Next Article in Journal
Hypothyroidism Intensifies Both Canonic and the De Novo Pathway of Peroxisomal Biogenesis in Rat Brown Adipocytes in a Time-Dependent Manner
Next Article in Special Issue
Advances in ER-Phagy and Its Diseases Relevance
Previous Article in Journal
Plectin in Cancer: From Biomarker to Therapeutic Target
Previous Article in Special Issue
Oligomerization of Selective Autophagy Receptors for the Targeting and Degradation of Protein Aggregates
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Aberrant Stress Granule Dynamics and Aggrephagy in ALS Pathogenesis

1
Department of Biochemistry, and Department of Cardiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
2
Chu Kochen Honors College, Zhejiang University, Hangzhou 310058, China
3
Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou 311121, China
4
Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou 310058, China
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Cells 2021, 10(9), 2247; https://doi.org/10.3390/cells10092247
Submission received: 2 June 2021 / Revised: 23 August 2021 / Accepted: 24 August 2021 / Published: 30 August 2021
(This article belongs to the Special Issue Advances in Selective Autophagy - Series 2)

Abstract

:
Stress granules are conserved cytosolic ribonucleoprotein (RNP) compartments that undergo dynamic assembly and disassembly by phase separation in response to stressful conditions. Gene mutations may lead to aberrant phase separation of stress granules eliciting irreversible protein aggregations. A selective autophagy pathway called aggrephagy may partially alleviate the cytotoxicity mediated by these protein aggregates. Cells must perceive when and where the stress granules are transformed into toxic protein aggregates to initiate autophagosomal engulfment for subsequent autolysosomal degradation, therefore, maintaining cellular homeostasis. Indeed, defective aggrephagy has been causally linked to various neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). In this review, we discuss stress granules at the intersection of autophagy and ALS pathogenesis.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive degeneration of the upper and lower motor neurons, resulting in a loss of motor function and eventually death. About 10% of ALS cases are familial (fALS), while about 90% are sporadic (sALS). Identification of ALS-causative genes, including superoxide dismutase 1 (SOD1), transactive response DNA-binding protein 43 (TARDBP-43), fused in sarcoma (FUS), chromosome 9 open reading frame 72 (C9orf72), heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), valosin-containing protein (VCP), ubiquilin 2 (UBQLN2), sequestosome 1 (SQSTM1/p62), annexin A11 (ANXA11), optineurin (OPTN), and TANK (TRAF-associated NF-κB activator)-binding kinase 1 (TBK1) have advanced the understanding of ALS pathogenesis. ALS gene products are considered resident stress granule (SG) components or SG-associated proteins (Table 1) [1].
Stress granules are membrane-less organelles formed through the process of liquid–liquid phase separation (LLPS) under certain stress conditions, such as oxidative stress and heat shock, among others [1,2]. SGs are transient cellular compartments that undergo dynamic assembly and dissociation. However, chronic stress can lead to persistent stress granules, eventually resulting in the aggregation of disease-related proteins.
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved lysosomal degradative pathway, which is essential in the cellular and organismal levels of homeostasis [3,4,5]. Morphologically, autophagy is initiated by the formation of phagophores in mammalian cells. After nucleation of the phagophore, the membrane expands to generate an autophagosome, which fuses with a lysosome or vacuole, leading to the degradation of the cargo [6,7,8,9]. Clearance of the cytosolic components, such as protein aggregates, is conferred by cargo receptors that specifically recognize the cargo [10,11,12,13,14,15,16,17]. Dysfunction of autophagy is highly associated with various human diseases [18,19,20], such as neurodegenerative diseases.
Protein aggregates derived from interrupted SG dynamics pose a toxic insult, which can be partially mitigated by a selective autophagy pathway called aggrephagy (Figure 1). Aggresomes formed by those insoluble protein aggregates and labeled by ubiquitins are considered to initiate the process of aggrephagy. Aggresomes are transported to a microtubule-organizing center with the help of histone deacetylase 6 (HDAC6), which binds to ubiquitinated cargos [21]. Aggrephagy is controlled by a panel of receptor proteins, such as p62, next to BRCA1 gene 1 (NBR1), toll interacting protein (TOLLIP), OPTN, and Tax1 binding protein 1 (TAXBP1) [22]. Mechanistically, these receptors bridge ubiquitinated protein aggregates with autophagosomal membranes by simultaneously binding to ubiquitin chains and the lipidated LC3-family proteins via ubiquitin-associated (UBA) domains and LC3 interacting region (LIR) motifs, respectively [14,15]. These receptors are able to work both independently and cooperatively. For instance, NBR1 can interact with p62 and promote its phase separation [23]. Autophagy-linked FYVE-domain containing protein (ALFY) interacts with p62 and binds to several autophagy-related proteins, playing a role in the formation of autophagic membranes. The fusion between aggresomes and lysosomes involves proteins including Rab7, marking the final degradation of protein aggregates [21]. It should be noted that the mutations of two of these aggrephagy receptors, p62 and OPTN, are implicated in ALS.
Loss of SG homeostasis and defective aggrephagy are common pathological features of neurogenerative diseases [1,23,24,25,26,27,28]. VCP is encoded by an ALS causal gene and is a critical regulator mediating autophagic degradation of abnormal stress granules [29]. In this review, we will discuss the intersection of aggrephagy and stress granules in the pathogenesis of ALS.

