Prognostic Relevance of Neutrophil to Lymphocyte Ratio (NLR) in Luminal Breast Cancer: A Retrospective Analysis in the Neoadjuvant Setting
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Pathological Assessments
2.3. Blood Samples and Data Collection
2.4. Study Endpoint
2.5. Statistical Analysis
3. Results
3.1. Patient and Tumor Characteristics
3.2. Relationship between Clinical-Pathological Characteristics and NLR
3.3. Long-Term Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [Green Version]
- von Minckwitz, G.; Untch, M.; Blohmer, J.-U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef] [Green Version]
- Untch, M.; Fasching, P.A.; Konecny, G.E.; Hasmüller, S.; Lebeau, A.; Kreienberg, R.; Camara, O.; Müller, V.; du Bois, A.; Kühn, T.; et al. Pathologic complete response after neoadjuvant chemotherapy plus trastuzumab predicts favorable survival in human epidermal growth factor receptor 2-overexpressing breast cancer: Results from the TECHNO trial of the AGO and GBG study groups. J. Clin. Oncol. 2011, 29, 3351–3357. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.-S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef]
- Masuda, N.; Lee, S.-J.; Ohtani, S.; Im, Y.-H.; Lee, E.-S.; Yokota, I.; Kuroi, K.; Im, S.-A.; Park, B.-W.; Kim, S.-B.; et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.I.; Wang, S.-S.; Huang, H.; Cai, L.; Peng, R.-J.; Zhao, L.; Lin, Y.; Zeng, J.; Zhang, L.-H.; Ke, Y.-L.; et al. Phase III trial of metronomic capecitabine maintenance after standard treatment in operable triple-negative breast cancer (SYSUCC-001). J. Clin. Oncol. 2020, 38, 507. [Google Scholar] [CrossRef]
- Wang-Lopez, Q.; Chalabi, N.; Abrial, C.; Radosevic-Robin, N.; Durando, X.; Mouret-Reynier, M.-A.; Benmammar, K.-E.; Kullab, S.; Bahadoor, M.; Chollet, P.; et al. Can pathologic complete response (pCR) be used as a surrogate marker of survival after neoadjuvant therapy for breast cancer? Crit. Rev. Oncol. Hematol. 2015, 95, 88–104. [Google Scholar] [CrossRef] [PubMed]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Angelucci, D.; Tinari, N.; Grassadonia, A.; Cianchetti, E.; Ausili-Cefaro, G.; Iezzi, L.; Zilli, M.; Grossi, S.; Ursini, L.A.; Scognamiglio, M.T.; et al. Long-term outcome of neoadjuvant systemic therapy for locally advanced breast cancer in routine clinical practice. J. Cancer Res. Clin. Oncol. 2013, 139, 269–280. [Google Scholar] [CrossRef] [Green Version]
- Grassadonia, A.; Di Nicola, M.; Grossi, S.; Noccioli, P.; Tavoletta, S.; Politi, R.; Angelucci, D.; Marinelli, C.; Zilli, M.; Ausili Cefaro, G.; et al. Long-term outcome of neoadjuvant endocrine therapy with aromatase inhibitors in elderly women with hormone receptor-positive breast cancer. Ann. Surg. Oncol. 2014, 21, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- DeSantis, C.E.; Ma, J.; Gaudet, M.M.; Newman, L.A.; Miller, K.D.; Goding Sauer, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Lu, X.; Liu, Q.; Zhang, T.; Li, P.; Qiao, W.; Deng, M. Prognostic value of neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio for breast cancer patients: An updated meta-analysis of 17079 individuals. Cancer Med. 2019, 8, 4135–4148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azab, B.; Shah, N.; Radbel, J.; Tan, P.; Bhatt, V.; Vonfrolio, S.; Habeshy, A.; Picon, A.; Bloom, S. Pretreatment neutrophil/lymphocyte ratio is superior to platelet/lymphocyte ratio as a predictor of long-term mortality in breast cancer patients. Med. Oncol. 