The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis
Abstract
:1. Introduction
2. Steroidogenic Cells and Steroidogenic Mitochondria
2.1. Steroidogenesis and Mitochondrial Structures—The Role of Steroidogenic Enzymes
2.2. Hormone-Induced and Cell-Intrinsic Processes in Steroidogenic Cells
2.3. The Importance of Mitochondrial Dynamics in Steroidogenesis
2.4. Steroidogenic Mitochondria—A Comparative Account
3. Placental Steroidogenesis—What We Can Learn from the Similarities and Differences with Adrenal and Gonadal Steroidogenesis?
4. Cholesterol—Its Importance as a Starting Substrate and Need for Cholesterol Import to Mitochondria
Heterogeneity in Cholesterol Distribution and Cellular Compartmentalization of Steroidogenesis
5. Autophagy and Lipophagy in Cholesterol Homeostasis and Steroidogenesis
Autophagy in Steroidogenesis—A Conserved Mechanism?
6. Prohibitin—A Putative Novel Player in the Steroidogenic Mitochondria and Cells at Large
The Relationship between PHB Family Proteins and Cholesterol
7. Outstanding Questions and Future Research Directions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Outstanding Questions
- Q1.
- Why is steroidogenesis compartmentalized to membranes that are poor in cholesterol content (i.e., IMM and SER), but not in the PM, which is rich in cholesterol?
- Q2.
- Why are steroidogenic enzymes membrane bound, unlike many other metabolic enzymes?
- Q3.
- Do steroidogenic enzymes that are located in the SER play a role in SER functions like steroidogenic enzymes present in the IMM in mitochondrial function?
- Q4.
- What is the relative importance of autophagy and lipophagy in fulfilling steroidogenic cholesterol requirements under situations of cholesterol sufficiency and insufficiency?
- Q5.
- Why is the cell’s StAR level acutely regulated in response to pituitary tropic hormones? What is the role of mitochondria in the regulation of StAR turnover?
- Q6.
- Does PHB play a role in the functional coupling of StAR and P450scc, acute regulation of StAR and in the localization of steroidogenic enzymes in the IMM?
- Q7.
- How do autophagy, lipophagy and mitochondrial dynamics operate under cholesterol-deficient and -sufficient states?
- Q8.
- Does mitophagy play a role in steroidogenesis?
- Q9.
- What is the relative importance of autophagy and lipophagy in basal, acute, and chronic steroidogenesis in different steroidogenic cell types?
- Q10.
- What are the factors and mechanisms involved in cholesterol transport to the IMM?
- Q11.
- Are syncytiotrophoblast mitochondria different from the mitochondria of the adrenal cortex and gonadal cells?
- Q12.
- Do the autophagy and lipophagy processes that have been reported to play roles in steroidogenesis in gonadal cells also take part in placental steroidogenesis?
References
- Saha, S.; Dey, S.; Nath, S. Steroid Hormone Receptors: Links with Cell Cycle Machinery and Breast Cancer Progression. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L.; Bose, H.S. Early steps in steroidogenesis: Intracellular cholesterol trafficking. J. Lipid Res. 2011, 52, 2111–2135. [Google Scholar] [CrossRef] [Green Version]
- Rone, M.B.; Fan, J.; Papadopoulos, V. Cholesterol transport in steroid biosynthesis: Role of protein–protein interactions and implications in disease states. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2009, 1791, 646–658. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Hou, X.; Shen, W.-J.; Hanssen, R.; Khor, V.K.; Cortez, Y.; Roseman, A.N.; Azhar, S.; Kraemer, F.B. SNARE-Mediated Cholesterol Movement to Mitochondria Supports Steroidogenesis in Rodent Cells. Mol. Endocrinol. 2016, 30, 234–247. [Google Scholar] [CrossRef] [Green Version]
- Medar, M.L.J.; Marinkovic, D.Z.; Kojic, Z.; Becin, A.P.; Starovlah, I.M.; Kravic-Stevovic, T.; Andric, S.A.; Kostic, T.S. Dependence of Leydig Cell’s Mitochondrial Physiology on Luteinizing Hormone Signaling. Life 2020, 11, 19. [Google Scholar] [CrossRef]