2. Superoxide Dismutase 1 (SOD1)

Superoxide dismutase 1 gene encoding Cu/Zn superoxide dismutase was the first identified ALS-related gene [30]. The enzyme protects cells by detoxifying superoxide radicals O2−. SOD1 gene mutations account for approximately 20% of fALS. Although no consensus linking SOD1 mutations to toxicity has been reached [27], it is generally accepted that ubiquitinated cytoplasmic inclusions formed by ALS-causing SOD1 mutants contribute to toxicity in ALS [27]. Most ALS-associated mutations significantly impact the immature states of SOD1, destabilizing the metal-free and disulfide-reduced polypeptide, which leads to unfolding at physiological temperatures [31]. Moreover, mutations that change the hydrophobicity of SOD1 or cause cellular Ca2+ dysregulation promote the aggregation tendency of SOD1 mutants in ALS [32,33]. In addition, T cell-restricted intracellular antigen 1 (TIA-1) positive SGs can alter the dynamics of stress granules [34].
SOD1 is not a resident protein of SGs. However, mutant SOD1 interacts with TIA-1, one of the core components of stress granules associated with ALS. Mutant SOD1 increases the number of TIA-1 positive SGs. The abnormal interaction between mutant SOD1 and TIA-1 alters the dynamic of stress granules [34]. In addition, mutant SOD1 binds to GTPase-activating protein-(SH3 domain)-binding protein 1 (G3BP1), another protein marker of SGs, in an RNA-independent manner interfering with the dynamics of G3BP1-positive SGs [35]. Therefore, these findings suggest that aberrant interactions between SOD1, TIA-1, and G3BP1 might dysregulate SG.
Mutant SOD1 aggregates can be recognized by p62 and targeted for autophagic degradation [36,37]. Furthermore, mutant SOD1 aggregates may sequester OPTN, resulting in a reduced mitophagy flux, accounting for neurodegeneration [38]. However, whether the perturbation of SGs dynamics by SOD1 mutants impacts protein aggregation tendency remains unclear. Further studies are needed to confirm the exact role of aggrephagy in SOD1-associated ALS and the specific aggrephagy receptors involved [39].

