Tight Interplay between Replication Stress and Competence Induction in Streptococcus pneumoniae
Abstract
:1. Introduction
2. Material and Methods
2.1. Pneumococcal Strains, Cell Growth, Competence Recording, and Transformation Procedures
2.2. Pneumococcal Strain Constructions
2.2.1. recA, recO, recR, recF, and rexB Strains
2.2.2. CEP-Plac::yabA Strain
2.2.3. CEP-Plac::dnaA Strain
ePlac::dnaA, ePlac::dnaE, and ePlac::dnaC Strains
2.3. ori/ter Ratio Measurement
3. Results
3.1. RecA-Mediated Recombination Prevents Competence Development in S. pneumoniae
3.2. The Cup Phenotype of the recA− Mutant Is Exacerbated by the DNA Damaging Agent Mytomycin-C in a Dose-Response Manner
3.3. Competence Induction by Replication Inhibitor HPUra Is Independent of Gene Dosage Changes
3.4. Modulation of Competence Development by Altering DnaA Concentration
3.5. Aborted Replicative DNA Synthesis Fosters Competence Development
4. Discussion
4.1. How Does Replication Stress Induce Competence?
4.2. Comparison of Pneumococcal Competence with the SOS Response
4.3. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radman, M. SOS Repair Hypothesis: Phenomenology of an Inducible DNA Repair Which is Accompanied by Mutagenesis. Mol. Mech. Repair DNA 1975, 5A, 355–367. [Google Scholar] [CrossRef]
- Witkin, E.M. Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol. Rev. 1976, 40, 869–907. [Google Scholar] [CrossRef]
- Erill, I.; Campoy, S.; Barbé, J. Aeons of distress: An evolutionary perspective on the bacterial SOS response. FEMS Microbiol. Rev. 2007, 31, 637–656. [Google Scholar] [CrossRef] [Green Version]
- Claverys, J.-P.; Prudhomme, M.; Martin, B. Induction of Competence Regulons as a General Response to Stress in Gram-Positive Bacteria. Annu. Rev. Microbiol. 2006, 60, 451–475. [Google Scholar] [CrossRef]
- Dubnau, D.; Blokesch, M. Mechanisms of DNA Uptake by Naturally Competent Bacteria. Annu. Rev. Genet. 2019, 53, 217–237. [Google Scholar] [CrossRef]
- Johnston, C.; Martin, B.; Fichant, G.; Polard, P.; Claverys, J.-P. Bacterial transformation: Distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 2014, 12, 181–196. [Google Scholar] [CrossRef]
- Johnston, C.; Campo, N.; Bergé, M.J.; Polard, P.; Claverys, J.-P. Streptococcus pneumoniae, le transformiste. Trends Microbiol. 2014, 22, 113–119. [Google Scholar] [CrossRef]
- Martin, B.; Soulet, A.-L.; Mirouze, N.; Prudhomme, M.; Mortier-Barrière, I.; Granadel, C.; Noirot-Gros, M.-F.; Noirot, P.; Polard, P.; Claverys, J.-P. ComE/ComE∼P interplay dictates activation or extinction status of pneumococcal X-state (competence). Mol. Microbiol. 2012, 87, 394–411. [Google Scholar] [CrossRef]
- Prudhomme, M.; Berge, M.; Martin, B.; Polard, P. Pneumococcal Competence Coordination Relies on a Cell-Contact Sensing Mechanism. PLoS Genet. 2016, 12, e1006113. [Google Scholar] [CrossRef] [Green Version]
- Martin, B.; Granadel, C.; Campo, N.; Hénard, V.; Prudhomme, M.; Claverys, J.-P. Expression and maintenance of ComD-ComE, the two-component signal-transduction system that controls competence of Streptococcus pneumoniae. Mol. Microbiol. 2010, 75, 1513–1528. [Google Scholar] [CrossRef] [PubMed]
- Mortier-Barrière, I.; Velten, M.; Dupaigne, P.; Mirouze, N.; Pietrement, O.; McGovern, S.; Fichant, G.; Martin, B.; Noirot, P.; Le Cam, E.; et al. A Key Presynaptic Role in Transformation for a Widespread Bacterial Protein: DprA Conveys Incoming ssDNA to RecA. Cell 2007, 130, 824–836. [Google Scholar] [CrossRef] [Green Version]
- Mirouze, N.; Bergé, M.A.; Soulet, A.-L.; Mortier-Barrière, I.; Quentin, Y.; Fichant, G.; Granadel, C.; Noirot-Gros, M.-F.; Noirot, P.; Polard, P.; et al. Direct involvement of DprA, the transformation-dedicated RecA loader, in the shut-off of pneumococcal competence. Proc. Natl. Acad. Sci. USA 2013, 110, E1035–E1044. [Google Scholar] [CrossRef] [Green Version]
