HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits
Abstract
:1. Introduction
2. Basal Dopamine Concentrations in the Central Nervous System
2.1. High-Performance Liquid Chromatography (HPLC)
2.2. Microdialysis
2.3. Fast-Scan Cyclic Voltammetry (FSCV)
2.4. G Protein-Coupled Receptor (GPCR) Biosensors
2.5. General Experimental Considerations
3. Chronic HIV-1 Results in Decreased Dopamine
4. HIV-1 Clinical Symptoms Reflect a Hypodopaminergic State
4.1. Pre-Attentive Processes
4.2. Attention
4.3. Apathy
5. Role of cART in Dopaminergic System Dysfunction
5.1. Drug Discrimination
5.2. Sensitization
5.3. Drug Self-Administration
5.4. Conditioned Place Preference
5.5. Conclusions
6. Mechanistic Implications for Low Dopamine Levels
6.1. Homeostatic Conditions
6.2. Disturbances of Brain Homeostasis: HIV-1
7. Conclusions
- Dopamine values are dependent upon not only brain region, but also experimental approach (i.e., HPLC, microdialysis, or FSCV). Substantial variability in basal dopamine values may reflect differences in experimental parameters, and innovative genetic fluorescent probes may be a future direction for assessing dopamine signaling.
- Results overwhelmingly support decreased dopamine concentrations following chronic HIV-1 viral protein exposure in either HIV-1 seropositive humans or biological systems utilized to model HIV-1. Therefore, future therapeutic approaches and models for the neurological complications of HIV-1 need to focus on rectifying decreased dopamine levels.
- The clinical symptoms, including cognitive impairments and apathetic behaviors, reflect persistent dopamine deficits in HIV-1 seropositive individuals. There is no clinical evidence supporting increased dopamine following chronic HIV-1 infections.
- To date, there is no compelling evidence that cART has any direct pharmacological action on the dopaminergic system—dopamine deficits persist in the current era of HIV-1 therapeutics.
- HIV-1 infection likely leads to microglial dysfunction, which may have mechanistic implications for a chronic bidirectional interaction between low dopamine levels and synaptic dysfunction, implicated as neural mechanisms of HAND.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snider, W.D.; Simpson, D.M. Neurological complications of acquired immune deficiency syndrome: Analysis of 50 patients. Ann. Neurol. 1983, 14, 403–418. [Google Scholar] [CrossRef] [PubMed]
- Belman, A.L.; Ultmann, M.H. Neurological complications in infants and children with acquired immune deficiency syndrome. Ann. Neurol. 1985, 18, 560–566. [Google Scholar] [CrossRef]
- Navia, B.A.; Jordan, B.D. The AIDS dementia complex: I. Clinical features. Ann. Neurol. 1986, 19, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Barré-Sinoussi, F.; Chermann, J.C. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 1983, 220, 868–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallo, R.C.; Salahuddin, S.Z. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 1984, 224, 500–503. [Google Scholar] [CrossRef]
- Resnick, L.; Berger, J.R. Early penetration of the blood-brain-barrier by HIV. Neurology 1988, 38. [Google Scholar] [CrossRef]
- Shaw, G.M.; Harper, M.E. HTLV-III infection in brains of children and adults with AIDS encephalopathy. Science 1985, 227, 177–182. [Google Scholar] [CrossRef]
- Ho, D.D.; Rota, T.R. Isolation of HTLV-III from cerebrospinal fluid and neural tissues of patients with neurologic syndromes related to the acquired immunodeficiency syndrome. N. Engl. J. Med. 1985, 313, 1493–1497. [Google Scholar] [CrossRef]
- Levy, J.A.; Shimabukuro, J. Isolations of AIDS-associated retroviruses from cerebrospinal fluid and brain of patients with neurological symptoms. Lancet 1985, 2, 586–588. [Google Scholar] [CrossRef]
- Navia, B.A.; Price, R.W. The acquired immunodeficiency syndrome dementia complex as the presenting or sole manifestation of human immunodeficiency virus infection. Arch. Neurol. 1987, 44, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Tross, S.; Price, R.W. Neuropsychological characterization of the AIDS dementia complex: A preliminary report. AIDS 1988, 2, 81–88. [Google Scholar] [CrossRef]
- Navia, B.A.; Cho, E.S. The AIDS dementia complex: II. Neuropathology. Ann. Neurol. 1986, 19, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Kieburtz, K.D.; Epstein, L.G. Excitotoxicity and dopaminergic dysfunction in the acquired immunodeficiency syndrome dementia complex. Therapeutic implications. Arch. Neurol. 1991, 48, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.R.; Kumar, M. Cerebrospinal fluid dopamine in HIV-1 infection. AIDS 1994, 8, 67–71. [Google Scholar] [CrossRef]
- Sardar, A.M.; Czudek, C. Dopamine deficits in the brain: The neurochemical basis of parkinsonian symptoms in AIDS. Neuroreport 1996, 7, 910–912. [Google Scholar] [CrossRef]
- Larsson, M.; Hagberg, L. Cerebrospinal fluid catecholamine metabolites in HIV-infected patients. J. Neursci. Res. 1991, 28, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Di Rocco, A.; Bottiglieri, T. Decreased homovanilic acid in cerebrospinal fluid correlates with impaired neuropsychologic function in HIV-1-infected patients. Clin. Neuropharmacol. 2000, 23, 190–194. [Google Scholar] [CrossRef]
- Silvers, J.M.; Aksenov, M.Y. Dopaminergic marker proteins in the substantia nigra of human immunodeficiency virus type 1-infected brains. J. Neurovirol. 2006, 12, 140–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitsuya, H.; Weinhold, K.J. 3′-Azido-3′-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA 1985, 82, 7096–7100. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, F.A.; Bigley, J.W. Neuropsychological outcome of zidovudine (AZT) treatment of patients with AIDS and AIDS-related complex. N. Engl. J. Med. 1988, 319, 1573–1578. [Google Scholar] [CrossRef]
- Portegies, P.; de Gans, J. Declining incidence of AIDS dementia complex after introduction of zidovudine treatment. BMJ 1989, 299, 819–821. [Google Scholar] [CrossRef] [Green Version]
- Sidtis, J.J.; Gatsonis, C. Zidovudine treatment of the AIDS dementia complex: Results of a placebo-controlled trial. AIDS Clinical Trials Group. Ann. Neurol. 1993, 33, 343–349. [Google Scholar] [CrossRef]
- Saylor, D.; Dickiens, A.M. HIV-associated neurocognitive disorder—pathogenesis and prospects for treatment. Nat. Rev. Neurol. 2016, 12, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Letendre, S.L.; Ellis, R.J. Neurologic complications of HIV disease and their treatment. Top HIV Med. 2010, 18, 45–55. [Google Scholar]
- McArthur, J.C.; Steiner, J. Human immunodeficiency virus-associated neurocognitive disorders: Mind the gap. Ann. Neurol. 2010, 67, 699–714. [Google Scholar] [PubMed]
- Heaton, R.K.; Franklin, D.R. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. J. Neurovirol. 2011, 17, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Kamat, R.; Woods, S.P. Implications of apathy for everyday functioning outcomes in persons living with HIV infection. Arch. Clin. Neuropsychol. 2012, 27, 520–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.M.; Fernandez, J.B. Human immunodeficiency virus type 1 in the central nervous system leads to decreased dopamine in different regions of postmortem human brains. J. Neurovirol. 2009, 15, 257–274. [Google Scholar] [CrossRef]
- Kumar, A.M.; Ownby, R.L. Human immunodeficiency virus infection in the CNS and decreased dopamine availability: Relationship with neuropsychological performance. J. Neurovirol. 2011, 17, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Denton, A.R.; Samaranayake, S.A. Selective monoaminergic and histaminergic circuit dysregulation following long-term HIV-1 protein exposure. J. Neurovirol. 2019, 25, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Global HIV & AIDS Statistics—Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 4 July 2021).