2013, 30, 432. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, S.; Ding, N.; Li, N.; Huang, J.; Xiao, Z. Platelet/Lymphocyte Ratio Is Superior to Neutrophil/Lymphocyte Ratio as a Predictor of Chemotherapy Response and Disease-free Survival in Luminal B-like (HER2(-)) Breast Cancer. Clin. Breast Cancer 2020, 20, e403–e409. [Google Scholar] [CrossRef]
- Gündüz, S.; Göksu, S.S.; Arslan, D.; Tatli, A.M.; Uysal, M.; Gündüz, U.R.; Sevinç, M.M.; Coşkun, H.S.; Bozcuk, H.; Mutlu, H.; et al. Factors affecting disease-free survival in patients with human epidermal growth factor receptor 2-positive breast cancer who receive adjuvant trastuzumab. Mol. Clin. Oncol. 2015, 3, 1109–1112. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrei, W.; Taube, S.E.; McShane, L.M.; Cavenagh, M.M.; Altman, D.G. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged Explanation and Elaboration. J. Natl. Cancer Inst. 2018, 110, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Hammond, M.E.H.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Arch. Pathol. Lab. Med. 2010, 134, e48–e72. [Google Scholar] [CrossRef]
- Dowsett, M.; Nielsen, T.O.; A’Hern, R.; Bartlett, J.; Coombes, R.C.; Cuzick, J.; Ellis, M.; Henry, N.L.; Hugh, J.C.; Lively, T.; et al. Assessment of Ki67 in breast cancer: Recommendations from the International Ki67 in Breast Cancer working group. J. Natl. Cancer Inst. 2011, 103, 1656–1664. [Google Scholar] [CrossRef] [Green Version]
- Goldhirsch, A.; Wood, W.C.; Coates, A.S.; Gelber, R.D.; Thürlimann, B.; Senn, H.-J. Strategies for subtypes—Dealing with the diversity of breast cancer: Highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann. Oncol. 2011, 22, 1736–1747. [Google Scholar] [CrossRef]
- Elston, C.W.; Ellis, I.O. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology 1991, 19, 403–410. [Google Scholar] [CrossRef]
- Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.S.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef] [PubMed]
- Skriver, S.K.; Laenkholm, A.-V.; Rasmussen, B.B.; Handler, J.; Grundtmann, B.; Tvedskov, T.F.; Christiansen, P.; Knoop, A.S.; Jensen, M.-B.; Ejlertsen, B. Neoadjuvant letrozole for postmenopausal estrogen receptor-positive, HER2-negative breast cancer patients, a study from the Danish Breast Cancer Cooperative Group (DBCG). Acta Oncol. 2018, 57, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loibl, S.; Volz, C.; Mau, C.; Blohmer, J.-U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Hanusch, C.; Jackisch, C.; et al. Response and prognosis after neoadjuvant chemotherapy in 1051 patients with infiltrating lobular breast carcinoma. Breast Cancer Res. Treat. 2014, 144, 153–162. [Google Scholar] [CrossRef]