- Castillo, A.F.; Orlando, U.; Helfenberger, K.E.; Poderoso, C.; Podestá, E.J. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol. Cell. Endocrinol. 2015, 408, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, V.; Miller, W.L. Role of mitochondria in steroidogenesis. Best Pract. Res. Clin. Endocrinol. Metab. 2012, 26, 771–790. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, F.B.; Shen, W.-J.; Azhar, S. SNAREs and cholesterol movement for steroidogenesis. Mol. Cell. Endocrinol. 2017, 441, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Chapman, J.C.; Polanco, J.R.; Min, S.; Michael, S.D. Mitochondrial 3 beta-hydroxysteroid dehydrogenase (HSD) is essential for the synthesis of progesterone by corpora lutea: An hypothesis. Reprod. Biol. Endocrinol. 2005, 3, 11. [Google Scholar] [CrossRef] [Green Version]
- Simard, J.; Ricketts, M.-L.; Gingras, S.; Soucy, P.; Feltus, F.; Melner, M.H. Molecular Biology of the 3β-Hydroxysteroid Dehydrogenase/Δ5-Δ4 Isomerase Gene Family. Endocr. Rev. 2005, 26, 525–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azhar, S. Cholesterol uptake in adrenal and gonadal tissues the SR BI and selective pathway connection. Front. Biosci. 2003, 8, s998–s1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Connelly, M.A.; Williams, D.L. SR-BI and cholesterol uptake into steroidogenic cells. Trends Endocrinol. Metab. 2003, 14, 467–472. [Google Scholar] [CrossRef]
- Heinrich, A.; DeFalco, T. Essential roles of interstitial cells in testicular development and function. Andrology 2020, 8, 903–914. [Google Scholar] [CrossRef] [Green Version]
- Farkash, Y.; Timberg, R.; Orly, J. Preparation of antiserum to rat cytochrome P-450 cholesterol side chain cleavage and its use for ultrastructural localization of the immunoreactive enzyme by protein A-gold technique. Endocrinology 1986, 118, 1353–1365. [Google Scholar] [CrossRef]
- Chien, Y.; Cheng, W.-C.; Wu, M.-R.; Jiang, S.-T.; Shen, C.-K.J.; Chung, B.-C. Misregulated Progesterone Secretion and Impaired Pregnancy in Cyp11a1 Transgenic Mice1. Biol. Reprod. 2013, 89, 91. [Google Scholar] [CrossRef]
- Martínez, F.; Strauss, J.F. Regulation of Mitochondrial Cholesterol Metabolism. Alzheimer’s Dis. 1997, 28, 205–234. [Google Scholar] [CrossRef]
- Crivellato, E.; Belloni, A.; Nico, B.; Nussdorfer, G.G.; Ribatti, D. Chromaffin granules in the rat adrenal medulla release their secretory content in a particulate fashion. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 2004, 277A, 204–208. [Google Scholar] [CrossRef]
- Haung, C.-C.J.; Shih, M.-C.M.; Hsu, N.-C.; Chien, Y.; Chung, B.-C. Fetal Glucocorticoid Synthesis Is Required for Development of Fetal Adrenal Medulla and Hypothalamus Feedback Suppression. Endocrinology 2012, 153, 4749–4756. [Google Scholar] [CrossRef] [Green Version]
- Ishii, T.; Hasegawa, T.; Pai, C.I.; Yvgi-Ohana, N.; Timberg, R.; Zhao, L.; Majdic, G.; Chung, B.C.; Orly, J.; Parker, K.L. The roles of circulating high-density lipoproteins and trophic hormones in the phenotype of knockout mice lacking the steroido-genic acute regulatory protein. Mol. Endocrinol. 2002, 16, 2297–2309. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.L. Congenital lipoid adrenal hyperplasia: The human gene knockout for the steroidogenic acute regulatory protein. J. Mol. Endocrinol. 1997, 19, 227–240. [Google Scholar] [CrossRef] [Green Version]
- Bose, H.S.; Sugawara, T.; Strauss, J.F., III; Miller, W.L. The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N. Engl. J. Med. 1996, 335, 1870–1878. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L. Steroid hormone synthesis in mitochondria. Mol. Cell. Endocrinol. 2013, 379, 62–73. [Google Scholar] [CrossRef]