- Blaschko, H. Metabolism and storage of biogenic amines. Experientia 1957, 13, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Montagu, K.A. Catechol compounds in rat tissues and in brains of different animals. Nature 1957, 180, 244–245. [Google Scholar] [CrossRef]
- Carlsson, A.; Lindqvist, M. On the presence of 3-hydroxytyramine in brain. Science 1958, 127, 471. [Google Scholar] [CrossRef]
- Bertler, A.; Rosengren, E. Occurrence and distribution of dopamine in brain and other tisuses. Experientia 1959, 15, 10–11. [Google Scholar] [CrossRef]
- Marsden, C. Dopamine: The rewarding years. Br. J. Pharmacol. 2006, 147, S136–S144. [Google Scholar] [CrossRef]
- Egenrieder, L.; Mitricheva, E. No basal or drug-induced sex differences in striatal dopaminergic levels: A cluster and meta-analysis of rat microdialysis studies. J. Neurochem. 2020, 152, 482–492. [Google Scholar] [CrossRef]
- Liu, C.; Goel, P. Spatial and temporal scales of dopamine transmission. Nat. Rev. Neurosci. 2021, 22, 345–358. [Google Scholar] [CrossRef]
- Elchisak, M.A.; Cosgrove, S.E. Distribution of free and conjugated dopamine in monkey brain, peripheral tissues and cerebrospinal fluid determined by high-performance liquid chromatography. Brain Res. 1983, 279, 171–176. [Google Scholar] [CrossRef]
- Bradbury, A.J.; Costall, B. Laterality of dopamine function and neuroleptic action in the amygdala in the rat. Neuropharmacology 1985, 24, 1163–1170. [Google Scholar] [CrossRef]
- Ebinger, G.; Bruyland, M. Distribution of biogenic amines and their catabolites in brains from patients with Alzheimer’s disease. J. Neurol. Sci. 1987, 77, 267–283. [Google Scholar] [CrossRef]
- Carvalho, M.C.; Albrechet-Souza, L. Changes in biogenic amine content of the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens of rats submitted to single and repeated sessions of the elevated plus-maze test. Braz. J. Med. Biol. Res. 2005, 38, 1857–1866. [Google Scholar] [CrossRef] [Green Version]
- Fadok, J.P.; Darvas, M. Long-term memory for pavlovian fear conditioning requires dopamine in the nucleus accumbens and basolateral amygdala. PLoS ONE. 2010, 5, e12751. [Google Scholar] [CrossRef]
- Inglis, F.M.; Moghaddam, B. Dopaminergic innervation of the amygdala is highly responsive to stress. J. Neurochem. 1999, 72, 1088–1094. [Google Scholar] [CrossRef]
- Weiss, F.; Maldonado-Vlaar, C.S. Control of cocaine-seeking behavior by drug-associated stimuli in rats: Effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc. Natl. Acad. Sci. USA 2000, 97, 4321–4326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tor-Agbidye, J.; Yamamoto, B. Seizure activity and hyperthermia potentiate the increases in dopamine and serotonin extracellular levels in the amygdala during exposure to d-amphetamine. Toxicol. Sci. 2001, 60, 103–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adachi, S.; Endo, Y. Increased levels of extracellular dopamine in the nucleus accumbens and amygdala of rats by ingeting a low concentration of a long-chain Fatty Acity. Biosci. Biotechnol. Biochem. 2013, 77, 2175–2180. [Google Scholar] [CrossRef] [Green Version]
- Juorio, A.V.; Chedrese, P.J. The concentration of dopamine and related monoamines in arteries and some other tissues of the sheep. Comp. Biochem. Phsyiol. C Comp. Pharmacol. Toxicol. 1990, 95, 35–37. [Google Scholar] [CrossRef]
- Davis, D.G.; Sparks, D.L. Dopaminergic and serotonergic neurotransmitters in bone marrow transplant patients. J. Neurol. Sci. 1995, 130, 95–103. [Google Scholar] [CrossRef]
- Wilson, J.M.; Levey, A.I. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology 1996, 47, 718–726. [Google Scholar] [CrossRef]
- Mushoff, F.; Schmidt, P. Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction and gas chromatography/mass spectrometry. Forensic Sci. Int. 2000, 113, 359–366. [Google Scholar] [CrossRef]
- Elsworth, J.D.; Jentsch, J.D. Cozapine normalizes prefrontal cortex dopamine transmission in monkeys subchronically expoed to phencyclidine. Neuropsychopharmacology 2008, 33, 491–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajput, A.H.; Sitte, H.H. Globus pallidus dopamine and Parkinson motor subtypes: Clinical and brain biochemical correlation. Neurology 2008, 70, 1403–1410. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Sullivan, P. Catechols in post-mortem brain of patients with Parkinson disease. Eur. J. Neurol. 2011, 18, 703–710. [Google Scholar] [CrossRef]
- Robinson, T.E.; Camp, D.M. Does amphetamine preferentially increase the extracellular concentration of dopamine in the mesolimbic system of freely moving rats? Neuropsychopharmacology 1990, 3, 163–173. [Google Scholar]
- Bosse, K.E.; Mathews, T.A. Ethanol-induced increases in extracellular dopamine are blunted in brain-derived neurotrophic factor heterozygous mice. Neurosci. Lett. 2011, 489, 172–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucas, L.A.C.; McMillen, B.A. Differences in brain area concentrations of dopamine and serotonin in Myers’ High Ethanol Preferring (mHEP) and outbred rats. J. Neural Transm. 2002, 109, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Wisman, L.A.B.; Sahin, G. Functional convergence of dopaminergic and cholinergic input is critical for hippocampus-dependent working memory. J. Neurosci. 2008, 28, 7797–7807. [Google Scholar] [CrossRef]
- Bromek, E.; Haduch, A. Cytochrome P450 mediates dopamine formation in the brain in vivo. J. Neurochem. 2011, 118, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.L.; Davis, J.F. Orexin signaling in the paraventricular thalamic nucleus modulates mesolimbic dopamine and hedonic feeding in the rat. Neuroscience 2012, 210, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Yang, J. A new stress model, a scream sound, alters learning and monoamine levels in rat brain. Physiol. Behav. 2014, 123, 105–113. [Google Scholar] [CrossRef]
- Rysz, M.; Bromek, E. Damage to the brain serotonergic system increases the expression of liver cytochrome P450. Drug Metab. Dispos. 2015, 43, 1345–1352. [Google Scholar] [CrossRef] [Green Version]
- Moghaddam, B.; Bunney, B.S. Ionic composition of microdialysis perfusion solution alters the pharmacological responsiveness and basal outflow of striatal dopamine. J. Neurochem. 1989, 53, 652–654. [Google Scholar] [CrossRef]
- Maisonneuve, I.M.; Keller, R.W. Interactions between ibogaine, a potential anti-addictive agent, and morphine: An in vivo microdialysis study. Eur. J. Pharmacol. 1991, 199, 35–42. [Google Scholar] [CrossRef]
- Shoblock, J.R.; Sullivan, E.B. Neurochemical and behavioral differences between d-methamphetamine and d-amphetamine in rats. Psychopharmacology 2003, 165, 359–369. [Google Scholar] [CrossRef]
- Salvatore, M.F.; Pruett, B.S. Comprehensive profiling of dopamine regulation in substantia nigra and ventral tegmental area. J. Vis. Exp. 2012, 66, e4171. [Google Scholar] [CrossRef] [PubMed]
- Winner, B.M.; Zhang, H. Metabolism of dopamine in nucleus accumbens astrocytes is preserved in aged mice exposed to MPTP. Front. Aging Neurosci. 2017, 9, 410. [Google Scholar] [CrossRef] [Green Version]
- Bergamini, G.; Mechtersheimer, J. Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice. Neurobiol. Stress 2018, 8, 42–56. [Google Scholar] [CrossRef]
- Hernandez, L.; Hoebel, B.G. Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sci. 1988, 42, 1705–1712. [Google Scholar] [CrossRef]
- Pettit, H.O.; Pan, H.T. Extracellular concentrations of cocaine and dopamine are enhanced during chronic cocaine administration. J. Neurochem. 1990, 55, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Pothos, E.; Rada, P. Dopamine microdialysis in the nucleus accumbens during acute and chronic morphine, naloxone-precipitated withdrawal and clonidine treatment. Brain Res. 1991, 566, 348–350. [Google Scholar] [CrossRef]
- Parsons, L.H.; Justice, J.B. Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. J. Neurochem. 1992, 58, 212–218. [Google Scholar] [CrossRef]
- Maisonneuve, I.M.; Glick, S.D. Interactions between ibogaine and cocaine in rats: In vivo microdialysis and motor behavior. Eur. J. Pharmacol. 1992, 212, 263–266. [Google Scholar] [CrossRef]
- Chapman, M.A.; See, R.E. Neurotensin increases extracellular striatal dopamine levels in vivo. Neuropeptides 1992, 22, 175–183. [Google Scholar] [CrossRef]
- Chen, J.; Marmur, R. Ventral tegmental microinjection of delta 9-tetrahydrocannabinol enhances ventral tegmental somatodendritic dopamine levels but not forebrain dopamine levels: Evidence for local neural action by marijuana’s psychoactive ingredient. Brain Res. 1993, 621, 65–70. [Google Scholar] [CrossRef]
- Blanchard, B.A.; Steindorf, S. Sex differences in ethanol-induced dopamine release in nucleus accumbens and in ethanol consumption in rats. Alcohol. Clin. Exp. Res. 1993, 17, 968–973. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakis, Y.; Spyraki, C. Effect of morphine applied by intrapallidal microdialysis on the release of dopamine in the nucleus accumbens. Brain Res. Bull. 1994, 34, 275–282. [Google Scholar] [CrossRef]
- Hemby, S.E.; Martin, T.J. The effects of intravenous heroin administration on extracellular nucleus accumbens dopamine concentrations as determined by in vivo microdialysis. J. Pharmacol. Exp. Ther. 1995, 273, 591–598. [Google Scholar] [PubMed]
- Blanchard, B.A.; Glick, S.D. Sex differences in mesolimbic dopamine responses to ethanol and relationship to ethanol intake in rats. Recent Dev. Alcohol. 1995, 12, 231–241. [Google Scholar] [PubMed]
- Campbell, A.D.; McBride, W.J. Serotonin-3 receptor and ethanol-stimulated dopamine release in the nucleus accumbens. Pharmacol. Biochem. Behav. 1995, 51, 835–842. [Google Scholar] [CrossRef]
- Weiss, F.; Parsons, L.H. Ethanol self-administration restores withdrawal-associated deficiencies in accumbal dopamine and 5-hydroxytryptamine release in dependent rats. J. Neurosci. 1996, 16, 3474–3485. [Google Scholar] [CrossRef] [Green Version]