- Delpech, Y.; Coutant, C.; Hsu, L.; Barranger, E.; Iwamoto, T.; Barcenas, C.H.; Hortobagyi, G.N.; Rouzier, R.; Esteva, F.J.; Pusztai, L. Clinical benefit from neoadjuvant chemotherapy in oestrogen receptor-positive invasive ductal and lobular carcinomas. Br. J. Cancer 2013, 108, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Adachi, Y.; Ishiguro, J.; Kotani, H.; Hisada, T.; Ichikawa, M.; Gondo, N.; Yoshimura, A.; Kondo, N.; Hattori, M.; Sawaki, M.; et al. Comparison of clinical outcomes between luminal invasive ductal carcinoma and luminal invasive lobular carcinoma. BMC Cancer 2016, 16, 248. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, C.; Neo, S.-Y.; McShane, L.M.; Korn, E.L.; Long, P.M.; Jazaeri, A.; Martiat, P.; Fox, S.B.; Harris, A.L.; Liu, E.T. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc. Natl. Acad. Sci. USA 2003, 100, 10393–10398. [Google Scholar] [CrossRef] [Green Version]
- Ades, F.; Zardavas, D.; Bozovic-Spasojevic, I.; Pugliano, L.; Fumagalli, D.; de Azambuja, E.; Viale, G.; Sotiriou, C.; Piccart, M. Luminal B breast cancer: Molecular characterization, clinical management, and future perspectives. J. Clin. Oncol. 2014, 32, 2794–2803. [Google Scholar] [CrossRef] [Green Version]
- von Minckwitz, G.; Schmitt, W.D.; Loibl, S.; Müller, B.M.; Blohmer, J.U.; Sinn, B.V.; Eidtmann, H.; Eiermann, W.; Gerber, B.; Tesch, H.; et al. Ki67 measured after neoadjuvant chemotherapy for primary breast cancer. Clin. Cancer Res. 2013, 19, 4521–4531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Symmans, W.F.; Peintinger, F.; Hatzis, C.; Rajan, R.; Kuerer, H.; Valero, V.; Assad, L.; Poniecka, A.; Hennessy, B.; Green, M.; et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J. Clin. Oncol. 2007, 25, 4414–4422. [Google Scholar] [CrossRef]
- Templeton, A.J.; McNamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil-lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Corbeau, I.; Jacot, W.; Guiu, S. Neutrophil to Lymphocyte Ratio as Prognostic and Predictive Factor in Breast Cancer Patients: A Systematic Review. Cancers 2020, 12, 958. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Yao, M.; Xing, C.; Wang, W.; Yao, J.; Hong, Y.; Liu, Y.; Fu, P. The neutrophil lymphocyte ratio is associated with breast cancer prognosis: An updated systematic review and meta-analysis. OncoTargets Ther. 2016, 9, 5567–5575. [Google Scholar] [CrossRef] [Green Version]
- Graziano, V.; Grassadonia, A.; Iezzi, L.; Vici, P.; Pizzuti, L.; Barba, M.; Quinzii, A.; Camplese, A.; Di Marino, P.; Peri, M.; et al. Combination of peripheral neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio is predictive of pathological complete response after neoadjuvant chemotherapy in breast cancer patients. Breast 2019, 44, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chae, S.; Kang, K.M.; Kim, H.J.; Kang, E.; Park, S.Y.; Kim, J.H.; Kim, S.H.; Kim, S.W.; Kim, E.K. Neutrophil-lymphocyte ratio predicts response to chemotherapy in triple-negative breast cancer. Curr. Oncol. 2018, 25, e113–e119. [Google Scholar] [CrossRef] [Green Version]
- Suppan, C.; Bjelic-Radisic, V.; La Garde, M.; Groselj-Strele, A.; Eberhard, K.; Samonigg, H.; Loibner, H.; Dandachi, N.; Balic, M. Neutrophil/Lymphocyte ratio has no predictive or prognostic value in breast cancer patients undergoing preoperative systemic therapy. BMC Cancer 2015, 15, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Losada, B.; Guerra, J.A.; Malón, D.; Jara, C.; Rodriguez, L.; Del Barco, S. Pretreatment neutrophil/lymphocyte, platelet/lymphocyte, lymphocyte/monocyte, and neutrophil/monocyte ratios and outcome in elderly breast cancer patients. Clin. Transl. Oncol. 2019, 21, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, K.; Xiao, X.; Nie, Y.; Qu, S.; Gong, C.; Su, F.; Song, E. Pretreatment neutrophil-to-lymphocyte ratio is correlated with response to neoadjuvant chemotherapy as an independent prognostic indicator in breast cancer patients: A retrospective study. BMC Cancer 2016, 16, 320. [Google Scholar] [CrossRef] [Green Version]