- Park, J.-E.; Kim, Y.-J.; Lee, S.G.; Kim, J.Y.; Chung, J.-Y.; Jeong, S.-Y.; Koh, H.; Yun, J.; Park, H.T.; Yoo, Y.H.; et al. Drp1 Phosphorylation Is Indispensable for Steroidogenesis in Leydig Cells. Endocrinology 2019, 160, 729–743. [Google Scholar] [CrossRef] [PubMed]
- Vangrieken, P.; Al-Nasiry, S.; Bast, A.; Leermakers, P.A.; Tulen, C.B.M.; Janssen, G.M.J.; Kaminski, I.; Geomini, I.; Lemmens, T.; Schiffers, P.M.H.; et al. Hypoxia-induced mitochondrial abnormalities in cells of the placenta. PLoS ONE 2021, 16, e0245155. [Google Scholar] [CrossRef] [PubMed]
- Mornet, E.; Dupont, J.; Vitek, A.; White, P.C. Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J. Biol. Chem. 1989, 264, 20961–20967. [Google Scholar] [CrossRef]
- Chien, Y.; Rosal, K.; Chung, B.-C. Function of CYP11A1 in the mitochondria. Mol. Cell. Endocrinol. 2017, 441, 55–61. [Google Scholar] [CrossRef]
- Orme-Johnson, N.R. Distinctive properties of adrenal cortex mitochondria. Biochim. Biophys. Acta (BBA) Bioenerg. 1990, 1020, 213–231. [Google Scholar] [CrossRef]
- Wasilewski, M.; Semenzato, M.; Rafelski, S.M.; Robbins, J.; Bakardjiev, A.I.; Scorrano, L. Optic Atrophy 1-Dependent Mitochondrial Remodeling Controls Steroidogenesis in Trophoblasts. Curr. Biol. 2012, 22, 1228–1234. [Google Scholar] [CrossRef] [Green Version]
- White, P.C.; Curnow, K.M.; Pascoe, L. Disorders of Steroid 11β-Hydroxylase Isozymes *. Endocr. Rev. 1994, 15, 421–438. [Google Scholar] [CrossRef]
- Fardella, C.E.; Miller, W.L. Molecular biology of mineralocorticoid metabolism. Annu. Rev. Nutr. 1996, 16, 443–470. [Google Scholar] [CrossRef]
- Miller, W.L.; Auchus, R.J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011, 32, 81–151. [Google Scholar] [CrossRef] [Green Version]
- Strauss, J.F., 3rd; Martinez, F.; Kiriakidou, M. Placental steroid hormone synthesis: Unique features and unanswered questions. Biol. Reprod. 1996, 54, 303–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuckey, R.C.; Bose, H.S.; Czerwionka, I.; Miller, W.L. Molten globule structure and steroidogenic activity of N-218 MLN64 in hu-man placental mitochondria. Endocrinology 2004, 145, 1700–1707. [Google Scholar] [CrossRef] [Green Version]
- Morel, Y.; Roucher, F.; Plotton, I.; Goursaud, C.; Tardy, V.; Mallet, D. Evolution of steroids during pregnancy: Maternal, placental and fetal synthesis. Ann. Endocrinol. 2016, 77, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Tuckey, R.C.; Kostadinovic, Z.; Cameron, K.J. Cytochrome P-450scc activity and substrate supply in human placental tropho-blasts. Mol. Cell Endocrinol. 1994, 105, 103–109. [Google Scholar] [CrossRef]
- Strauss, J.F., III; Christenson, L.K.; Devoto, L.; Martinez, F. Providing progesterone for pregnancy: Control of cholesterol flux to the side-chain cleavage system. J. Reprod. Fertil. Suppl. 2000, 55, 3–12. [Google Scholar] [PubMed]
- Conley, A.J.; Head, J.R.; Stirling, D.T.; Mason, J.I. Expression of steroidogenic enzymes in the bovine placenta and fetal adrenal glands throughout gestation. Endocrinology 1992, 130, 2641–2650. [Google Scholar] [CrossRef] [Green Version]
- Tuckey, R.C.; Headlam, M. Placental cytochrome P450scc (CYP11A1): Comparison of catalytic properties between conditions of limiting and saturating adrenodoxin reductase. J. Steroid Biochem. Mol. Biol. 2002, 81, 153–158. [Google Scholar] [CrossRef]
- Conley, A.F.; Christenson, R.K.; Ford, S.P.; Geisert, R.D.; Mason, J.I. Steroidogenic enzyme ex-pression in porcine conceptuses during and after elongation. Endocrinology 1992, 131, 896–902. [Google Scholar]
- Draycott, S.A.V.; Daniel, Z.; Khan, R.; Muhlhausler, B.S.; Elmes, M.J.; Langley-Evans, S.C. Expression of cholesterol packaging and transport genes in human and rat placenta: Impact of obesity and a high-fat diet. J. Dev. Orig. Health Dis. 2020, 11, 222–227. [Google Scholar] [CrossRef]