- Pearl, S.M.; Maisonneuve, I.M. Prior morphine exposure enhances ibogaine antagonism of morphine-induced dopamine release in rats. Neuropharmacology 1996, 35, 1779–1784. [Google Scholar] [CrossRef]
- Kohl, R.R.; Katner, J.S. Ethanol and negative feedback regulation of mesolimbic dopamine release in rats. Psychopharmacology 1998, 139, 79–85. [Google Scholar] [CrossRef]
- Yan, Q.S. Extracellular dopamine and serotonin after ethanol monitored with 5-minute microdialysis. Alcohol 1999, 19, 1–7. [Google Scholar] [CrossRef]
- Maisonneuve, I.M.; Glick, S.D. Attenuation of the reinforcing efficacy of morphine by 18-methoxycoronaridine. Eur. J. Pharmacol. 1999, 383, 15–21. [Google Scholar] [CrossRef]
- Yim, H.J.; Gonzales, R.A. Ethanol-induced increases in dopamine extracellular concentration in rat nucleus accumbens are accounted for by increased release and not uptake inhibition. Alcohol 2000, 22, 107–115. [Google Scholar] [CrossRef]
- Szumlinski, K.K.; McCafferty, C.A. Interactions between 18-methoxycoronaridine (18-MC) and cocaine: Dissociation of behavioural and neurochemical sensitization. Brain Res. 2000, 871, 245–248. [Google Scholar] [CrossRef]
- Szumlinski, K.K.; Maisonneuve, I.M. The potential anti-addictive agent, 18-methoxycoronaridine, blocks the sensitized locomotor and dopamine responses produced by repeated morphine treatment. Brain Res. 2000, 864, 13–23. [Google Scholar] [CrossRef]
- Johnson, D.W.; Eodice, P. Decreased accumbens dopamine release after cocaine challenge in behaviorally sensitized female rats. Pharmacol. Biochem. Behav. 2000, 65, 659–664. [Google Scholar] [CrossRef]
- Fadda, P.; Scherma, M. Baclofen antagonizes nicotine-, cocaine-, and morphine-induced dopamine release in the nucleus accumbens of rat. Synapse 2003, 50. [Google Scholar] [CrossRef] [PubMed]
- Steinmiller, C.L.; Maisonneuve, I.M. Effects of dextromethorphan on dopamine release in the nucleus accumbnes: Interactions with morphine. Pharmacol. Biochem. Behav. 2003, 74, 803–810. [Google Scholar] [CrossRef]
- Kosten, T.A.; Zhang, X.Y. Chronic neonatal isolation stress enhances cocaine-induced increases in ventral striatal dopamine levels in rat pups. Brain Res. Dev. Brain Res. 2003, 141, 109–116. [Google Scholar] [CrossRef]
- Smith, J.E.; Co, C. Self-administered heroin and cocaine combinations in the rat: Additive reinforcing effects-supra-additive effects on nucleus accumbens extracellular dopamine. Neuropsychopharmacology 2006, 31, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Geiger, B.M.; Haburcak, M. Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 2009, 159, 1193–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgkvist, A.; Malmlöf, T. Dopamine in the hippocampus is cleared by the norepinephrine transporter. Int. J. Neuropsychopharmacol. 2012, 15, 531–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCallum, S.E.; Cowe, M.A. α3β4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo. Neuropharmacology 2012, 63, 434–440. [Google Scholar] [CrossRef] [Green Version]
- Grotewold, S.K.; Wall, V.L. Effects of cocaine combined with a social cue on conditioned place preference and nucleus accumbens monoamines after isolation rearing in rats. Psychopharmacology 2014, 231, 3041–3053. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J.A.; Jagannathan, L. Sex differences in the effects of estradiol in the nucleus accumbens and striatum on the response to cocaine: Neurochemistry and behavior. Drug Alcohol Depend. 2014, 135, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Eggan, B.L.; McCallum, S.E. 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine. Behav. Brain Res. 2016, 307, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Roitman, M.F.; Wheeler, R.A. Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli. Nat. Neurosci. 2008, 11, 1376–1377. [Google Scholar] [CrossRef]
- Owesson-White, C.A.; Roitman, M.F. Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J. Neurochem. 2012, 121, 252–262. [Google Scholar] [CrossRef]
- Dreyer, J.K.; Vander Weele, C.M. Functionally distinct dopamine signals in nucleus accumbens core and shell in the freely moving rat. J. Neurosci. 2016, 36, 98–112. [Google Scholar] [CrossRef]
- Atcherley, C.W.; Wood, K.M. The coaction of tonic and phasic dopamine dynamics. Chem. Commun. 2015, 51, 2235–2238. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.A.; Rodeberg, N.T. Measurement of basal neurotransmitter levels using convolution-based nonfaradaic current removal. Anal. Chem. 2018, 90, 7181–7189. [Google Scholar] [CrossRef] [PubMed]
- Kita, T.; Matsunari, Y. Methamphetamine-induced striatal dopamine release, behavior changes and neurotoxicity in BALB/c mice. Int. J. Dev. Neurosci. 2000, 18, 521–530. [Google Scholar] [CrossRef]
- Bałkowiec-Iskra, E.; Kurkowska-Jastrzebska, I. MPTP-induced central dopamine depletion exacerbates experimental autoimmune encephalomyelitis (EAE) in C57BL mice. Inflamm. Res. 2007, 56, 311–317. [Google Scholar] [CrossRef]
- Petzinger, G.M.; Walsh, J.P. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J. Neurosci. 2007, 27, 5291–5300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiercz, R.; Grzelińska, Z. Catecholamine levels in the brain of rats exposed by inhalation to benzalkonium chloride. Int. J. Occup. Med. Environ. Health 2009, 22, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Villar-Cheda, B.; Dominguez-Meijide, A. Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiol. Aging 2014, 35, 1726–1738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikishina, Y.O.; Sapronova, A.Y. The effect of dopamine secreted by the brain into the systemic circulation on prolactin synthesis by the pituitary gland in ontogenesis. Acta Naturae 2016, 8, 111–117. [Google Scholar] [CrossRef]
- Garrido-Gil, P.; Rodriguez-Perez, A.I. Bidirectional neural interaction between central dopaminergic and gut lesions in Parkinson’s disease models. Mol. Neurobiol. 2018, 55, 7297–7316. [Google Scholar] [CrossRef]
- Bradberry, C.W. Acute and chronic dopamine dynamics in a nonhuman primate model of recreational cocaine use. J. Neurosci. 2000, 20, 7109–7115. [Google Scholar] [CrossRef] [Green Version]
- Shou, M.; Ferrario, C.R. Monitoring dopamine in vivo by microdialysis sampling and on-line CE-laser-induced fluorescence. Anal. Chem. 2006, 78, 6717–6725. [Google Scholar] [CrossRef]
- Zhang, Y.; Picetti, R. Behavioral and neurochemical changes induced by oxycodone differ between adolescent and adult mice. Neuropsychopharmacology 2009, 34, 912–922. [Google Scholar] [CrossRef] [PubMed]
- James, A.T.; Martin, A.J.P. Gas-liquid partition chromatography: The separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem. J. 1952, 50, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Huber, J.F.; Hulsman, J.A. A study of liquid chromatography in columns. The time of separation. Anal. Chim. Acta 1967, 38, 305–313. [Google Scholar] [CrossRef]
- JOVE Science Education Database. High-performance liquid chromatography (HPLC). In Analytical Chemistry; JOVE: Cambridge, MA, USA, 2021. [Google Scholar]
- Sasa, S.; Blank, C.L. Determination of serotonin and dopamine in mouse brain tissue by high performance liquid chromatography with electrochemical detection. Anal. Chem. 1977, 49, 354–359. [Google Scholar] [CrossRef]
- Barwick, V.J. Sources of uncertainty in gas chromatography and high-performance liquid chromatography. J. Chromatogr. A 1999, 849, 13–33. [Google Scholar] [CrossRef]
- Knox, J.H.; Jurand, J. Separation of catecholamines and their metabolites by adsorption, ion-pair and soap chromatography. J. Chromatogr. A 1976, 125, 89–101. [Google Scholar] [CrossRef]
- Magnusson, O.; Nilsson, L.B. Simultaneous determination of dopamine, DOPAC and homovanillic acid. Direct injection of supernatants from brain tissue homogenates in a liquid chromatography—Electochemical detection system. J. Chromatogr. B Biomed. Sci. Appl. 1980, 221, 237–247. [Google Scholar] [CrossRef]
- Kilts, C.D.; Breese, G.R. Simultaneous quantification of dopamine, 5-hydroxytryptamine and four metabolically related compounds by means of reversed-phase high-performance liquid chromatography with electrochemical detection. J. Chromatogr. B Biomed. Sci. Appl. 1981, 225, 347–357. [Google Scholar] [CrossRef]
- Kontur, P.; Dawson, R. Manipulation of mobile phase parameters for the HPLC separation of endogenous monoamines in rat brain tissue. J. Neurosci. Methods 1984, 11, 5–18. [Google Scholar] [CrossRef]
- Bartlett, W.A. Effects of mobile phase composition on the chromatographic and electrochemical behaviour of catecholamines and selected metabolites; Reversed-phase ion-paired high-performance liquid chromatography using multiple-electrode detection. J. Chromatogr. B Biomed. Sci. Appl. 1989, 493, 1–14. [Google Scholar] [CrossRef]
- Rossetti, Z.L.; Mercuro, G. A study of the parameters affecting flow gradient analysis of catecholamines, DOPA and DOPAC by ion pair liquid chromatography with electrochemical detection. Life Sci. 1983, 33, 2387–2397. [Google Scholar] [CrossRef]
- Ungerstedt, U.; Pycock, C. Functional correlates of dopamine neurotransmission. Bull. Schweiz. Akad. Med. Wiss. 1974, 30, 44–55. [Google Scholar] [PubMed]
- Ungerstedt, U.; Herrera-Marschitz, M. Dopamine synaptic mechanisms reflected in studies combining behavioural recordings and brain dialysis. In Advances in Dopamine Research, 1st ed.; Kohsaka, M., Shohmori, T., Eds.; Pergamon Press: Oxford, UK, 1982; pp. 219–231. [Google Scholar]
- Imperato, A.; Di Chiara, G. Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: A new method for the study of the in vivo release of endogenous dopamine and metabolites. J. Neurosci. 1984, 4, 966–977. [Google Scholar] [CrossRef] [PubMed]
- Chefer, V.I.; Thompson, A.C. Overview of brain microdialysis. Curr. Protoc. Neurosci. 2009, 7. [Google Scholar] [CrossRef] [Green Version]