3. Transactive Response DNA-Binding Protein 43 (TDP-43)

Transactive response DNA-binding protein 43 belongs to the heterogeneous ribonucleoprotein family. TDP-43 plays a critical role in diverse cellular processes, such as regulating RNA splicing, pre-microRNA processing, messenger RNA transport, and stress granule formation [40]. Hyper-phosphorylated, ubiquitinated, and cleaved TDP-43 aggregation has been identified as a pathological protein in disease-affected central nervous system regions [41]. Furthermore, TDP-43 has been detected as abnormal cytoplasmic aggregates in neurons and glia of more than 90% of ALS and 45% of frontotemporal dementia (FTD) cases [42].
TDP-43 can aggregate and propagate in a seed-dependent, self-templating, prion-like manner in vitro and in vivo [43]. Under chronic cell stress, TDP-43 is recruited to the cytoplasmic SGs, which evolve to form insoluble pathological aggregates [44,45]. TDP-43 also interacts with the four other ALS causal gene products, HNRNPA1, HNRNPA2B1, matrin 3 (MATR3), and UBQLN2 [46,47,48,49], which are resident proteins in SGs. The identification of TIA-1 as an ALS causal gene further reinforces the fact that TDP-43 in ALS is formed via altered LLPS [50]. These observations suggest that many ALS causal genes may converge on the TDP-43 pathway associated with pathologies.
Several studies have confirmed that autophagy plays a role in clearing TDP-43 aggregates. Significant colocalization between selective autophagy receptor p62 with TPD-43 aggregates was observed in ALS/FTD, indicating that the autophagy pathway could prevent the accumulation of TDP-43 aggregates [51]. In addition, VCP and OPTN appear to colocalize with TDP-43 inclusions in the spinal motor neurons of ALS patients [52]. Upregulation of autophagy leads to reduced TDP-43 proteinopathy in the nervous system of ALS/FTD transgenic mice models, which further validates the role of autophagy in mitigating toxicity of TDP-43 mutants [53,54]. Conversely, TDP-43 also plays a role in the regulation of autophagy by binding to ATG7 mRNA via RNA recognition motif 1(RRM1). Down-regulation of TDP-43 decreases ATG7 mRNA levels, which abolishes autophagosome expansion [55]. Furthermore, the loss of TDP-43 impairs the fusion of autophagosomes with lysosomes through decreasing dynactin 1, a component of the dynein-dynactin complex involved in lysosome transportation. The impaired fusion finally leads to the accumulation of immature autophagic vesicles blocking the autophagy-lysosome pathway [56].

4. Fused in Sarcoma (FUS)

FUS was first discovered in 1993 as a fusion oncogene in human liposarcoma located on chromosome 16 [57,58]. It contains 15 exons encoding a 526-amino acid protein. Moreover, it contains an N-terminal Gln-Gly-Ser-Tyr (QGSY)-rich domain, an RNA-recognition motif, three Arg-Gly-Gly repeat domains (RGG1-3), a zinc-finger motif and a C-terminal nuclear localization signal (NLS) [59]. In 2009, pathological inclusion bodies containing mutant FUS protein were recognized in fALS6 cases [60,61]. Approximately 2/3 of FUS mutations are located on exons 12–15, which encode zinc-finger motif, RGG2 and RGG3 domains, and the NLS. Other mutations are located on exons 3–6, encoding QGSY-rich and RGG1 domains. The C-terminal mutations are twice as likely to occur in fALS than in sALS, while mutations within exons 3–6 are more common in sALS. C-terminal ALS mutations are pathological, as they disrupt NLS [62,63]. They cause defective nuclear import of FUS and cytoplasmic mislocalization. Cytoplasmic FUS mislocalization leads to nuclear loss of function and triggers motor neuron death through a toxic gain of function [64].
Arginine residues in RGG motifs are required for phase separation of FUS. Loss of FUS arginine methylation promotes phase separation and SG association of FUS [65]. Prion-like domains of FUS are located on the QGSY-rich and C-terminal RGG2 domain, contributing to FUS phase separation and aggregation. ALS-associated FUS mutants can bind and sequester wild type (WT) FUS into cytoplasmic SGs [66], accelerating aberrant liquid to solid phase transition of stress granules [67]. The nuclear import receptor (NIR), also known as Transportin-1, recognizes the NLS domain; therefore, it chaperons FUS from the cytoplasm to the nucleus. NIRs can reverse aberrant phase separation and aggregation of proteins with prion-like domains, including FUS and TDP-43, to mitigate neurodegeneration in vivo [65,68].
R521C and P525L are two common FUS mutations associated with ALS. FUS-R521C causes DNA damage and RNA splicing defects [69]. It colocalizes with stress granules, significantly increasing SG assembly and persistence [70]. FUS-R521C-positive SGs were colocalized to LC3-positive autophagosomes accumulating in autophagy-deficient neurons, suggesting that autophagy is involved in the clearance of FUS mutants [71]. P525L FUS mutation causes early-onset of ALS [72]. P525L-positive SGs are more intense and larger than the WT. The PI3K/AKT/mTOR pathway inhibition increases autophagy by reducing FUS recruitment into SGs and reduces abnormal SGs linked to P525L FUS [73]. Accumulation of ubiquitinated proteins and autophagy receptor p62 was detected in neuronal cells with ALS-associated FUS mutation due to impaired autophagy [74]. However, overexpression of Rab1 rescued these defects, suggesting that Rab1 has a protective role in ALS [75].