- Watari, H.; Arakane, F.; Moog-Lutz, C.; Callen, C.B.; Tomasetto, C.; Gerton, G.L.; Rio, M.C.; Baker, M.E.; Strauss, J.F., III. MLN64 contains a domain with homology to the steroidogenic acute regulatory protein (StAR) that stimulates steroidogenesis. Proc. Natl. Acad. Sci. USA 1997, 94, 8462–8467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, H.S.; Whittal, R.; Huang, M.-C.; Baldwin, M.A.; Miller, W.L. N-218 MLN64, a Protein with StAR-like Steroidogenic Activity, Is Folded and Cleaved Similarly to StAR†. Biochemistry 2000, 39, 11722–11731. [Google Scholar] [CrossRef]
- Tsujishita, Y.; Hurley, J.H. Structure and lipid transport mechanism of a StAR-related domain. Nat. Struct. Biol. 2000, 7, 408–414. [Google Scholar] [PubMed] [Green Version]
- Soccio, R.E.; Adams, R.M.; Romanowski, M.J.; Sehayek, E.; Burley, S.; Breslow, J.L. The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6. Proc. Natl. Acad. Sci. USA 2002, 99, 6943–6948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romanowski, M.J.; Soccio, R.E.; Breslow, J.L.; Burley, S.K. Crystal structure of the Mus musculus cholesterol-regulated START pro-tein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc. Natl. Acad. Sci. USA 2002, 99, 6949–6954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Liu, P.; Dwyer, N.K.; Christenson, L.K.; Fujimoto, T.; Martinez, F.; Comly, M.; Hanover, J.A.; Blanchette-Mackie, E.J.; Strauss, J.F., III. MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria. J. Biol. Chem. 2002, 277, 33300–33310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arakane, F.; Sugawara, T.; Nishino, H.; Liu, Z.; Holt, J.A.; Pain, D.; Stocco, D.M.; Miller, W.L.; Strauss, J.F., III. Steroidogenic acute regula-tory protein (StAR) retains activity in the absence of its mitochondrial targeting sequence: Implications for the mechanism of StAR action. Proc. Natl. Acad. Sci. USA 1996, 93, 13731–13736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, H.S.; Lingappa, V.R.; Miller, W.L. Rapid regulation of steroidogenesis by mitochondrial protein import. Nat. Cell Biol. 2002, 417, 87–91. [Google Scholar] [CrossRef]
- Hong, S.; Kim, S.C.; Park, M.; Jeong, J.S.; Yang, S.Y.; Lee, Y.J.; Bae, O.; Yang, H.; Seo, S.; Lee, K.; et al. Expression of steroidogenic enzymes in human placenta according to the gestational age. Mol. Med. Rep. 2019, 19, 3903–3911. [Google Scholar] [CrossRef]
- Costantine, M.M. Physiologic and pharmacokinetic changes in pregnancy. Front. Pharmacol. 2014, 5, 65. [Google Scholar] [CrossRef]
- Kurnar, P.; Magon, N. Hormones in pregnancy. Niger. Med. J. 2012, 53, 179–183. [Google Scholar]
- Albrecht, E.D.; Pepe, G.J. Placental Steroid Hormone Biosynthesis in Primate Pregnancy*. Endocr. Rev. 1990, 11, 124–150. [Google Scholar] [CrossRef]
- Kuss, E. The fetoplacental unit of pnmates. Exp. Clin. Endocrinol. 1994, 102, 135–165. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.W. Aspects of placental estrogen synthesis in the pig. Exp. Clin. Endocrinol. Diabetes 1994, 102, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Conley, A.J.; Christenson, L.K.; Ford, S.P.; Christenson, R.K. Immunocytochemical localization of cytochromes P45017, a-hydroxylase and aromatase in embryonic cell layers of elongating porcine blastocysts. Endocrinology 1994, 135, 2248–2254. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.C. Cellular localization and factors controlling rat placental cytochromeP45017 alpha (CYP17): 17 al-pha-hydroxylase/C17. 20-lyase activity. Biol. Reprod. 1992, 45, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Mason, J.I.; France, J.T.; Magness, R.R.; Murry, B.A.; Rosenfeld, C.R. Ovine placental steroid 17alpha-hydroxylase/CI-17, 20-lysase, aromatase and sulphatase in dexamethasone-in-duced and natural parturition. J. Endocrinol. 1989, 122, 351–359. [Google Scholar] [CrossRef]
- Durkee, T.J.; McLean, M.P.; Hales, D.B.; Payne, A.H.; Waterman, M.R.; Khan, I.; Gibori, G. P450(17 alpha) and P450SCC gene expression and regulation in the rat placenta. Endocrinology 1992, 130, 1309–1317. [Google Scholar] [CrossRef]