- Peters, A.; Palay, S.L. The Fine Structure of the Nervous System: The Neurons and Supporting Cells, 3rd ed.; Oxford University Press: New York, NY, USA, 1991. [Google Scholar]
- Mitala, C.M.; Wang, Y. Impact of microdialysis probes on vasculature and dopamine in the rat striatum: A combined fluorescence and voltammetric study. J. Neurosci. Methods 2008, 174, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Jaquins-Gerstl, A.; Michael, A.C. Comparison of the brain penetration injury associated with microdialysis and voltammetry. J. Neurosci. Methods 2009, 183, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.E.; Singhal, D. Quantitative assessment of blood-brain barrier damage during microdialysis. J. Pharmacol. Exp. Ther. 1996, 277, 1167–1176. [Google Scholar]
- Clapp-Lilly, K.L.; Roberts, R.C. An ultrastructural analysis of tissue surrounding a microdialysis probe. J. Neurosci. Methods 1999, 90, 129–142. [Google Scholar] [CrossRef]
- Holson, R.R.; Gazzara, R.A. Declines in stimulated striatal dopamine release over the first 32 h following microdialysis probe insertion: Generalization across releasing mechanisms. Brain Res. 1998, 808, 182–189. [Google Scholar] [CrossRef]
- Borland, L.M.; Shi, G. Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J. Neurosci. Methods 2005, 146, 149–158. [Google Scholar] [CrossRef]
- Yang, H.; Michael, A.C. In vivo fast-scan cyclic voltammetry of dopamine near microdialysis probes. In Electrochemical Methods for Neuroscience; Michael, A.C., Borland, L.M., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007; Chapter 22. [Google Scholar]
- Nesbitt, K.M.; Jaquins-Gerstl, A. Pharmacological mitigation of tissue damage during brain microdialysis. Anal. Chem. 2013, 85, 8173–8179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesbitt, K.M.; Varner, E.L. Microdialysis in the rat striatum: Effects of 24 h dexamethasone retrodialysis on evoked dopamine release and penetration injury. ACS Chem. Neurosci. 2015, 6, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.H.; Ngernsutivorakul, T. Microfabrication and in vivo performance of a microdialysis probe with embedded membrane. Anal. Chem. 2016, 88, 1230–1237. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.H.; Lai, Y.J. Effects of different perfusion medium on the extracellular basal concentration of dopamine in striatum and medial prefrontal cortex: A zero-net flux microdialysis study. Neurosci. Lett. 1997, 225, 197–200. [Google Scholar] [CrossRef]
- Osborne, P.G.; O’Connor, W.T. Effect of varying the ionic concentration of a microdialysis perfusate on basal striatal dopamine levels in awake rats. J. Neurochem. 1991, 56, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Krebs-Kraft, D.L.; Frantz, K.J. In Vivo Microdialysis: A Method for Sampling Extracellular Fluid in Discrete Brain Regions. In Handbook of Neurochemistry and Molecular Neurobiology; Lajtha, A., Baker, G., Eds.; Springer: Boston, MA, USA, 2007; pp. 219–256. [Google Scholar]
- Vulto, A.G.; Sharp, T. Rapid postmortem increase in extracellular dopamine in the rat brain as assessed by brain microdialysis. J. Neurochem. 1988, 51, 746–749. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Mora, J.L.; Miadment, N.T. Post-mortem dopamine dynamics assessed by voltammetry and microdialysis. Brain Res. Bull. 1989, 23, 323–327. [Google Scholar] [CrossRef]
- Takahashi, A.; Ikarashi, Y. Dopamine output upon death reflects intraneuronal aspects while alive: Accumulation of releasable dopamine during tetrodotoxin perfusion. Neurosci. Res. 1993, 18, 45–51. [Google Scholar] [CrossRef]
- Shen, Y.; Ye, M.Y. Determination of the stability of dopamine in aqueous solutions by high performance liquid chromatography. J. Liq. Chromatogr. 1994, 17, 1557–1565. [Google Scholar] [CrossRef]
- El-Sherbeni, A.A.; Stocco, M.R. Addressing the instability issue of dopamine during microdialysis: The determination of dopamine, serotonin, methamphetamine and its metabolites in rat brain. J. Chromatogr. A 2020, 1627, 461403. [Google Scholar] [CrossRef]
- Ferris, M.J.; España, R.A. Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc. Natl. Acad. Sci. USA 2014, 111, E2751–E2759. [Google Scholar] [CrossRef] [Green Version]
- Tang, A.; Bungay, P.M. Characterization of probe and tissue factors that influence interpretation of quantitative microdialysis experiments for dopamine. J. Neurosci. Methods 2003, 126, 1–11. [Google Scholar] [CrossRef]
- Millar, J.; Armstrong-James, M. Polarographic assay of iontophoretically applied dopamine and low-noise unit recording using a multibarrel carbon fibre microelectrode. Brain Res. 1981, 205, 419–424. [Google Scholar] [CrossRef]
- Millar, J.; Stamford, J.A. Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the median forebrain bundle. Eur. J. Phamarcol. 1985, 109, 341–348. [Google Scholar] [CrossRef]
- Fortin, S.M.; Cone, J.J. Sampling phasic dopamine signaling with fast-scan cyclic voltammetry in awake, behaving rats. Curr. Protoc. Neurosci. 2015, 70, 7.25.1–7.25.20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.L.; Venton, B.J. Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin. Chem. 2003, 49, 1763–1773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, A.G.; Bigelow, J.C. Direct in vivo monitoring of dopamine released from two striatal compartments in the rat. Science 1983, 221, 169–171. [Google Scholar] [CrossRef]
- Heien, M.L.; Johnson, M.A. Resolving neurotransmitters detected by fast-scan cyclic voltammetry. Anal. Chem. 2004, 76, 5697–5704. [Google Scholar] [CrossRef]
- Howell, J.O.; Kuhr, W.G. Background subtraction for rapid scan voltammetry. J. Electroanal. Chem. Interfacial Electrochem. 1986, 209, 77–90. [Google Scholar] [CrossRef]
- Oh, Y.; Park, C. Monitoring in vivo changes in tonic extracellular dopamine level by charge-balancing multiple waveform fast-scan cyclic voltammetry. Anal. Chem. 2016, 88, 10962–10970. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Heien, M.L. Tracking tonic dopamine levels in vivo using multiple cyclic square wave voltammetry. Biosens. Bioelectron. 2018, 121, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Patriarchi, T.; Cho, J.R. Ultrafast neuronal imaging of dopamine dynapics with designed genetically encoded sensors. Science 2018, 360, eaat4422. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Zeng, J. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 2018, 174, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Patriarchi, T.; Mohebi, A. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat. Methods 2020, 17, 1147–1155. [Google Scholar] [CrossRef]
- Sun, F.; Zhou, J. Next-generation GRBA sensors for monitoring dopaminergic activity in vivo. Nat. Methods 2020, 17, 1156–1166. [Google Scholar] [CrossRef]
- Labouesse, M.A.; Cola, R.B. GPCR-based dopamine sensors—A detailed guide to inform sensor choice for in vivo imaging. Int. J. Mol. Sci. 2020, 21, 8048. [Google Scholar] [CrossRef]
- Mohebi, A.; Pettibone, J.R. Dissociable dopamine dynamics for learning and motivation. Nature 2019, 570, 65–70. [Google Scholar] [CrossRef]
- Gerhardt, G.A.; Maloney, R.E. Microdialysis studies of basal levels and stimulus-evoked overflow of dopamine and metabolites in the striatum of young and aged Fischer 344 rats. Brain Res. 1999, 816, 68–77. [Google Scholar] [CrossRef]
- Paulson, P.E.; Robinson, T.E. Regional differences in the effects of amphetamine withdrawal on dopamine dynamics in the striatum. Analysis of circadian patterns using automated on-line microdialysis. Neuropsychopharmacology 1996, 14, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Castañeda, T.R.; de Prado, B.M. Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: Modulation by light. J. Pineal Res. 2004, 36, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.D.; Olson, R.J. Quantitative microdialysis of dopamine in the striatum: Effect of circadian variation. J. Neurosci. Methods 1992, 44, 33–41. [Google Scholar] [CrossRef]
- Feenstra, M.G.; Botterblom, M.H. Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: Effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience 2000, 100, 741–748. [Google Scholar] [CrossRef]
- Xiao, L.; Becker, J.B. Quantitative microdialysis determination of extracellular striatal dopamine concentration in male and female rats: Effects of estrous cycle and gonadectomy. Neurosci. Lett. 1994, 180, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Dazzi, L.; Seu, E. Estrous cycle-dependent changes in basal and ethanol-induced activity of cortical dopaminergic neurons in the rat. Neuropsychopharmacology 2007, 32, 892–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aubele, T.; Kritzer, M.F. Gonadectomy and hormone replacement affects in vivo basal extracellular dopamine levels in the prefrontal cortex but not motor cortex of adult male rates. Cereb. Cortex 2011, 21, 222–232. [Google Scholar] [CrossRef]
- Scheller, C.; Arendt, G. Increased dopaminergic neurotransmission in therapy-naïve asymptomatic HIV patients is not associated with adaptive changes at the dopaminergic synapses. J. Neural Transm. 2010, 117, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Kesby, J.P.; Markous, A. The effects of HIV-1 regulatory TAT protein expression on brain reward function, response to psychostimulants and delay-dependent memory in mice. Neuropharmacology 2016, 109, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strauss, M.; O’Donovan, B. [3H] dopamine uptake through the dopamine and norepinephrine transporters is decreased in the prefrontal cortex of transgenic mice expressing HIV-1 transactivator of transcription protein. J. Pharmacol. Exp. Ther. 2020, 374, 241–251. [Google Scholar] [CrossRef]
- WHO Case Definitions of HIV for Surveillance and Revised Clinical Staging and Immunological Classification of HIV-Related Disease in Adults and Children. Available online: https://www.who.int/hiv/pub/guidelines/HIVstaging150307.pdf (accessed on 4 July 2021).