- Marín Hernández, C.; Piñero Madrona, A.; Gil Vázquez, P.J.; Galindo Fernández, P.J.; Ruiz Merino, G.; Alonso Romero, J.L.; Parrilla Paricio, P. Usefulness of lymphocyte-to-monocyte, neutrophil-to-monocyte and neutrophil-to-lymphocyte ratios as prognostic markers in breast cancer patients treated with neoadjuvant chemotherapy. Clin. Transl. Oncol. 2018, 20, 476–483. [Google Scholar] [CrossRef]
- Asano, Y.; Kashiwagi, S.; Onoda, N.; Noda, S.; Kawajiri, H.; Takashima, T.; Ohsawa, M.; Kitagawa, S.; Hirakawa, K. Predictive Value of Neutrophil/Lymphocyte Ratio for Efficacy of Preoperative Chemotherapy in Triple-Negative Breast Cancer. Ann. Surg. Oncol. 2016, 23, 1104–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, Y.W.; Lee, H.J.; Ahn, J.-H.; Lee, J.W.; Gong, G. Prognostic significance of the ratio of absolute neutrophil to lymphocyte counts for breast cancer patients with ER/PR-positivity and HER2-negativity in neoadjuvant setting. Tumour Biol. 2014, 35, 9823–9830. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Montaño, W.; Cabrera-Galeana, P.; Alvarado-Miranda, A.; Villarreal-Garza, C.; Mohar, A.; Olvera, A.; Bargallo-Rocha, E.; Lara-Medina, F.; Arrieta, O. Prognostic Value of the Pretreatment Neutrophil-to-Lymphocyte Ratio in Different Phenotypes of Locally Advanced Breast Cancer During Neoadjuvant Systemic Treatment. Clin. Breast Cancer 2020, 20, 307–316. [Google Scholar] [CrossRef]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, M. Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunol. 2019, 20, 4. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Angus, L.; Smid, M.; Wilting, S.M.; Van Riet, J.; Van Hoeck, A.; Nguyen, L.; Nik-Zainal, S.; Steenbruggen, T.G.; Tjan-Heijnen, V.C.G.; Labots, M.; et al. The genomic landscape of metastatic breast cancer highlights changes in mutation and signature frequencies. Nat. Genet. 2019, 51, 1450–1458. [Google Scholar] [CrossRef]
- Annaratone, L.; Cascardi, E.; Vissio, E.; Sarotto, I.; Chmielik, E.; Sapino, A.; Berrino, E.; Marchiò, C. The Multifaceted Nature of Tumor Microenvironment in Breast Carcinomas. Pathobiology 2020, 87, 125–142. [Google Scholar] [CrossRef]
- Sadeghalvad, M.; Mohammadi-Motlagh, H.-R.; Rezaei, N. Immune microenvironment in different molecular subtypes of ductal breast carcinoma. Breast Cancer Res. Treat. 2021, 185, 261–279. [Google Scholar] [CrossRef]
- Wein, L.; Savas, P.; Luen, S.J.; Virassamy, B.; Salgado, R.; Loi, S. Clinical Validity and Utility of Tumor-Infiltrating Lymphocytes in Routine Clinical Practice for Breast Cancer Patients: Current and Future Directions. Front. Oncol. 2017, 7, 156. [Google Scholar] [CrossRef] [Green Version]