- Sugawara, T.; Holt, J.A.; Driscoll, D.; Strauss, J.F., III. Human steroidogenic acute regulatory protein: Functional activity in COS-1 cells, tissue-specific expression, and mapping of thestructural gene to 8pll 1.2 and a pseudogene to chromosome 13. Proc. Natl. Acad. Sci. USA 1995, 92, 4778–4782. [Google Scholar] [CrossRef] [Green Version]
- Elustondo, P.; Martin, L.A.; Karten, B. Mitochondrial cholesterol transport. Biochim. Biophys. Acta 2017, 1862, 90–101. [Google Scholar] [CrossRef]
- Azhar, S.; Reaven, E. Scavenger receptor class BI and selective cholesteryl ester uptake: Partners in the regulation of steroidogenesis. Mol. Cell. Endocrinol. 2002, 195, 1–26. [Google Scholar] [CrossRef]
- Stocco, D.M. Intramitochondrial cholesterol transfer. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2000, 1486, 184–197. [Google Scholar] [CrossRef]
- Midzak, A.; Papadopoulos, V. Adrenal Mitochondria and Steroidogenesis: From Individual Proteins to Functional Protein Assemblies. Front. Endocrinol. 2016, 7, 106. [Google Scholar] [CrossRef] [PubMed]
- Porter, F.D.; Herman, G.E. Malformation syndromes caused by disorders of cholesterol synthesis. J. Lipid Res. 2011, 52, 6–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero, J.; Morales, A.; Llacuna, L.; Lluis, J.M.; Terrones, O.; Basanez, G.; Antonsson, B.; Prieto, J.; Garcia-Ruiz, C.; Colell, A.; et al. Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res. 2008, 68, 5246–5256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baggetto, L.G.; Clottes, E.; Vial, C. Low mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as two features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells. Cancer Res. 1992, 52, 4935–4941. [Google Scholar]
- Colell, A.; Garcia-Ruiz, C.; Lluis, J.M.; Coll, O.; Mari, M.; Fernandez-Checa, J.C. Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J. Biol. Chem. 2003, 278, 33928–33935. [Google Scholar] [CrossRef] [Green Version]
- Paradis, S.; Leoni, V.; Caccia, C.; Berdeaux, A.; Morin, D. Cardioprotection by the TSPO ligand 4’-chlorodiazepamis associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion. Cardiovasc. Res. 2013, 98, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Bosch, M.; Mari, M.; Herms, A.; Fernandez, A.; Fajardo, A.; Kassan, A.; Giralt, A.; Colell, A.; Balgoma, D.; Barbero, E.; et al. Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic suscep-tibility. Curr. Biol. 2011, 21, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Coll, O.; Colell, A.; Garcia-Ruiz, C.; Kaplowitz, N.; Fernandez-Checa, J.C. Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology 2003, 38, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Parlo, R.A.; Coleman, P.S. Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J. Biol. Chem. 1984, 259, 9997–10003. [Google Scholar] [CrossRef]
- Paradies, G.; Petrosillo, G.; Gadaleta, M.N.; Ruggiero, F.M. The effect of aging and acetyl-L-carnitine on the pyruvate transport and oxidation in rat heart mitochondria. FEBS Lett. 1999, 454, 207–209. [Google Scholar] [PubMed] [Green Version]
- Paradies, G.; Ruggiero, F.M.; Dinoi, P. Decreased activity of the phosphate carrier and modification of lipids in cardiac mito-chondria from senescent rats. Int. J. Biochem. 1992, 24, 783–787. [Google Scholar] [CrossRef]
- Dietzen, D.J.; Davis, E.J. Excess membrane cholesterol is not responsible for metabolic and bioenergetic changes in AS-30D hepatoma mitochondria. Arch. Biochem. Biophys. 1994, 309, 341–347. [Google Scholar] [CrossRef]