- Kesby, J.P.; Markou, A. Effects of HIV/TAT protein expression and chronic selegiline treatment on spatial memory, reversal learning and neurotransmitter levels in mice. Behav. Brain Res. 2016, 311, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Romley, J.A.; Juday, T. Early HIV treatment led to life expectancy gains valued at $80 billion for people infected in 1996–2009. Health Aff. 2014, 33, 370–377. [Google Scholar] [CrossRef] [Green Version]
- Teeraananchai, S.; Kerr, S.J. Life expectancy of HIV-positive people after starting combination antiretroviral therapy: A meta-analysis. HIV Med. 2017, 18, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Czub, S.; Koutsilieri, E. Enhancement of central nervous system pathology in early simian immunodeficiency virus infection by dopaminergic drugs. Acta Neuropathol. 2001, 101, 85–91. [Google Scholar] [PubMed]
- Koutsilieri, E.; Sopper, S. Parkinsonism in HIV dementia. J. Neural Trasm. 2002, 109, 767–775. [Google Scholar] [CrossRef]
- Jenuwein, M.; Scheller, C. Dopamine deficits and regulation of the cAMP second messenger system in brains of simian immunodeficiency virus-infected rhesus monkeys. J. Neurovirol. 2004, 10, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Scheller, C.; Sopper, S. Early impairment in dopaminergic neurotransmission in brains of SIV-infected rhesus monkeys due to microglia activation. J. Neurochem. 2005, 95, 377–387. [Google Scholar] [CrossRef]
- Ferris, M.J.; Frederick-Duus, D. In vivo microdialysis in awake, freely moving rats demonstrates HIV-1 Tat-induced alterations in dopamine transmission. Synapse 2009, 63, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Horn, A.; Scheller, C. The dopamine-related polymorphisms BDNF, COMT, DRD2, DRD3, and DRD4 are not linked with changes in CSF dopamine levels and frequency of HIV infection. J. Neural Transm. 2017, 124, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Javadi-Paydar, M.; Roscoe, R.F., Jr. HIV-1 and cocaine disrupt dopamine reuptake and medium spiny neurons in female rat striatum. PLoS ONE 2017, 12, e0188404. [Google Scholar] [CrossRef] [Green Version]
- Saloner, R.; Cherner, M. Lower CSF homovanillic acid relates to higher burden of neuroinflammation and depression in people with HIV disease. Brain Behav. Immun. 2020, 90, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Denton, A.R.; Mactutus, C.F. Chronic SSRI treatment reverses HIV-1 protein-mediated synaptodendritic damage. J. Neurovirol. 2021, 27, 403–421. [Google Scholar] [CrossRef] [PubMed]
- Antinori, A.; Arendt, G. Updated research nosology for HIV-associated neurocognitive disorders. Neurology 2007, 69, 1789–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heaton, R.K.; Franklin, D.R. Neurocognitive change in the era of HIV combination antiretroviral therapy: The longitudinal CHARTER study. Clin. Infect. Dis. 2015, 60, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Sacktor, N.; Skolasky, R.L. Prevalence of HIV-associated neurocognitive disorders in the Multicenter AIDS Cohort Study. Neurology 2016, 86, 334–340. [Google Scholar] [CrossRef] [Green Version]
- Rubin, L.H.; Maki, P.M. Cognitive trajectories over 4 years among HIV-infected women with optimal viral suppression. Neurology 2017, 89, 1594–1603. [Google Scholar] [CrossRef]
- Gott, C.; Gates, T. Cognitive change trajectories in virally suppressed HIV-infected individuals indicate high prevalence of disease activity. PLoS ONE 2017, 12, e0171887. [Google Scholar] [CrossRef] [Green Version]
- McLaurin, K.A.; Li, H. Disruption of timing: NeuroHIV progression in the post-cART era. Sci. Rep. 2019, 9, 827. [Google Scholar] [CrossRef] [Green Version]
- Cysique, L.A.; Maruff, P. Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: A combined study of two cohorts. J. Neurovirol. 2004, 10, 350–357. [Google Scholar] [CrossRef]
- Garvey, L.J.; Yerrakalva, D. Correlations between computerized battery testing and a memory questionnaire for identification of neurocognitive impairment in HIV type 1-infected subjects on stable antiretroviral therapy. AIDS Res. Hum. Retrovir. 2009, 25, 765–769. [Google Scholar] [CrossRef]
- Bertrand, S.J.; Mactutus, C.F. HIV-1 proteins dysregulate motivational processes and dopamine circuitry. Sci. Rep. 2018, 8, 7869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatia, M.S.; Munjal, S. Prevalence of depression in people living with HIV/AIDS undergoing ART and factors associated with it. J. Clin. Diagn Res. 2014, 8, WC01–WC04. [Google Scholar] [CrossRef] [PubMed]
- Do, A.N.; Rosenberg, E.S. Excess burden of depression among HIV-infected persons receiving medical care in the United States: Data from the medical monitoring project and the behavioral risk factor surveillance system. PLoS ONE 2014, 9, e92842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, H.S.; Searle, J.L. Acoustic variables in the modification of startle reaction in the rat. J. Comp. Physiol. Psychol. 1965, 60, 53–58. [Google Scholar] [CrossRef]
- Ison, J.R.; Hammond, G.R. Modification of the startle reflex in the rat by changes in the auditory and visual environments. J. Comp. Phsyiol. Psychol. 1971, 75, 435–452. [Google Scholar] [CrossRef]
- Hoffman, H.S.; Ison, J.R. Reflex modification in the domain of startle: I. Some empirical findings and their implications for how the nervous system processes sensory input. Psychol. Rev. 1980, 87, 175–189. [Google Scholar] [CrossRef]
- Braff, D.; Stone, C. Prestimulus effects on human startle reflex in normal and schizophrenics. Psychophysiology 1978, 15, 339–343. [Google Scholar] [CrossRef]
- Hoenig, K.; Hochrein, A. Impaired prepulse inhibition of acoustic startle in obsessive-compulsive disorder. Biol. Psychiatry 2005, 57, 1153–1158. [Google Scholar] [CrossRef]
- Ahmari, S.E.; Risbrough, V.B. Impaired sensorimotor gating in unmedicated adults with obsessive-compulsive disorder. Neuropsychopharmacology 2012, 37, 1216–1223. [Google Scholar] [CrossRef]
- Swerdlow, N.R.; Paulsen, J. Impaired prepulse inhibition of acoustic and tactile startle response in patients with Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 1995, 58, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Minassian, A.; Henry, B.L. Prepulse inhibition in HIV-associated neurocognitive disorders. J. Int. Neuropsychol. Soc. 2013, 19, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Moran, L.M.; Booze, R.M. Time and time again: Temporal processing demands implicate perceptual and gating deficits in the HIV-1 transgenic rat. J. Neuroimmune Pharmacol. 2013, 8, 988–997. [Google Scholar] [CrossRef] [Green Version]
- Bachis, A.; Forcelli, P. Expression of p120 in mice evokes anxiety behavior: Co-occurrence with increased dendritic spines and brain-derived neurotrophic factor in the amygdala. Brain Behav. Immun. 2016, 54, 170–177. [Google Scholar] [CrossRef] [Green Version]
- McLaurin, K.A.; Booze, R.M. Temporal processing demands in the HIV-1 transgenic rat: Amodal gating and implications for diagnostics. Int. J. Dev. Neurosci. 2017, 57, 12–20. [Google Scholar] [CrossRef] [Green Version]
- McLaurin, K.A.; Booze, R.M. Progression of temporal processing deficits in the HIV-1 transgenic rat. Sci. Rep. 2016, 6, 32831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaurin, K.A.; Booze, R.M. Evolution of the HIV-1 transgenic rat: Utility in assessing the progression of HIV-1-associated neurocognitive disorders. J. Neurovirol. 2018, 24, 229–245. [Google Scholar] [CrossRef]
- McLaurin, K.A.; Booze, R.M. Diagnostic and prognostic biomarkers for HAND. J. Neurovirol. 2019, 25, 686–701. [Google Scholar] [CrossRef]
- Davis, M.; Gendelman, D.S. A primary acoustic startle circuit: Lesion and stimulation studies. J. Neurosci. 1982, 2, 791–805. [Google Scholar] [CrossRef] [PubMed]
- Koch, M. The neurobiology of startle. Prog. Neurobiol. 1999, 59, 107–128. [Google Scholar] [CrossRef]
- Fendt, M.; Li, L. Brain stem circuits mediating prepulse inhibition of the startle reflex. Psychopharmacology 2001, 156, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Di Chiara, G.; Porceddu, M.L. Evidence for dopamine receptors mediating sedation in the mouse brain. Nature 1976, 264, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Goodale, D.P.; Rusterholz, D.B. Neurochemical and behavioral evidence for a selective presynaptic dopamine receptor agonist. Science 1980, 210, 1141–1143. [Google Scholar] [CrossRef]
- Campeau, S.; Davis, M. Prepulse inhibition of the acoustic startle reflect using visual and auditory prepulses: Disruption by apomorphine. Psychopharmacology 1995, 117, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.K.; Shannon, H.E. Effects of scopolamine in comparison with apomorphine and phencyclidine on prepulse inhibition in rats. Eur. J. Pharmacol. 2000, 391, 105–112. [Google Scholar] [CrossRef]
- Mansbach, R.S.; Geyer, M.A. Dopaminergic stimulation disrupts sensorimotor gating in the rat. Psychopharmacology 1988, 94, 507–514. [Google Scholar] [CrossRef]