- Prudhomme, M.; Attaiech, L.; Sanchez, G.; Martin, B.; Claverys, J.-P. Antibiotic Stress Induces Genetic Transformability in the Human Pathogen Streptococcus pneumoniae. Science 2006, 313, 89–92. [Google Scholar] [CrossRef]
- Charpentier, X.; Polard, P.; Claverys, J.-P. Induction of competence for genetic transformation by antibiotics: Convergent evolution of stress responses in distant bacterial species lacking SOS? Curr. Opin. Microbiol. 2012, 15, 570–576. [Google Scholar] [CrossRef]
- Slager, J.; Kjos, M.; Attaiech, L.; Veening, J.-W. Antibiotic-Induced Replication Stress Triggers Bacterial Competence by Increasing Gene Dosage near the Origin. Cell 2014, 157, 395–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortier-Barrière, I.; Polard, P.; Campo, N. Direct Visualization of Horizontal Gene Transfer by Transformation in Live Pneumococcal Cells Using Microfluidics. Genes 2020, 11, 675. [Google Scholar] [CrossRef]
- Prudhomme, M.; Claverys, J.P.; Hakenbeck, R.; Chhatwal, G.S. The Molecular Biology of Streptococci. 2007. Available online: https://scholar.google.com/scholar_lookup?hl=en&publication_year=2007&;pages=519-524&author=M.+Prudhomme&author=J.P.+Claverys&title=The+Molecular+Biology+of+Streptococci (accessed on 26 May 2021).
- Martin, B.; García, P.; Castanié, M.P.; Glise, B.; Claverys, J.P. The recA gene of Streptococcus pneumoniae is part of a competence-induced operon and controls an SOS regulon. Dev. Boil. Stand. 1995, 85, 293–300. [Google Scholar]
- Martin, B.; Prudhomme, M.; Alloing, G.; Granadel, C.; Claverys, J.-P. Cross-regulation of competence pheromone production and export in the early control of transformation in Streptococcus pneumoniae. Mol. Microbiol. 2000, 38, 867–878. [Google Scholar] [CrossRef]
- Halpern, D.; Gruss, A.; Claverys, J.-P.; El Karoui, M. rexAB mutants in Streptococcus pneumoniae. Microbiology 2004, 150, 2409–2414. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.; Mortier-Barriere, I.; Khemici, V.; Polard, P. Fine-tuning cellular levels of DprA ensures transformant fitness in the human pathogen Streptococcus pneumoniae. Mol. Microbiol. 2018, 109, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.; Hauser, C.; Hermans, P.W.M.; Martin, B.; Polard, P.; Bootsma, H.J.; Claverys, J.-P. Fine-tuning of choline metabolism is important for pneumococcal colonization. Mol. Microbiol. 2016, 100, 972–988. [Google Scholar] [CrossRef] [Green Version]
- Weyder, M.; Prudhomme, M.; Bergé, M.; Polard, P.; Fichant, G. Dynamic Modeling of Streptococcus pneumoniae Competence Provides Regulatory Mechanistic Insights into Its Tight Temporal Regulation. Front. Microbiol. 2018, 9, 1637. [Google Scholar] [CrossRef]
- Chen, J.-D.; Morrison, D.A. Modulation of Competence for Genetic Transformation in Streptococcus pneumoniae. Microbiology 1987, 133, 1959–1967. [Google Scholar] [CrossRef] [Green Version]
- Cox, M.M. Regulation of Bacterial RecA Protein Function. Crit. Rev. Biochem. Mol. Biol. 2007, 42, 41–63. [Google Scholar] [CrossRef] [PubMed]
- Kowalczykowski, S.C. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb. Perspect. Biol. 2015, 7, a016410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michel, B.; Leach, D. Homologous Recombination—Enzymes and Pathways. EcoSal Plus 2012, 5. [Google Scholar] [CrossRef] [PubMed]
- Brown, N.C. 6-(p-Hydroxyphenylazo)-uracil: A Selective Inhibitor of Host DNA Replication in Phage-Infected Bacillus subtilis. Proc. Natl. Acad. Sci. USA 1970, 67, 1454–1461. [Google Scholar] [CrossRef] [Green Version]
- Johnston, C.; Caymaris, S.; Zomer, A.; Bootsma, H.J.; Prudhomme, M.; Granadel, C.; Hermans, P.W.M.; Polard, P.; Martin, B.; Claverys, J.-P. Natural Genetic Transformation Generates a Population of Merodiploids in Streptococcus pneumoniae. PLoS Genet. 2013, 9, e1003819. [Google Scholar] [CrossRef] [Green Version]