- Fernandez, A.; Llacuna, L.; Fernandez-Checa, J.C.; Colell, A. Mitochondrial cholesterol loading exacerbates amyloid beta pep-tide-induced inflammation and neurotoxicity. J. Neurosci. 2009, 29, 6394–6405. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.D.; Park, S.; Han, C.Y.; Nguyen, M.L.; Kim, S.O. Cellular adaptation to anthrax lethal toxin-induced mitochondrial cho-lesterol enrichment, hyperpolarization, and reactive oxygen species generation through downregulating MLN64 inmacro-phages. Mol. Cell. Biol. 2012, 32, 4846–4860. [Google Scholar] [CrossRef] [Green Version]
- Mari, M.; Caballero, F.; Colell, A.; Morales, A.; Caballeria, J.; Fernandez, A.; Enrich, C.; Fernandez-Checa, J.C.; Garcia-Ruiz, C. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006, 4, 185–198. [Google Scholar] [CrossRef]
- Lluis, J.M.; Colell, A.; Garcia-Ruiz, C.; Kaplowitz, N.; Fernandez-Checa, J.C. Acetaldehydeimpairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress. Gastroenterology 2003, 124, 708–724. [Google Scholar] [CrossRef]
- Mei, S.; Gu, H.; Yang, X.; Guo, H.; Liu, Z.; Cao, W. Prolonged exposure to insulin induces mitochondrion-derived oxidative stress through increasing mitochondrial cholesterol content in hepatocytes. Endocrinology 2012, 153, 2120–2129. [Google Scholar] [CrossRef] [Green Version]
- Llacuna, L.; Fernandez, A.; Montfort, C.V.; Matias, N.; Martinez, L.; Caballero, F.; Rimola, A.; Elena, M.; Morales, A.; Fernan-dez-Checa, J.C.; et al. Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia-reperfusion injury. J. Hepatol. 2011, 54, 1002–1010. [Google Scholar] [CrossRef] [Green Version]
- Bosch, M.; Mari, M.; Gross, S.P.; Fernandez-Checa, J.C.; Pol, A. Mitochondrial cholesterol: A connection between caveolin, me-tabolism, and disease. Traffic 2011, 12, 1483–1489. [Google Scholar] [CrossRef] [Green Version]
- Montero, J.; Mari, M.; Colell, A.; Morales, A.; Basanez, G.; Garcia-Ruiz, C.; Fernandez-Checa, J.C. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim. Biophys. Acta 2010, 1797, 1217–1224. [Google Scholar] [CrossRef] [Green Version]
- Kim, I.; Mizushima, N.; Lemasters, J. Selective removal of damaged mitochondria by autophagy (mitophagy). Hepatology 2006, 44 (Suppl. 1), 241A. [Google Scholar]
- Gawriluk, T.R.; Ko, C.; Hong, X.; Christenson, L.K.; Rucker, E.B., 3rd. Beclin-1 deficiency in the murine ovary results in the reduction of progesterone production to promote preterm labor. Proc. Natl. Acad. Sci. USA 2014, 111, E4194–E4203. [Google Scholar] [CrossRef] [Green Version]
- Klionsky, D.J.; Emr, S.D. Cell biology—autophagy as a regulated pathway of cellular degradation. Science 2000, 290, 1717–1721. [Google Scholar] [CrossRef] [PubMed]
- White, E.; Mehnert, J.M.; Chan, C.S. Autophagy, Metabolism, and Cancer. Clin. Cancer Res. 2015, 21, 5037–5046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimmelman, A.C.; White, E. Autophagy and Tumor Metabolism. Cell Metab. 2017, 25, 1037–1043. [Google Scholar] [CrossRef]
- Kim, K.H.; Lee, M.-S. Autophagy—A key player in cellular and body metabolism. Nat. Rev. Endocrinol. 2014, 10, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Ueno, T.; Komatsu, M. Autophagy in the liver: Functions in health and disease. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 170–184. [Google Scholar] [CrossRef]
- Galluzzi, L.; Pietrocola, F.; Levine, B.; Kroemer, G. Metabolic Control of Autophagy. Cell 2014, 159, 1263–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, A.L.; Christensen, A.K. Localization of Acid phosphatase in lipofuscin granules and possible autophagic vacuoles in in-terstitial cells of the Guinea pig testis. J. Cell Biol. 1968, 36, 1–13. [Google Scholar] [CrossRef]
- Tang, X.M.; Clermont, Y.; Hermo, L. Origin and Fate of Autophagosomes in Leydig Cells of Normal Adult Rats. J. Androl. 1988, 9, 284–293. [Google Scholar] [CrossRef]