- Zavitsanou, K.; Cranney, J. Dopamine antagonists in the orbital prefrontal cortex reduce prepulse inhibition of the acoustic startle reflex in the rat. Pharmacol. Biochem. Behav. 1999, 63, 55–61. [Google Scholar] [CrossRef]
- Rodrigues, S.; Salum, C. Dorsal striatum D1-expressing neurons are involved with sensorimotor gating on prepulse inhibition test. J. Psychopharmacol. 2017, 31, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Ellenbroek, B.A.; Budde, S. Prepulse inhibition and latent inhibition: The role of dopamine in the medial prefrontal cortex. Neuroscience 1996, 75, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Ungerstedt, U. 6-hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 1968, 5, 107–110. [Google Scholar] [CrossRef]
- Bloom, F.E.; Algeri, S. Lesions of central norepinephrine terminals with 6-OH-dopamine: Biochemistry and fine structure. Science 1969, 166, 1284–1286. [Google Scholar] [CrossRef]
- Schwarzkopf, S.B.; Mitra, T. Sensory gating in rats depleted of dopamine as neonates: Potential relevance to findings in schizophrenic patients. Biol. Psychiatry 1992, 31, 759–773. [Google Scholar] [CrossRef]
- Bubser, M.; Koch, M. Prepulse inhibition of the acoustic startle response of rats is reduced by 6-hydroxydopamine lesions of the medial prefrontal cortex. Psychopharmacology 1994, 113, 487–492. [Google Scholar] [CrossRef]
- Fuster, J.M. The Prefrontal Cortex, 4th ed.; Academic Press: New York, NY, USA, 2008. [Google Scholar]
- Sohlberg, M.M.; Mateer, C.A. Effectiveness of an attention-training program. J. Clin. Exp. Neuropscyhol. 1987, 9, 117–130. [Google Scholar] [CrossRef]
- Sohlberg, M.M.; Mateer, C.A. Introduction to Cognitive Rehabilityation: Theory and Practice; Guilford Press: New York, NY, USA, 1989. [Google Scholar]
- Moran, L.M.; Booze, R.M. Modeling deficits in attention, inhibition, and flexibility in HAND. J. Neuroimmune Pharmacol. 2014, 9, 508–521. [Google Scholar] [CrossRef] [Green Version]
- Lew, B.J.; McDermott, T.J. Neural dynamics of selective attention deficits in HIV-associated neurocognitive disorder. Neurology 2018, 91, e1860–e1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaurin, K.A.; Moran, L.M. Selective estrogen receptor β agonists: A therapeutic approach for HIV-1 associated neurocognitive disorders. J. Neuroimmune Pharmacol. 2020, 15, 264–279. [Google Scholar] [CrossRef] [Green Version]
- Hinkin, C.H.; Castellon, S.A. Dual task performance in HIV-1 infection. J. Clin. Exp. Neuropsychol. 2000, 22, 16–24. [Google Scholar] [CrossRef]
- Williams, S.M.; Goldman-Rakic, P.S. Widespread origin of the primate mesofrontal dopamine system. Cereb. Cortex 1998, 8, 321–345. [Google Scholar] [CrossRef] [Green Version]
- Granon, S.; Passetti, F. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J. Neurosci. 2000, 20, 1208–1215. [Google Scholar] [CrossRef]
- Rose, J.; Schiffer, A.M. The role of dopamine in maintenance and distractability of attention in the “prefrontal cortex” of pigeons. Neuroscience 2010, 167, 232–237. [Google Scholar] [CrossRef]
- Pezze, M.A.; Dalley, J.W. Differential roles of dopamine D1 and D2 receptors in the nucleus accumbens in attentional performance on the five-choice serial reaction time task. Neuropsychopharmacology 2007, 32, 273–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caballero, M.; Núnez, F. Caffeine improves attention deficit in neonatal 6-OHDA lesioned rats, an animal model of attention deficit hyperactivity disorder (ADHD). Neurosci. Lett. 2011, 494, 44–48. [Google Scholar] [CrossRef]
- Bouchatta, O.; Manouze, H. Neonatal 6-OHDA lesion model in mouse induces Attention-Deficit/Hyperactivity Disorder (ADHD)-like behaviour. Sci. Rep. 2018, 8, 15349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchatta, O.; Manouze, H. Neonatal 6-OHDA lesion model in mouse induces cognitive dysfunctions of Attention-Deficit/Hyperactivity Disorder (ADHD) during young age. Front. Behav. Neurosci. 2020, 14, 27. [Google Scholar] [CrossRef]
- Oke, A.F.; Adams, R.N. Selective attention dysfunctions in adult rats neonatally treated with 6-hydroxydopamine. Pharmacol. Biochem. Behav. 1978, 9, 429–432. [Google Scholar] [CrossRef]
- Crofts, H.S.; Dalley, J.W. Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb. Cortex 2001, 11, 1015–1026. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.C.; De Salvia, M.A. 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: Possible interactions with subcortical dopamine. J. Neurosci. 1994, 14, 2531–2544. [Google Scholar] [CrossRef] [Green Version]
- Decamp, E.; Schneider, J.S. Attention and executive function deficits in chronic low-dose MPTP-treated non-human primates. Eur. J. Neurosci. 2004, 20, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Marin, R.S. Apathy: A neuropsychiatric syndrome. J. Neuropsychiatry Clin. Neurosci. 1991, 3, 243–254. [Google Scholar]
- Levy, R.; Dubois, B. Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cereb. Cortex 2006, 16, 916–928. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.E.; Ko, J.Y. Are the available apathy measures reliable and valid? A review of the psychometric evidence. J. Psychosom. Res. 2011, 70, 73–97. [Google Scholar] [CrossRef] [Green Version]
- Marin, R.S.; Biedrzycki, R.C. Reliability and validity of the Apathy Evaluation Scale. Psychiatry Res. 1991, 38, 143–162. [Google Scholar] [CrossRef]
- Cummings, J.L.; Mega, M. The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology 1994, 44, 2308–2314. [Google Scholar] [CrossRef] [Green Version]
- Oakeshott, S.; Port, R. A mixed fixed ratio/progressive ratio procedure reveals an apathy phenotype in the BAC HD and the z_Q175 KI mouse models of Huntington’s disease. PLoS Curr. 2012, 4, e4f972cffe82c0. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLaurin, K.A.; Bertrand, S.J. S-equol mitigates motivational deficits and dysregulation associated with HIV-1. Sci. Rep. 2021, 11, 11870. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.F.; Tan, L. The prevalence of neuropsychiatric symptoms in Alzheimer’s disease: Systematic review and meta-analysis. J. Affect. Disord. 2016, 190, 264–271. [Google Scholar] [CrossRef]
- den Brok, M.G.; van Dalen, J.W. Apathy in Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2015, 30, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Tate, D.; Paul, R.H. The impact of apathy and depression on quality of life in patients infected with HIV. AIDS Patient Care STDs 2003, 17, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Kamat, R.; Morgan, E. Implications of apathy and depression for everyday functioning in HIV/AIDS in Brazil. J. Affect. Disord. 2013, 150, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
- Panos, S.E.; Del Re, A.C. The impact of neurobehavioral features on medication adherence in HIV: Evidence from longitudinal models. AIDS Care 2014, 26, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamat, R.; Doyle, K.L. Neurobehavioral disturbances during acute and early HIV infection. Cogn Behav Neurol. 2016, 29, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bonelli, R.M.; Cummings, J.L. Frontal-subcortical circuitry and behavior. Dialogues Clin. Neurosci. 2007, 9, 141–151. [Google Scholar] [PubMed]
- Selemon, L.D.; Goldman-Rakic, P.S. Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J. Neurosci. 1985, 5, 776–794. [Google Scholar] [CrossRef] [Green Version]
- Critchley, H.D. Neural mechanisms of autonomic, affective, and cognitive integration. J. Comp. Neurol. 2005, 493, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Drui, G.; Carnicella, S. Loss of dopaminergic nigrostriatal neurons accounts for the motivational and affective deficits in Parkinson’s disease. Mol. Psychiatry. 2014, 19, 358–367. [Google Scholar] [CrossRef] [Green Version]
- Favier, M.; Duran, T. Pramipexole reverses Parkinson’s disease-related motivational deficits in rats. Mov. Disord. 2014, 29, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Carnicella, S.; Drui, G. Implication of dopamine D3 receptor activation in the reversion of Parkinson’s disease-related motivational deficits. Transl. Psychiatry 2014, 4, e401. [Google Scholar] [CrossRef]
- Brown, C.A.; Campbell, M.C. Dopamine pathway loss in nucleus accumbens and ventral tegmental area predicts apathetic behavior in MPTP-lesioned monkeys. Exp. Neurol. 2012, 236, 190–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, C.M.; Runegaard, A.H. Differential effects of chemogenetic inhibition of dopamine and norepinephrine neurons in the mouse 5-choice serial reaction time task. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 90, 264–276. [Google Scholar] [CrossRef]
- Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV. Available online: https://clinicalinfo.hiv.gov/en/guidelines/adult-and-adolescent-arv/whats-new-guidelines (accessed on 4 December 2020).