- Denkert, C.; Von Minckwitz, G.; Brase, J.C.; Sinn, B.V.; Gade, S.; Kronenwett, R.; Pfitzner, B.M.; Salat, C.; Loi, S.; Schmitt, W.D.; et al. Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2-positive and triple-negative primary breast cancers. J. Clin. Oncol. 2015, 33, 983–991. [Google Scholar] [CrossRef]
- Denkert, C.; Von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet. Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef]
- Gao, Q.; Patani, N.; Dunbier, A.K.; Ghazoui, Z.; Zvelebil, M.; Martin, L.-A.; Dowsett, M. Effect of aromatase inhibition on functional gene modules in estrogen receptor-positive breast cancer and their relationship with antiproliferative response. Clin. Cancer Res. 2014, 20, 2485–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunbier, A.K.; Ghazoui, Z.; Anderson, H.; Salter, J.; Nerurkar, A.; Osin, P.; A’hern, R.; Miller, W.R.; Smith, I.E.; Dowsett, M. Molecular profiling of aromatase inhibitor-treated postmenopausal breast tumors identifies immune-related correlates of resistance. Clin. Cancer Res. 2013, 19, 2775–2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Kim, D.-M.; Lee, A. Prognostic Role and Clinical Association of Tumor-Infiltrating Lymphocyte, Programmed Death Ligand-1 Expression with Neutrophil-Lymphocyte Ratio in Locally Advanced Triple-Negative Breast Cancer. Cancer Res. Treat. 2019, 51, 649–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, R.; Kimura, K.; Eguchi, S.; Tauchi, J.; Shibutani, M.; Shinkawa, H.; Ohira, G.O.; Yamazoe, S.; Tanaka, S.; Amano, R.; et al. Preoperative Neutrophil-to-lymphocyte Ratio Predicts Tumor-infiltrating CD8(+) T Cells in Biliary Tract Cancer. Anticancer Res. 2020, 40, 2881–2887. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.Y.; Choi, S.; Park, S.; Kim, J.M.; Choi, G.-S.; Joh, J.-W.; Park, C.-K. Prognostic effect of preoperative neutrophil-lymphocyte ratio is related with tumor necrosis and tumor-infiltrating lymphocytes in hepatocellular carcinoma. Virchows Arch. 2020, 477, 807–816. [Google Scholar] [CrossRef]
- Han, S.; Liu, Y.; Li, Q.; Li, Z.; Hou, H.; Wu, A. Pre-treatment neutrophil-to-lymphocyte ratio is associated with neutrophil and T-cell infiltration and predicts clinical outcome in patients with glioblastoma. BMC Cancer 2015, 15, 617. [Google Scholar] [CrossRef] [Green Version]
- Yoon, C.I.; Park, S.; Cha, Y.J.; Lee, H.S.; Bae, S.J.; Cha, C.; Lee, D.Y.; Ahn, S.G.; Jeong, J. Associations between absolute neutrophil count and lymphocyte-predominant breast cancer. Breast 2020, 50, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Shen, Y.; Huang, H.; Pan, S.; Jiang, J.; Chen, W.; Zhang, T.; Zhang, C.; Ni, C. A Rosetta Stone for Breast Cancer: Prognostic Value and Dynamic Regulation of Neutrophil in Tumor Microenvironment. Front. Immunol. 2020, 11, 1779. [Google Scholar] [CrossRef]
- Shen, M.; Hu, P.; Donskov, F.; Wang, G.; Liu, Q.; Du, J. Tumor-associated neutrophils as a new prognostic factor in cancer: A systematic review and meta-analysis. PLoS ONE 2014, 9, e98259. [Google Scholar] [CrossRef] [Green Version]
- Soto-Perez-de-Celis, E.; Chavarri-Guerra, Y.; Leon-Rodriguez, E.; Gamboa-Dominguez, A. Tumor-Associated Neutrophils in Breast Cancer Subtypes. Asian Pac. J. Cancer Prev. 2017, 18, 2689–2693. [Google Scholar] [CrossRef] [PubMed]