- Yi, J.; Tang, X.M. The convergent point of the endocytic and autophagic pathways in leydig cells. Cell Res. 1999, 9, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-R.; Chen, L.; Chang, Z.-J.; Xin, H.; Liu, T.; Zhang, Y.; Li, G.-Y.; Zhou, F.; Gong, Y.-Q.; Gao, Z.-Z.; et al. Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian J. Androl. 2011, 13, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhou, Y.; Zhu, Y.-C.; Wang, S.-Q.; Ping, P.; Chen, X.-F. Lipophagy Contributes to Testosterone Biosynthesis in Male Rat Leydig Cells. Endocrinology 2018, 159, 1119–1129. [Google Scholar] [CrossRef]
- Khawar, M.B.; Liu, C.; Gao, F.; Gao, H.; Liu, W.; Han, T.; Wang, L.; Li, G.; Jiang, H.; Li, W. Sirt1 regulates testosterone biosynthesis in Leydig cells via modulating autophagy. Protein Cell 2021, 12, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Li, G.; Liu, C.; Gao, H.; Wang, H.; Liu, W.; Chen, M.; Shang, Y.; Wang, L.; Shi, J.; et al. Autophagy regulates testosterone synthesis by facilitating cholesterol uptake in Leydig cells. J. Cell Biol. 2018, 217, 2103–2119. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Lin, L.; Haq, I.U.; Zeng, S.-M. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells. Biochem. Biophys. Res. Commun. 2016, 473, 311–316. [Google Scholar] [CrossRef] [PubMed]
- García, B.C.; Santos-Ledo, A.; Caballero, B.; Rubio-González, A.; De Luxán-Delgado, B.; Potes, Y.; Rodríguez-González, S.M.; Boga, J.A.; Coto-Montes, A. Selective autophagy, lipophagy and mitophagy, in the Harderian gland along the oestrous cycle: A potential retrieval effect of melatonin. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Texada, M.; Malita, A.; Christensen, C.F.; Dall, K.B.; Faergeman, N.J.; Nagy, S.; Halberg, K.; Rewitz, K. Autophagy-Mediated Cholesterol Trafficking Controls Steroid Production. Dev. Cell 2019, 48, 659–671.e4. [Google Scholar] [CrossRef] [Green Version]
- Saftig, P.; Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009, 10, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Richter-Dennerlein, R.; Korwitz, A.; Haag, M.; Tatsuta, T.; Dargazanli, S.; Baker, M.; Decker, T.; Lamkemeyer, T.; Rugarli, E.; Langer, T. DNAJC19, a Mitochondrial Cochaperone Associated with Cardiomyopathy, Forms a Complex with Prohibitins to Regulate Cardiolipin Remodeling. Cell Metab. 2014, 20, 158–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, C.; Merkwirth, C.; Langer, T. Prohibitins and the functional compartmentalization of mitochondrial membranes. J. Cell Sci. 2009, 122, 3823–3830. [Google Scholar] [CrossRef] [Green Version]
- Christie, D.A.; Lemke, C.D.; Elias, I.M.; Chau, L.A.; Kirchhof, M.G.; Li, B.; Ball, E.H.; Dunn, S.D.; Hatch, G.M.; Madrenas, J. Stomatin-Like Protein 2 Binds Cardiolipin and Regulates Mitochondrial Biogenesis and Function. Mol. Cell. Biol. 2011, 31, 3845–3856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osman, C.; Haag, M.; Potting, C.; Rodenfels, J.; Dip, P.V.; Wieland, F.T.; Brügger, B.; Westermann, B.; Langer, T. The genetic interactome of prohibitins: Coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J. Cell Biol. 2009, 184, 583–596. [Google Scholar] [CrossRef] [Green Version]
- Tatsuta, T.; Model, K.; Langer, T. Formation of Membrane-bound Ring Complexes by Prohibitins in Mitochondria. Mol. Biol. Cell 2005, 16, 248–259. [Google Scholar] [CrossRef] [Green Version]
- Steglich, G.; Neupert, W.; Langer, T. Prohibitins Regulate Membrane Protein Degradation by the m-AAA Protease in Mitochondria. Mol. Cell. Biol. 1999, 19, 3435–3442. [Google Scholar] [CrossRef] [Green Version]
- Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef]
- Wai, T.; Saita, S.; Nolte, H.; Müller, S.; König, T.; Richter-Dennerlein, R.; Sprenger, H.; Madrenas, J.; Mühlmeister, M.; Brandt, U.; et al. The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i-AAA protease YME1L. EMBO Rep. 2016, 17, 1844–1856. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Chiang, W.-C.; Sumpter, R.; Mishra, P.; Levine, B. Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell 2017, 168, 224–238.e10. [Google Scholar] [CrossRef] [Green Version]