- Letendre, S.; Marquie-Beck, J. Validation of the CNS Penetration-Effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch. Neurol. 2008, 65, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Morlese, J.F.; Qazi, N.A. Nevirapine-induced neuropsychiatric complications, a class effect of non-nucleoside reverse transcriptase inhibitors? AIDS 2002, 16, 1840–1841. [Google Scholar] [CrossRef] [PubMed]
- Wise, M.E.J.; Mistry, K. Drug points: Neuropsychiatric complications of nevirapine treatment. BMJ 2002, 324, 879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rihs, T.A.; Begley, K. Efavirenz and chronic neuropsychiatric symptoms: A cross-sectional case control study. HIV Med. 2006, 7, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Cespedes, M.S.; Aberg, J.A. Neuropsychiatric complications of antiretroviral therapy. Drug Saf. 2006, 29, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Treisman, G.J.; Soudry, O. Neuropsychiatric Effects of HIV Antiviral Medications. Drug Saf. 2016, 39, 945–957. [Google Scholar] [CrossRef]
- Gatch, M.B.; Kozlenkov, A. The HIV antiretroviral drug efavirenz has LSD-like properties. Neuropsychopharmacology 2013, 38, 2373–2384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalwadi, D.A.; Kim, S. Molecular mechanisms of serotonergic action of the HIV-1 antiretroviral efavirenz. Pharmacol. Res. 2016, 110, 10–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.; Chen, Z. The dual modulatory effects of efavirenz on GABAA receptors are mediated via two distinct sites. Neuropharmacology 2017, 121, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Möller, M.; Fourie, J. Efavirenz exposure, alone and in combination with known drugs of abuse, engenders addictive-like bio-behavioural changes in rats. Sci. Rep. 2018, 8, 12837. [Google Scholar] [CrossRef]
- Cavalcante, G.I.T.; Chaves Filho, A.J.M. HIV antiretroviral drug Efavirenz induces anxiety-like and depression-like behavior in rats: Evaluation of neurotransmitter alterations in the striatum. Eur. J. Pharmacol. 2017, 799, 7–15. [Google Scholar] [CrossRef]
- Overton, D.A. Major theories of state-dependent learning. In Drug Discrimination and State Dependent Learning; Ho, B.T., Richards, D.W., Eds.; Academic Press: New York, NY, USA, 1978; pp. 283–309. [Google Scholar]
- Appel, J.B.; Kuhn, D.M. Dual receptor mediation of the discriminative stimulus properties of pentazocine. In Drug Discrimination and State Dependent Learning; Ho, B.T., Richards, D.W., Eds.; Academic Press: New York, NY, USA, 1978; pp. 149–160. [Google Scholar]
- Anagnostaras, S.G.; Robinson, T.E. Sensitization to the psychomotor stimulant effects of amphetamine: Modulation by associative learning. Behavioral. Neurosci. 1996, 110, 1397–1414. [Google Scholar] [CrossRef]
- Harrod, S.B.; Mactutus, C.F. Intra-accumbal Tat1-72 alters acute and sensitized responses to cocaine. Pharmacol. Biochem. Behav. 2008, 90, 723–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, T.E.; Jurson, P.A. Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: A microdialysis study in freely moving rats. Brain Res. 1988, 462, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Heidbreder, C.A.; Thompson, A.C. Role of extracellular dopamine in the initiation and long-term expression of behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 1996, 278, 490–502. [Google Scholar] [PubMed]
- Weeks, J.R. Experimental morphine addiction: Method for automatic intravenous injections in unrestrained rats. Science 1962, 138, 143–144. [Google Scholar] [CrossRef]
- Pickens, R. Self-administration of stimulants by rats. Int. J. Addict. 1968, 3, 215–221. [Google Scholar] [CrossRef]
- De Guglielmo, G.; Fu, Y. Increases in compulsivity, inflammation, and neural injury in HIV transgenic rats with escalated methamphetamine self-administration under extended-access conditions. Brain Res. 2020, 1726, 146502. [Google Scholar] [CrossRef]
- Zanni, G.; DeSalle, M.J. Female and male rats readily consume and prefer oxycodone to water in a chronic, continuous access, two-bottle oral voluntary paradigm. Neuropharmacology 2020, 167, 107978. [Google Scholar] [CrossRef]
- O’Connor, E.C.; Chapman, K. The predictive validity of the rat self-administration model for abuse liability. Neurosci. Biobehav. Rev. 2011, 35, 912–938. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.; Schuster, C.R. Instrumental conditioning of jugular self-infusion in the rhesus monkey. Science 1961, 133, 1829–1830. [Google Scholar] [CrossRef] [PubMed]
- Illenberger, J.M.; Harrod, S.B. HIV Infection and Neurocognitive Disorders in the Context of Chronic Drug Abuse: Evidence for Divergent Findings Dependent upon Prior Drug History. J. Neuroimmune Pharmacol. 2020, 15, 715–728. [Google Scholar] [CrossRef]
- Bardo, M.T.; Bevins, R.A. Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology 2000, 153, 31–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomikos, G.G.; Spyraki, C. Cocaine-induced place conditioning: Importance of route of administration and other procedural variables. Psychopharmacology 1988, 94, 119–125. [Google Scholar] [CrossRef]
- Meehan, S.M.; Schechter, M.D. LSD produces conditioned place preference in male but not female fawn hooded rats. Pharmacol. Biochem. Behav. 1998, 59, 105–108. [Google Scholar] [CrossRef]
- Prus, A.J.; James, J.R. Conditioned Place Preference. In Methods of Behavior Analysis in Neuroscience, 2nd ed.; Buccafusco, J.J., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2009. [Google Scholar]
- Neisewander, J.L.; McDougall, S.A. Conditioned taste aversion and place preference with buspirone and gepirone. Psychopharmacology 1990, 100, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Orlando, G.; Brunetti, L. Ritonavir and Saquinavir directly stimulate anterior pituitary prolactin secretion, in vitro. Int. J. Immunopathol. Pharmacol. 2002, 15, 65–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polazzi, E.; Monti, B. Microglia and neuroprotection: From in vitro studies to therapeutic applications. Prog. Neurobiol. 2010, 92, 293–315. [Google Scholar] [CrossRef]
- Murabe, Y.; Sano, Y. Morphological studies on neuroglia. VI. Postnatal development of microglial cells. Cell Tissue Res. 1982, 225, 469–485. [Google Scholar] [CrossRef] [PubMed]
- Perry, V.H.; Hume, D.A. Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain. Neuroscience 1985, 15, 313–326. [Google Scholar] [CrossRef]
- Davalos, D.; Grutzendler, J. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 2005, 8, 752–758. [Google Scholar] [CrossRef]
- Nimmerjahn, A.; Kirchhoff, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005, 308, 1314–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wake, H.; Moorhouse, A.J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 2009, 29, 3974–3980. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.E.; Lowery, R.L. Microglial interactions with synapses are modulated by visual experience. PLoS Biol. 2010, 8, e1000527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, L.J.; Perry, V.H. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39, 151–170. [Google Scholar] [CrossRef]
- De Biase, L.M.; Schuebel, K.E. Local cues establish and maintain region-specific phenotypes of basal ganglia microglia. Neuron 2017, 95, 341–356. [Google Scholar] [CrossRef] [Green Version]
- Färber, K.; Pannasch, U. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Mol. Cell. Neurosci. 2005, 29, 128–138. [Google Scholar] [CrossRef]
- Mastroeni, D.; Grover, A. Microglial responses to dopamine in a cell culture model of Parkinson’s disease. Neurobiol. Aging 2009, 30, 1805–1817. [Google Scholar] [CrossRef] [Green Version]
- Huck, J.H.J.; Freyer, D. De novo expression of dopamine D2 receptors on microglia after stroke. J. Cereb. Blood Flow Metab. 2015, 35, 1804–1811. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Chen, Z. Differential regulation of adhesion and phagocytosis of resting and activated microglia by dopamine. Front. Cell. Neurosci. 2018, 12, 309. [Google Scholar] [CrossRef]
- Squarzoni, P.; Oller, G. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 2014, 8, 1271–1279. [Google Scholar] [CrossRef] [Green Version]
- Paolicelli, R.C.; Bolasco, G. Synaptic pruning by microglia is necessary for normal brain development. Science 2011, 333, 1456–1458. [Google Scholar] [CrossRef] [Green Version]