- Zeindler, J.; Angehrn, F.; Droeser, R.; Däster, S.; Piscuoglio, S.; Ng, C.K.Y.; Kilic, E.; Mechera, R.; Meili, S.; Isaak, A.; et al. Infiltration by myeloperoxidase-positive neutrophils is an independent prognostic factor in breast cancer. Breast Cancer Res. Treat. 2019, 177, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Fridlender, Z.G.; Sun, J.; Kim, S.; Kapoor, V.; Cheng, G.; Ling, L.; Worthen, G.S.; Albelda, S.M. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 2009, 16, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Andzinski, L.; Kasnitz, N.; Stahnke, S.; Wu, C.-F.; Gereke, M.; von Köckritz-Blickwede, M.; Schilling, B.; Brandau, S.; Weiss, S.; Jablonska, J. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int. J. Cancer 2016, 138, 1982–1993. [Google Scholar] [CrossRef]
- Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: Neutral no more. Nat. Rev. Cancer 2016, 16, 431–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaul, M.E.; Levy, L.; Sun, J.; Mishalian, I.; Singhal, S.; Kapoor, V.; Horng, W.; Fridlender, G.; Albelda, S.M.; Fridlender, Z.G. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: A transcriptomics analysis of pro- vs. antitumor TANs. Oncoimmunology 2016, 5, e1232221. [Google Scholar] [CrossRef] [Green Version]
- Casbon, A.-J.; Reynaud, D.; Park, C.; Khuc, E.; Gan, D.D.; Schepers, K.; Passegué, E.; Werb, Z. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc. Natl. Acad. Sci. USA 2015, 112, E566–E575. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Wysocki, R.W.; Amoozgar, Z.; Maiorino, L.; Fein, M.R.; Jorns, J.; Schott, A.F.; Kinugasa-Katayama, Y.; Lee, Y.; Won, N.H.; et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 2016, 8, 361ra138. [Google Scholar] [CrossRef] [Green Version]
- Hollmén, M.; Karaman, S.; Schwager, S.; Lisibach, A.; Christiansen, A.J.; Maksimow, M.; Varga, Z.; Jalkanen, S.; Detmar, M. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer. Oncoimmunology 2016, 5, e1115177. [Google Scholar] [CrossRef] [Green Version]
- SenGupta, S.; Hein, L.E.; Xu, Y.; Zhang, J.; Konwerski, J.R.; Li, Y.; Johnson, C.; Cai, D.; Smith, J.L.; Parent, C.A. Triple-Negative Breast Cancer Cells Recruit Neutrophils by Secreting TGF-β and CXCR2 Ligands. Front. Immunol. 2021, 12, 659996. [Google Scholar] [CrossRef] [PubMed]
- O’Meara, T.; Marczyk, M.; Qing, T.; Yaghoobi, V.; Blenman, K.; Cole, K.; Pelekanou, V.; Rimm, D.L.; Pusztai, L. Immunological Differences Between Immune-Rich Estrogen Receptor-Positive and Immune-Rich Triple-Negative Breast Cancers. JCO Precis. Oncol. 2020, 4. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.; Pastorello, R.G.; Vallius, T.; Davis, J.; Cui, Y.X.; Agudo, J.; Waks, A.G.; Keenan, T.; McAllister, S.S.; Tolaney, S.M.; et al. The Immunology of Hormone Receptor Positive Breast Cancer. Front. Immunol. 2021, 12, 674192. [Google Scholar] [CrossRef] [PubMed]
- Jablonska, E.; Garley, M.; Surazynski, A.; Grubczak, K.; Iwaniuk, A.; Borys, J.; Moniuszko, M.; Ratajczak-Wrona, W. Neutrophil extracellular traps (NETs) formation induced by TGF-β in oral lichen planus—Possible implications for the development of oral cancer. Immunobiology 2020, 225, 151901. [Google Scholar] [CrossRef]
Variable | n (%) (n = 168) | NLR | ||
---|---|---|---|---|
