increase | Metastasis reduction |
Gastric adenocarcinomas | H. pylori | COX-2 increase | Promotion of the onset of neoplasia | |
NSAIDs | Inhibition of COX | Effective prophylaxis | ||
PGD2 | PPARγ decrease | Slower growth | ||
15-PGDH | FOXP3 | Anti-tumor immunity | ||
Adenoma | EP4 inhibitors | Inhibition of PI3K-AKT-mTOR and ERK1/2-MAPK pathways | Reduction of the number of new adenomas | |
ASA as prophylactic (75–325 mg) | Fewer adenomas and lower mortality | |||
Sulindac (15-PGDH knock-out) | Fewer new adenomas and more inflammatory lesions | |||
Colorrectal cancer | COX2 | Inhibition of COX2 | Prevention of carcinogenesis. Increase in the survival rate. | |
Risk of cardiovascular complications with prolonged treatment | ||||
Targeting the TME | Downstream molecules of PGE2 signaling | Promising approach | ||
PGF2α | Increased migration and invasion | |||
15d-PGJ2 | MYC modulation and telomerase inhibition | Increased rate of cell death | ||
CRTC1 | Increase of CREB/AP-1, COX-2 and aaPGE2 | Promotion of tumor development | ||
IP6 | Decrease of COX-2 and PGE2 | Hindrance of tumor development | ||
NSAIDs | Reduction of tumor mass and metastasis | |||
AAS (Stage III) | Lower mortality and relapses | |||
AAS + Statins | PG decrease | |||
PGF2β | Increase of EGR1 factor and prostaglandin synthase E enzyme | Promotion of tumor progression | ||
PGF2β inhibitor | Decrease of EGR1 factor and prostaglandin synthase E enzyme | Hindrance of tumor progression | ||
Tumor suppressor Knock-out. 15-PGDH | Increased resistance to ASA and celecoxib | |||
PGM increase | Elevated levels: patients already diagnosed > patients with multiple adenomas > healthy controls. | Early diagnostic marker? | ||
XRCC5 protein | p300 and COX-2 increase | Promotion of tumor progression | ||
p300 inhibitor | COX-2 decrease | Hindrance of tumor progression | ||
Pancreas | Pancreatic cancer | AAS | Not very useful, since they do not express COX-1. | |
Celecoxib | COX-2 decrease | Possible adjuvant treatment for cisplatin + gemcitabine? | ||
Vitamin D3 analogues: calcipotriol | PD-L1 upregulation | Decreased cancer-associated fibroblasts proliferation and migration. Reduced release of PGE2. | ||
Kidney | Renal cancer | 15d-PGJ2 | Activation of caspases, and JNK and AKT kinases. Intracellular | Promotion of apoptosis |
[Ca2+] increase | ||||
COX-1 increase | Higher degree of malignancy | |||
PGE2 increase | Not related to tumor size, Fuhrman grade, TNM stage or histological subtype. | |||
Cadmium | Activation of cAMP/PKA II-COX2 pathway and N-Catherin expression | Mediated cell migration and invasion | ||
Urinary system | Bladder cancer | |||
Nervous system | Glioma | PGE2-EP2 | PKA-II and CREB increase | Increase of proliferation and decrease of survival |
PGE2-EP4 | TDO decrease | Reduction of macrophage activation | ||
PGD2 increases | Reduction of tumor proliferation | |||
PGD2 decreases | Increase of tumor proliferation | |||
15d-PGJ2 | ROS and caspases increase | Increase of cell death | ||
Neuroblastoma | ASA | COX-independent mechanism involving an increase in p21 and underphosphorylated hypo-pRb1. | Adjunctive therapeutic agent | |
Retinoblastoma | MicroRNA-137 | Inhibition of COX-2/PGE2 | Suppression of proliferation and invasion | |
Immune system | Multiple Myeloma | 15d-PGJ2 | ROS increase | Increase of angiogenesis and promotion of apoptosis |
via PPARγ decrease | ||||
Increased intake of omega-3 and omega-6 polyunsaturated fatty acids | PGE2 y PGE3 decrease | Reduction of tumor growth | ||
Acute lymphoblastic leukemia (ALL) | Indomethacin | Avoid the stromal cells diminished p53-mediated killing. Blockage of the production of PGE2 | Reduction of progression of ALL | |
EP4 receptor | Increase of intracellular cAMP | Sensitizes human T-ALL cells to dexamethasone | ||
PGE2 | ||||
General Leukemia | Selenium supplements | Activation of PPARγ. Inhibition of STAT-5 and CITED2 | Apoptotic effect | |
15d-PGJ2 | Increase of ROS-NADPH oxidase. Activation TRAIL-JNK. Inhibition of AKT | |||
Lymphomas | PGE2 | Factor ZBTB46 decrease | Prevention of differentiation to cDC | |
NS-398 | PGE2 decrease and cDC increase | Tumor burden reduction | ||
Endocrine tissues | Pituitary adenomas | COX1/2 PGE2 | Promotion of tumor progression | |
Papillary thyroid cancer | 15d-PGJ2 | [Fe2+] intracellular and ROS increase | Promotion of tumor apoptosis | |