- Schafer, D.P.; Lehrman, E.K. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Weinhard, L.; di Barolomei, G. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat. Commun. 2018, 9, 1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkhurst, C.N.; Yang, G. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 2013, 155, 1596–1609. [Google Scholar] [CrossRef] [Green Version]
- Mallya, A.P.; Wang, H.D. Microglial pruning of synapses in the prefrontal cortex during adolescence. Cereb. Cortex 2019, 29, 1634–1643. [Google Scholar] [CrossRef]
- Choudhury, M.E.; Miyanishi, K. Phagocytic elimination of synapses by microglia during sleep. Glia 2020, 68, 44–59. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.H.; Park, E. Neuronal synapse formation induced by microglia and interleukin 10. PLoS ONE 2013, 8, e81218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyamoto, A.; Wake, H. Microglia contact induces synapse formation in developing somatosensory cortex. Nat. Commun. 2016, 7, 12540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sierra, A.; Encinas, J.M. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010, 7, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Stefani, J.; Tschesnokowa, O. Disruption of the microglial ADP receptor P2Y13 enhances adult hippocampal neurogenesis. Front. Cell. Neurosci. 2018, 12, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-Aparicio, I.; Paris, I. Microglia actively remodel adult hippocampal neurogenesis through the phagocytosis secretome. J. Neurosci. 2020, 40, 1453–1482. [Google Scholar] [CrossRef] [PubMed]
- Freund, T.F.; Powell, J.F. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 1984, 13, 1189–1215. [Google Scholar] [CrossRef]
- Yao, W.D.; Spealman, R.D. Dopaminergic signaling in dendritic spines. Biochem. Pharmacol. 2008, 75, 2055–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meredith, G.E.; Ypma, P. Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens. J. Neurosci. 1995, 15, 3808–3820. [Google Scholar] [CrossRef]
- Neely, M.D.; Schmidt, D.E. Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons. Neuroscience 2007, 149, 457–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingham, C.A.; Hood, S.H. Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Exp. Brain Res. 1993, 93, 17–27. [Google Scholar] [CrossRef]
- Ingham, C.A.; Hood, S.H. Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J. Neurosci. 1998, 18, 4732–4743. [Google Scholar] [CrossRef]
- Thompson, K.A.; Cherry, C.L. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. Am. J. Pathol. 2011, 179, 1623–1629. [Google Scholar] [CrossRef] [Green Version]
- Ko, A.; Kang, G. Macrophages but not astrocytes harbor HIV DNA in the brains of HIV-1-infected aviremic individuals on suppressive antiretroviral therapy. J. Neuroimmune Pharmacol. 2019, 14, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Anthony, I.C.; Ramage, S.N. Influence of HAART on HIV-related CNS disease and neuroinflammation. J. Neuropathol. Exp. Neurol. 2005, 64, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Mactutus, C.F. HIV-1 expression in human medial prefrontal cortex: Association with HAND. In Proceedings of the International Symposium for NeuroVirology, Virtual, 2–4 June 2021. Abstract Number 52. [Google Scholar]
- Thangaraj, A.; Chivero, E.T. HIV Tat-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol. 2021, 40, 101843. [Google Scholar] [CrossRef] [PubMed]
- Gelman, B.B.; Lisinicchia, J.G. Prefrontal dopaminergic and enkephalinergic synaptic accommodation in HIV-associated neurocognitive disorders and encephalitis. J. Neuroimmune Pharmacol. 2012, 7, 686–700. [Google Scholar] [CrossRef] [Green Version]
- Roscoe, R.F.; Mactutus, C.F. HIV-1 transgenic female rat: Synaptodendritic alterations of medium spiny neurons in the nucleus accumbens. J. Neuroimmune Pharmacol. 2014, 9, 642–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, D.R.; Shaerzadeh, F. HIV-1 Tat regulation of dopamine transmission and microglial reactivity is brain region specific. Glia 2018, 66, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Duan, M.; Yao, H. HIV-1 Tat disrupts CX3CL1-CX3CR1 axis in microglia via the NF-ΚBYY1 pathway. Curr. HIV Res. 2014, 12, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Mishra, N.; Mohata, M. Expression of complement receptor 3 (CR3) and regulatory protein CD46 on dendritic cells of antiretroviral naïve and treated HIV-1 infected individuals: Correlation with immune activation status. Mol. Immunol. 2018, 96, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Festa, L.; Gutoskey, C.J. Induction of interleukin-1βby human immunodeficiency virus-1 viral proteins leads to increased levels of neuronal ferritin heavy chain, synaptic injury, and deficits in flexible attention. J. Neurosci. 2015, 35, 10550–10561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Brain Region | Methodology | Estimated DA Concentration in ng/g of Tissue (X ± SEM) | Relative Standard Error | References |
---|---|---|---|---|
Amygdala | HPLC | 3683.85 ± 3097 | 84.1% | [39,40,41,42,43] |
Microdialysis | 0.06 ± 0.03 | 50% | [44,45,46,47] | |
Caudate | HPLC | 16,365.9 ± 12,341.04 | 75.4% | [28,39,41,48,49,50,51,52,53,54] |
Microdialysis | 0.88 ± 0.66 | 75% | [44,55,56] | |
Frontal Cortex | HPLC | 200.73 ± 84.41 | 42.1% | [28,39,42,52,54,57,58,59,60,61,62] |
Microdialysis | 0.23 ± 0.10 | 43.5% | [44,63,64,65] | |
Nucleus Accumbens | HPLC | 35,772.90 ± 12,020.28 | 33.6% | [41,42,43,51,52,57,59,60,62,66,67,68] |
Microdialysis | 0.76 ± 0.13 | 17.1% | [44,45,47,55,63,64,65,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99] | |
FSCV | 6.95 ± 1.93 | 27.8% | [100,101,102,103,104] | |
Striatum | HPLC | 67,460.52 ± 29,013.28 | 43% | [59,61,62,66,67,105,106,107,108,109,110,111] |
Microdialysis | 1.42 ± 0.40 | 28.2% | [64,73,74,76,79,82,85,112,113,114] | |
Ventral Tegmental Area | HPLC | 9200 | [66] | |
Microdialysis | 0.25 ± 0.07 | 28% | [75,83] |
References | DA Concentration Relative to Controls | Virus | Brain Region | Species | Method |
---|---|---|---|---|---|
Larsson et al., 1991 [16] | HIV | CSF | Human | HPLC * | |
Berger et al., 1994 [14] | HIV | CSF | Human | HPLC | |
Sardar et al., 1996 [15] | HIV | Caudate Nucleus | Human | HPLC | |
Di Rocco, 2000 [17] | HIV | CSF | Human | HPLC * | |
Czub et al., 2001 [181] | SIV | Hippocampus | Primate | HPLC | |
PFC | |||||
Putamen | |||||
Koutsilieri, 2002 [182] | HIV | Striatum | Primate | HPLC | |
Jenuwein et al., 2004 [183] | SIV | NAc | Primate | HPLC | |
Scheller et al., 2005 [184] | SIV | Putamen | Primate | HPLC | |
Kumar et al., 2009 [28] | HIV | Caudate Nucleus | Human | HPLC | |
Globus Pallidus | |||||
Putamen | |||||
Substantia Nigra | |||||
Ferris et al., 2009 [185] | Tat Protein | Striatum | Rat | Microdialysis | |
Scheller et al., 2010 [174] | Early HIV | CSF | Human | HPLC | |
Kumar et al., 2011 [29] | HIV | Caudate Nucleus | Human | HPLC | |
Globus Pallidus | |||||
Putamen | |||||
Substantia Nigra | |||||
Kesby et al., 2016 [175] | Acute Tat Protein | Caudate Putamen | Mouse | HPLC | |
NAc | |||||
Tat Protein | Caudate Putamen | Mouse | HPLC | ||
NAc | |||||
Kesby et al., 2016 [178] | Acute Tat Protein | Caudate Putamen | Mouse | HPLC | |
Hippocampus | |||||
PFC | |||||
OFC | |||||
Horn et al., 2017 [186] | HIV | CSF | Human | HPLC | |
Javadi-Paydar et al., 2017 [187] | HIV-1 Proteins | NAc | Rat | Ex vivo slice voltammetry | |
Denton et al., 2019 [30] | HIV-1 Proteins | NAc | Rat | FSCV | |
Saloner et al., 2020 [188] | HIV | CSF | Human | HPLC | |
Strauss et al., 2020 [176] | Acute Tat Protein | PFC | Mouse | HPLC | |
Striatum | |||||
Denton et al., 2021 [189] | HIV-1 Proteins | NAc | Rat | FSCV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McLaurin, K.A.; Harris, M.; Madormo, V.; Harrod, S.B.; Mactutus, C.F.; Booze, R.M. HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits. Cells 2021, 10, 2158. https://doi.org/10.3390/cells10082158
McLaurin KA, Harris M, Madormo V, Harrod SB, Mactutus CF, Booze RM. HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits. Cells. 2021; 10(8):2158. https://doi.org/10.3390/cells10082158
Chicago/Turabian StyleMcLaurin, Kristen A., Michael Harris, Victor Madormo, Steven B. Harrod, Charles F. Mactutus, and Rosemarie M. Booze. 2021. "HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits" Cells 10, no. 8: 2158. https://doi.org/10.3390/cells10082158
APA StyleMcLaurin, K. A., Harris, M., Madormo, V., Harrod, S. B., Mactutus, C. F., & Booze, R. M. (2021). HIV-Associated Apathy/Depression and Neurocognitive Impairments Reflect Persistent Dopamine Deficits. Cells, 10(8), 2158. https://doi.org/10.3390/cells10082158