5. Chromosome 9 Open Reading Frame 72 (C9ORF72)

The chromosome 9 open reading frame 72 gene consists of 11 exons with three main transcripts formed through a complex process of alternative splicing and produces two protein isoforms. It is found in almost 40% of familial ALS and FTD cases [76,77]. The GGGGCC hexanucleotide repeat expansion (HRE) in the first intron of C9orf72 is the most common genetic cause of both ALS and FTD. C9orf72 HRE-induced cytotoxicity has been demonstrated to be caused by loss- and gain-of-function mutations. The mutations lead to the loss of function of the C9orf72 protein. In contrast, sense or antisense RNAs generate pathogenic dipeptide repeat (DPR) aggregates, including poly-GA, poly-GP, poly-GR, poly-PA, and poly-PR [78,79], with a toxic gain of function.
DPR is commonly detected in p62-positive cytoplasmic inclusions, indicating that DPR is prone to aggregation [80]. Nucleocytoplasmic transport was defective, leading to an aberrant accumulation of SG-resident proteins within inclusions positive for TDP-43 in the C9orf72-HRE mice model, indicating that abnormal SGs response caused by C9orf72 may lead to TDP-43 proteinopathy in FTD/ALS [81]. More importantly, the early appearance of persistent pathological stress granules prior to significant pTDP-43 deposition implicates aberrant stress granule response as the key disease mechanism driving TDP-43 proteinopathy in C9orf72 FTD/ALS. Moreover, C9orf72 poly-GR aggregation enhances cytoplasmic TDP-43 aggregation and sequesters full-length TDP-43 through an RNA-independent mechanism, leading to TDP-43 proteinopathy in vivo [82,83].
C9orf72 HRE can also disrupt nucleocytoplasmic transport at the nuclear pore complex via hairpin and G-quadruplex secondary structures of RNA, which accounts for the nuclear depletion and cytoplasmic accumulation of RNA-binding proteins [84]. Knockdown or mutation of C9orf72 abolished SG formation, negatively impacted the expression of SG-associated proteins, including TIA-1 and HuR, and facilitated cell death [85]. Moreover, toxic arginine-rich dipeptide DPRs derived from C9orf72 HRE undergo LLPS and induce spontaneous stress granule assembly through eIF2α phosphorylation and G3BP1 [86]. Poly-GR can also impair stress granule dynamics by delaying SGs disassembly, preventing cells from generating effective stress response and consequently causing persistent cellular stress [87].
Moreover, accumulating evidence demonstrates that C9orf72 regulates different stages of the autophagy pathway as an essential activator [88]. C9orf72 forms a multiprotein complex with Smith–Magenis syndrome chromosomal region candidate gene 8 (SMCR8) and ATG101 [89,90]. The complex regulates the expression and activity of unc-51-like autophagy activating kinase 1 (ULK1), a key autophagy initiation factor [90]. A related study also showed that C9orf72 interacted with Rab1a and ULK1 to regulate Rab1a-dependent trafficking of the autophagy initiation complex to the phagophore [91]. Moreover, C9orf72 regulates autophagosome maturation by acting as the GEF of Rab7 [92]. A recent study also demonstrated that C9orf72 inhibited mTORC1 and activated TFEB, thereby globally activating the autophagy pathway. The above-mentioned autophagy activities of C9orf72 appear to be altered in ALS-associated C9orf72 mutations. However, it is unclear whether the protein aggregates of C9orf72 mutants are substrates of autophagy.
Table 1. The representative ALS-causative proteins.
Table 1. The representative ALS-causative proteins.
ProteinAssociated NDDsImportant StructuresFunctionMain PathogenesisRole in SG DynamicsReferences
TDP-43FTD, ALS, PD, HDC-terminal Glycine-rich domain, RNA recognition motifs (RRM1 and RRM2), nuclear localization signal and nuclear export signalRegulates mRNA splicing, translation, transportation and stabilityMutations cause loss of TDP-43 nuclear function and cytoplasmic accumulationSG componentReviewed in [93]
FUSFTD, ALSN terminal prion-like domain, RNA recognition motif, C terminal nuclear localization signalRNA- binding protein aids RNA transcription and splicingMutations on NLS impair the FUS nuclear transport causing cytoplasmic aggregationSG componentReviewed in [94]
C9ORF72ALS, FTD-Affect transcription, translation and
RNA transport
Abnormal hexanucleotide GGGGCC repeat amplification Cause stress and interact with SG proteinsReviewed in [95]
SOD1ALS-An antioxidant enzyme detoxifying superoxideMutated SOD1 exposes hydrophobic surfaces and N-terminal short region increasing aggregation propensityCause stress and interact with SG proteinsReviewed in [96]
UBQLN2ALS, FTDUbiquitin-like domain (UBL), UBA, four stress-induced protein 1-like domains (STI-1 like), PXX domainDirects misfolded or redundant proteins to the proteasome, acts in macroautophagyMissense mutationsSG autophagic clearanceReviewed in [97]
ANXA11ALSFour conserved annexin (ANX) domains, low-complexity domain (LCD)Regulates cytokinesis, vesicle trafficking, apoptosis, intracellular Ca2+ homeostasis and stress granule dynamicsMissense mutationsCause stress and interact with SG proteinsReviewed in [98]
VCPFTD, ALSN-terminal domain, ATP-binding domains D1 and D2DNA damage response, cell cycle control, autophagy, and SG clearanceMutations disrupt the autophagic degradation of ubiquitinated proteins, resulting in the accumulation of non-degradative autophagosomesSG component; SG autophagic clearanceReviewed in [99]
MATR3ALS, FTD, ADTwo tandem RNA-recognition motifs, two zinc finger domainsAlternative splicing, mRNA stability, transcription and mRNA nuclear exportMissense mutationsSG componentReviewed in [100]
NDD: neurodegenerative disease; PD: Parkinson’s disease; AD: Alzheimer’s disease; HD: Huntington’s disease; ALS: amyotrophic lateral sclerosis; FTD: frontotemporal dementia.