COX2 and PGE2 | BRAF-mutated tumors promote PGE2 synthesis | Promotion of tumor progression | ||
Prostate cancer | AKR1C3+ | Increase of PGF2α and activation of MAPK pathway. | Increase of proliferation and resistance to radiation therapy | |
17β-HSD | Inhibition of PPARγ | |||
Androgen receptor antagonists, such as enzalutamide | Blockage of 17β-HSD | Indomethacin suppresses AKR1C3 and eliminates resistance | ||
PGE2-EP1/EP2 | Activation of PI3K/AKT/mTOR and matriptase pathways | Increase of migration and invasion | ||
CAY10404 and celecoxib | PGE2 decrease. Inhibition of PI3K/AKT/mTOR and matriptase pathways | Decrease of migration and invasion | ||
15d-PGJ2 | Inhibition of AR | Tumor suppressor | ||
COX-2 increase | PSA and Gleason increase | Poorer prognosis, more relapses, and poorer survival. | ||
Endometrial cancer | PGF2α | More proliferation and migration | ||
AKR1C3+ | Better overall survival Prognostic biomarker | |||
PGJ2 | Reduction of proliferation | |||
Ovary cancer | RGS10 decrease | COX-2 and PGE2 increase | More resistance to chemotherapy | |
COX-1 *** increase | Early diagnostic biomarker? | |||
COX-1 inhibitors ([18F]-Fluorine y [18F]-P6) | Trackers when performing a PET scan? | |||
SC-560 | Increased chemosensitivity | |||
Serous ovarian carcinoma | PGD2 | Marker of good prognosis | ||
HPV serotype 16 infection | COX-2 increase | Related to the onset of cancer? | ||
Cervical cancer | PGE2 receptor, EP3 | Modulation of uPAR expression | Negative prognosticator of cervical malignancy | |
Other tissues | Sarcoma | GW627368X (EP4 inhibitor) | BAX and AIF increase. | Reduction of tumor volume and weight. Induction of apoptosis |
MCL-1, BCL-2 and PGE2 decrease | ||||
Fibroblasts | COX-2, PGE2, FGF and VEGF increase | Increase of angiogenesis and tumor spread | ||
DAPS | FGF and VEGF decrease | Decrease of angiogenesis and tumor spread | ||
Head and neck cancers | COX-2 | Various mechanisms | Protumorigenic effect. COX-2 selective inhibitors | |
Oral squamous carcinomas | COX-2 | Loss of E-cadherin expression | EMT and angiogenesis | |
TME/Metastasis/Immune surveillance | All | COX-2. PGE2, ATP | Increased angiogenesis | Supply of O2 and nutrients. |
Vitamin D | Decrease of cancer risk and favorable prognosis | Sensitivity to NSIAIDs targeting PGE2 | ||
Breast cancer | CXCL8 | Activator of fibroblasts, | Tumor-stroma interaction in TME | |
Liver cancer | 2,5-dimethylcelecoxib (DMC) | Promotion of HBV-related HCC immune TME | Combined immunotherapy with DMC and atezolizumab | |
Pancreatic adenocarcinoma | EPHA2 | PTGS2 (COX-2) | Suppression of anti-tumor immunity | |
PMN-MDSCs | Increase of FATP2 | Immunosuppressive activity | ||
Intestinal tumor | Mesenchymal niche | PGE2-PTGER4-YAP signaling axis | Initiation of colorectal cancer | |
Breast cancer | PGE2 | MMP1 increase | More brain metastases | |
PGI2 | Stops its development | |||
15d-PGJ2 | Inhibition of MMP9 through PPARγ/HO-1 signaling pathway | Prevention and treatment of breast cancer and its metastasis | ||
Prostate cancer | mPGES-1 | Accumulation of BM-MDSCs in lungs | Use of Selective mPGES-1 inhibitors | |
Renal cancer | 15d-PGJ2 | MMP decrease | Reduction of invasiveness | |
Melanoma | PGD2 | Lower number of metastasis | ||
Melanoma and non-small cell lung cancer | COX1/2 inhibitors | Lower number of metastasis | ||
Colorectal cancer | Etodolac + Propanolol | Lymphocytes NK increase | Reduction of tumor progression | |
Immune System | Immune surveillance | Immune system reacts to many tumors. | Therapeutic weapon to eliminate tumor cells | |
M-MDSC | Increase of NO | Suppression of adaptive immunity. | Inhibition of the PGE2/p50/NO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jara-Gutiérrez, Á.; Baladrón, V. The Role of Prostaglandins in Different Types of Cancer. Cells 2021, 10, 1487. https://doi.org/10.3390/cells10061487
Jara-Gutiérrez Á, Baladrón V. The Role of Prostaglandins in Different Types of Cancer. Cells. 2021; 10(6):1487. https://doi.org/10.3390/cells10061487
Chicago/Turabian StyleJara-Gutiérrez, Álvaro, and Victoriano Baladrón. 2021. "The Role of Prostaglandins in Different Types of Cancer" Cells 10, no. 6: 1487. https://doi.org/10.3390/cells10061487
APA StyleJara-Gutiérrez, Á., & Baladrón, V. (2021). The Role of Prostaglandins in Different Types of Cancer. Cells, 10(6), 1487. https://doi.org/10.3390/cells10061487