- Ogura, Y.; Imai, Y.; Ogasawara, N.; Moriya, S. Autoregulation of the dnaA-dnaN Operon and Effects of DnaA Protein Levels on Replication Initiation in Bacillus subtilis. J. Bacteriol. 2001, 183, 3833–3841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noirot-Gros, M.-F.; Velten, M.; Yoshimura, M.; McGovern, S.; Morimoto, T.; Ehrlich, S.D.; Ogasawara, N.; Polard, P.; Noirot, P. Functional dissection of YabA, a negative regulator of DNA replication initiation inBacillus subtilis. Proc. Natl. Acad. Sci. USA 2006, 103, 2368–2373. [Google Scholar] [CrossRef] [Green Version]
- Merrikh, H.; Grossman, A.D. Control of the replication initiator DnaA by an anti-cooperativity factor. Mol. Microbiol. 2011, 82, 434–446. [Google Scholar] [CrossRef] [Green Version]
- Soufo, C.D.; Soufo, H.J.D.; Noirot-Gros, M.-F.; Steindorf, A.; Noirot, P.; Graumann, P.L. Cell-Cycle-Dependent Spatial Sequestration of the DnaA Replication Initiator Protein in Bacillus subtilis. Dev. Cell 2008, 15, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Goranov, A.I.; Breier, A.M.; Merrikh, H.; Grossman, A.D. YabA ofBacillus subtiliscontrols DnaA-mediated replication initiation but not the transcriptional response to replication stress. Mol. Microbiol. 2009, 74, 454–466. [Google Scholar] [CrossRef] [Green Version]
- Velten, M.; McGovern, S.; Marsin, S.; Ehrlich, S.D.; Noirot, P.; Polard, P. A Two-Protein Strategy for the Functional Loading of a Cellular Replicative DNA Helicase. Mol. Cell 2003, 11, 1009–1020. [Google Scholar] [CrossRef]
- Seco, E.M.; Ayora, S. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication. Nucleic Acids Res. 2017, 45, 8302–8313. [Google Scholar] [CrossRef] [Green Version]
- Rannou, O.; Le Chatelier, E.; Larson, M.A.; Nouri, H.; Dalmais, B.; Laughton, C.; Jannière, L.; Soultanas, P. Functional interplay of DnaE polymerase, DnaG primase and DnaC helicase within a ternary complex, and primase to polymerase hand-off during lagging strand DNA replication in Bacillus subtilis. Nucleic Acids Res. 2013, 41, 5303–5320. [Google Scholar] [CrossRef] [Green Version]
- Sanders, G.M.; Dallmann, H.G.; McHenry, C.S. Reconstitution of the B. subtilis Replisome with 13 Proteins Including Two Distinct Replicases. Mol. Cell 2010, 37, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Marsin, S.; Lopes, A.; Mathieu, A.; Dizet, E.; Orillard, E.; Guérois, R.; Radicella, J.P. Genetic dissection of Helicobacter pylori AddAB role in homologous recombination. FEMS Microbiol. Lett. 2010, 311, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Michel, B.; Sinha, A.K.; Leach, D.R.F. Replication Fork Breakage and Restart in Escherichia coli. Microbiol. Mol. Biol. Rev. 2018, 82, 00013. [Google Scholar] [CrossRef] [Green Version]
- Bergé, M.; Mercy, C.; Mortier-Barrière, I.; VanNieuwenhze, M.S.; Brun, Y.; Grangeasse, C.; Polard, P.; Campo, N. A programmed cell division delay preserves genome integrity during natural genetic transformation in Streptococcus pneumoniae. Nat. Commun. 2017, 8, 1621. [Google Scholar] [CrossRef] [PubMed]
- Engelmoer, D.J.P.; Rozen, D.E. Competence Increases Survival during Stress in Streptococcus pneumoniae. Evolution 2011, 65, 3475–3485. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khemici, V.; Prudhomme, M.; Polard, P. Tight Interplay between Replication Stress and Competence Induction in Streptococcus pneumoniae. Cells 2021, 10, 1938. https://doi.org/10.3390/cells10081938
Khemici V, Prudhomme M, Polard P. Tight Interplay between Replication Stress and Competence Induction in Streptococcus pneumoniae. Cells. 2021; 10(8):1938. https://doi.org/10.3390/cells10081938
Chicago/Turabian StyleKhemici, Vanessa, Marc Prudhomme, and Patrice Polard. 2021. "Tight Interplay between Replication Stress and Competence Induction in Streptococcus pneumoniae" Cells 10, no. 8: 1938. https://doi.org/10.3390/cells10081938
APA StyleKhemici, V., Prudhomme, M., & Polard, P. (2021). Tight Interplay between Replication Stress and Competence Induction in Streptococcus pneumoniae. Cells, 10(8), 1938. https://doi.org/10.3390/cells10081938