Low (%) (n = 92) | High (%) (n = 76) | p Value | ||
Median Age, Years (Range) | 50 (26–74) | |||
Age (Years) | 0.057 | |||
≤50 | 87 (51.8) | 41 (44.6) | 46 (60.5) | |
>50 | 81 (49.2) | 51 (55.4) | 30 (39.5) | |
Histologic Type | 0.012 | |||
Ductal | 108 (64.3) | 53 (57.6) | 55 (72.4) | |
Lobular | 24 (14.9) | 14 (15.2) | 10 (13.2) | |
Ductal/lobular | 28 (16.7) | 17 (18.5) | 11 (14.5) | |
Others | 8 (4.10) | 8 (8.70) | 0 (0.00) | |
Grade | 0.303 | |||
G1 | 82 (48.8) | 47 (51.1) | 35 (46.1) | |
G2 | 62 (36.9) | 30 (32.6) | 32 (42.1) | |
G3 | 4 (2.40) | 3 (3.30) | 1 (1.30) | |
Unknown * | 20 (11.9) | 12 (13.0) | 8 (10.5) | |
Clinical T | 0.087 | |||
cT1 | 14 (8.30) | 5 (5.40) | 9 (11.8) | |
cT2 | 122 (72.6) | 72 (78.3) | 50 (65.8) | |
cT3 | 26 (15.5) | 13 (14.1) | 13 (17.1) | |
cT4 | 6 (3.60) | 2 (2.20) | 4 (5.30) | |
Molecular Subtype | 0.171 | |||
Luminal A | 130 (77.4) | 67 (72.8) | 63 (82.9) | |
Luminal B/HER2- | 38 (22.6) | 25 (27.2) | 13 (17.1) | |
Type of NACT | ||||
EC | 25 (14.9) | 12 (13.0) | 13 (17.1) | 0.201 |
EC-T | 137 (81.5) | 75 (81.5) | 62 (81.6) | |
Others | 6 (3.60) | 5 (5.50) | 1 (1.30) | |
No. of NACT Cycles | ||||
≤4 | 21 (12.5) | 11 (12.0) | 10 (13.2) | 1.000 |
>4 | 147 (87.5) | 81 (88.0) | 66 (86.8) |
Variable | n (%) (n = 168) | NLR | ||
---|---|---|---|---|
Low (%) (n = 92) | High (%) (n = 76) | p Value | ||
Type of Surgery | 0.519 | |||
BCS | 99 (58.9) | 57 (62.0) | 42 (55.3) | |
Mastectomy | 69 (41.1) | 35 (38.0) | 34 (44.7) | |
pCR | 0.890 | |||
Yes | 16 (9.50) | 9 (9.80) | 7 (9.20) | |
No | 152 (90.5) | 83 (90.2) | 69 (90.8) | |
Ki67 in Residual Tumor | 0.999 | |||
<14% | 140 (83.4) | 77 (91.6) | 63 (92.6) | |
≥14% | 12 (7.10) | 7 (8.40) | 5 (7.40) | |
Not determinable | 16 (9.50) | |||
Size of Residual Tumor | ||||
≤2 cm | 111 (66.1) | 59 (64.1) | 52 (68.4) | 0.674 |
>2 cm | 57 (33.9) | 33 (35.9) | 24 (31.6) | |
No. of Metastatic Nodes | ||||
≤3 | 127 (75.6) | 74 (80.4) | 53 (69.7) | 0.154 |
>3 | 41 (24.4) | 18 (19.6) | 23 (30.3) | |
Stage | ||||
0–I | 47 (28.0) | 25 (27.2) | 22 (28.9) | 0.472 |
II | 75 (44.6) | 46 (50.0) | 29 (38.2) | |
III | 46 (27.4) | 21 (22.8) | 25 (32.9) |
Variable | n | DFS | OS | ||||
---|---|---|---|---|---|---|---|
10-Year (%) * | HR (95% CI) | p-Value | 10-Year (%) * | HR (95% CI) | p-Value | ||
Age at Diagnosis (Year) | |||||||
≤50 | 87 | 89.1 | 1.00 | 92.0 | 1.00 | ||
>50 | 81 | 79.9 | 0.55 (0.22–1.4) | 0.213 | 90.9 | 0.57 (0.16–1.98) | 0.376 |
Histological Type | |||||||
Ductal | 108 | 90.8 | 1.00 | 96.5 | 1.00 | ||
Lobular or mixed | 52 | 76.1 | 3.12 (1.24–8.28) | 0.016 | 84.6 | 3.24 (0.91–11.38) | 0.069 |
Molecular Subtype | |||||||
Luminal A | 130 | 88.8 | 1.00 | 92.5 | 1.00 | ||
Luminal B/HER2- | 38 | 63.4 | 3.81 (2.04–29.12) | 0.002 | 89.9 | 2.87 (0.69–27.33) | 0.118 |
Grade | |||||||
G1 | 80 | 81.2 | 1.00 | 91.8 | 1.00 | ||
G2-G3 | 66 | 92.1 | 1.50 (0.51–4.25) | 0.482 | 95.8 | 1.55 (0.33–7.17) | 0.590 |
Type of Surgery | |||||||
BCS | 99 | 88.9 | 1.00 | 83.6 | 1.00 | ||
Mastectomy | 69 | 78.6 | 2.43 (0.96–6.44) | 0.058 | 97.0 | 3.33 (0.94–11.8) | 0.063 |
pCR | |||||||
Yes | 16 | 90.0 | 1.00 | 90.0 | 1.00 | ||
No | 152 | 84.2 | 2.33 (0.45–7.66) | 0.396 | 91.8 | 1.10 (0.15–8.16) | 0.930 |
Ki67 in Residual Tumor | |||||||
<14% | 140 | 86.1 | 1.00 | 92.5 | 1.00 | ||