- Tanida, I.; Ueno, T.; Kominami, E. LC3 and Autophagy. Methods Mol. Biol. 2008, 445, 77–88. [Google Scholar] [PubMed]
- Ande, S.R.; Nguyen, K.H.; Nyomba, B.L.G.; Mishra, S. Prohibitin in Adipose and Immune Functions. Trends Endocrinol. Metab. 2016, 27, 531–541. [Google Scholar] [CrossRef]
- Browman, D.T.; Resek, M.E.; Zajchowski, L.D.; Robbins, S. Erlin-1 and erlin-2 are novel members of the prohibitin family of proteins that define lipid-raft-like domains of the ER. J. Cell Sci. 2006, 119, 3149–3160. [Google Scholar] [CrossRef] [Green Version]
- Huber, T.B.; Schermer, B.; Müller, R.U.; Höhne, M.; Bartram, M.; Calixto, A.; Hagmann, H.; Reinhardt, C.; Koos, F.; Kunzelmann, K.; et al. Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc. Natl. Acad. Sci. USA 2006, 103, 17079–17086. [Google Scholar] [CrossRef] [Green Version]
- Dong, P.; Flores, J.; Pelton, K.; Solomon, K.R. Prohibitin is a cholesterol-sensitive regulator of cell cycle transit. J. Cell. Biochem. 2010, 111, 1367–1374. [Google Scholar] [CrossRef]
- Chowdhury, I.; Thomas, K.; Thompson, W.E. Prohibitin (PHB) roles in granulosa cell physiology. Cell Tissue Res. 2015, 363, 19–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, I.; Xu, W.; Stiles, J.; Zeleznik, A.; Yao, X.; Matthews, R.; Thomas, K.; Thompson, W.E. Apoptosis of Rat Granulosa Cells after Staurosporine and Serum Withdrawal Is Suppressed by Adenovirus-Directed Overexpression of Prohibitin. Endocrinology 2007, 148, 206–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, I.; Thomas, K.; Zeleznik, A.J.; Thompson, W.E. Prohibitin regulates the FSH signaling pathway in rat granulosa cell differentiation. J. Mol. Endocrinol. 2016, 56, 325–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, I.; Thompson, W.E.; Welch, C.; Thomas, K.; Matthews, R. Prohibitin (PHB) inhibits apoptosis in rat granulosa cells (GCs) through the extracellular signal-regulated kinase 1/2 (ERK1/2) and the Bcl family of proteins. Apoptosis 2013, 18, 1513–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikova, K.; Guo, A.; Zeng, Q.; Possemato, A.; Yu, J.; Haack, H.; Nardone, J.; Lee, K.; Reeves, C.; Li, Y.; et al. Global Survey of Phosphotyrosine Signaling Identifies Oncogenic Kinases in Lung Cancer. Cell 2007, 131, 1190–1203. [Google Scholar] [CrossRef] [Green Version]
- Ande, S.R.; Gu, Y.; Nyomba, B.L.G.; Mishra, S. Insulin induced phosphorylation of prohibitin at tyrosine114 recruits Shp1. Biochim. Biophys. Acta (BBA) Bioenerg. 2009, 1793, 1372–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ande, S.R.; Mishra, S. Prohibitin interacts with phosphatidylinositol 3,4,5-triphosphate (PIP3) and modulates insulin signaling. Biochem. Biophys. Res. Commun. 2009, 390, 1023–1028. [Google Scholar] [CrossRef] [PubMed]
- Ande, S.R.; Mishra, S. Palmitoylation of prohibitin at cysteine 69 facilitates its membrane translocation and interaction with Eps 15 homology domain protein 2 (EHD2). Biochem. Cell Biol. 2010, 88, 553–558. [Google Scholar] [CrossRef]
- Ande, S.R.; Xu, Z.; Gu, Y.; Mishra, S. Prohibitin has an important role in adipocyte differentiation. Int. J. Obes. 2011, 36, 1236–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bassi, G.; Sidhu, S.K.; Mishra, S. The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis. Cells 2021, 10, 1851. https://doi.org/10.3390/cells10081851
Bassi G, Sidhu SK, Mishra S. The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis. Cells. 2021; 10(8):1851. https://doi.org/10.3390/cells10081851
Chicago/Turabian StyleBassi, Geetika, Simarjit Kaur Sidhu, and Suresh Mishra. 2021. "The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis" Cells 10, no. 8: 1851. https://doi.org/10.3390/cells10081851
APA StyleBassi, G., Sidhu, S. K., & Mishra, S. (2021). The Expanding Role of Mitochondria, Autophagy and Lipophagy in Steroidogenesis. Cells, 10(8), 1851. https://doi.org/10.3390/cells10081851