≥14% | 12 | 64.0 | 7.13 (5.26–100) | 0.001 | 72.0 | 31.0 (8.41–100) | 0.002 |
Size of Residual Tumor | |||||||
≤2 cm | 111 | 87.8 | 1.00 | 92.0 | 1.00 | ||
>2 cm | 57 | 78.5 | 2.03 (0.81–5.77) | 0.125 | 90.4 | 1.29 (0.35–4.85) | 0.691 |
No. of Metastatic Nodes | |||||||
≤3 | 127 | 85.0 | 1.00 | 91.8 | 1.00 | ||
>3 | 41 | 84.4 | 1.48 (0.49–4.86) | 0.453 | 90.3 | 1.51 (0.35–7.19) | 0.545 |
Stage | |||||||
0–I | 47 | 93.6 | 1.00 | 93.6 | 1.00 | ||
II-III | 121 | 81.0 | 2.52 (0.93–6.87) | 0.070 | 90.5 | 1.52 (0.38–6.12) | 0.347 |
NLR | |||||||
High | 76 | 98.3 | 1.00 | 97.9 | 1.00 | ||
Low | 92 | 74.0 | 6.97 (1.65–10.55) | 0.002 | 86.2 | 7.79 (1.25–15.07) | 0.021 |
Neutrophils ** | |||||||
High | 84 | 92.2 | 1.00 | 96.5 | 1.00 | ||
Low | 84 | 77.8 | 2.51 (1.00–6.34) | 0.050 | 86.1 | 3.73 (1.06–12.99) | 0.039 |
Lymphocytes ** | |||||||
High | 84 | 94.4 | 1.00 | 94.3 | 1.00 | ||
Low | 84 | 74.0 | 3.45 (1.37–8.74) | 0.009 | 88.4 | 2.46 (0.71–8.54) | 0.155 |
Disease-Free Survival | HR (95% CI) | p-Value |
---|---|---|
Histological Type Non-ductal vs. Ductal | 1.90 (0.67–5.44) | 0.228 |
Molecular Subtype Luminal B vs. Luminal A | 3.00 (1.00–9.84) | 0.049 |
Type of Surgery Mastectomy vs. BCS | 1.96 (0.72–5.38) | 0.188 |
Ki67 in Residual Tumor ≥14% vs. <14% | 6.32 (1.27–31.29) | 0.024 |
Stage II–III vs. 0–I | 4.52 (0.91–22.42) | 0.064 |
Peripheral Markers of Inflammation NLRlow vs. NLRhigh | 5.36 (1.14–25.17) | 0.033 |
Overall Survival | ||
Histological Type Non-ductal vs. Ductal | 2.08 (0.46–9.34) | 0.337 |
Type of Surgery Mastectomy vs. BCS | 2.55 (0.59–10.91) | 0.187 |
Ki67 in Residual Tumor ≥14% vs. <14% | 7.27 (1.29–40.68) | 0.024 |
Peripheral Markers of Inflammation NLRlow vs. NLRhigh | 8.90 (1.08–73.39) | 0.042 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grassadonia, A.; Graziano, V.; Iezzi, L.; Vici, P.; Barba, M.; Pizzuti, L.; Cicero, G.; Krasniqi, E.; Mazzotta, M.; Marinelli, D.; et al. Prognostic Relevance of Neutrophil to Lymphocyte Ratio (NLR) in Luminal Breast Cancer: A Retrospective Analysis in the Neoadjuvant Setting. Cells 2021, 10, 1685. https://doi.org/10.3390/cells10071685
Grassadonia A, Graziano V, Iezzi L, Vici P, Barba M, Pizzuti L, Cicero G, Krasniqi E, Mazzotta M, Marinelli D, et al. Prognostic Relevance of Neutrophil to Lymphocyte Ratio (NLR) in Luminal Breast Cancer: A Retrospective Analysis in the Neoadjuvant Setting. Cells. 2021; 10(7):1685. https://doi.org/10.3390/cells10071685
Chicago/Turabian StyleGrassadonia, Antonino, Vincenzo Graziano, Laura Iezzi, Patrizia Vici, Maddalena Barba, Laura Pizzuti, Giuseppe Cicero, Eriseld Krasniqi, Marco Mazzotta, Daniele Marinelli, and et al. 2021. "Prognostic Relevance of Neutrophil to Lymphocyte Ratio (NLR) in Luminal Breast Cancer: A Retrospective Analysis in the Neoadjuvant Setting" Cells 10, no. 7: 1685. https://doi.org/10.3390/cells10071685
APA StyleGrassadonia, A., Graziano, V., Iezzi, L., Vici, P., Barba, M., Pizzuti, L., Cicero, G., Krasniqi, E., Mazzotta, M., Marinelli, D., Amodio, A., Natoli, C., & Tinari, N. (2021). Prognostic Relevance of Neutrophil to Lymphocyte Ratio (NLR) in Luminal Breast Cancer: A Retrospective Analysis in the Neoadjuvant Setting. Cells, 10(7), 1685. https://doi.org/10.3390/cells10071685