6. p62

p62 was the first described autophagy receptor [101]. p62 is also named sequestosome 1 based on the ability to form aggregates [102]. Structurally, p62 contains various protein-binding domains, including an N-terminal Phox and Bem1 (PB1) domain, ZZ-type zinc finger domain, LIR, KEAP1 interacting region motifs (KIR), and UBA in the C-terminal. The formation of the phagosome and subsequent removal in selective autophagy is dependent on p62 [101]. Firstly, the UBA domain of p62 binds to ubiquitin chains of the target cargo, while the LIR motif interacts with ATG8 family proteins that are covalently attached to the inner membrane surface of the growing phagophore [11,103]. Thereafter, the oligomerization PB1 domain strengthens the interaction between the cargo and the phagophore. Finally, autophagosomes are completed and fuse with the lysosomes. It is important to point out that p62 undergoes LLPS upon association with polyubiquitinated substrates, and this process is vital for autophagy initiation and clearance of autophagy cargoes [104]. Therefore, it is not surprising that p62 is frequently observed in SGs and protein aggregates under different conditions.
Mutations in the p62 gene, which affects normal function, have been reported in ALS and FTD patients [105,106,107,108]. Notably, aggregation and phosphorylation of p62 were identified in a wide range of neurodegenerative diseases, including neurofibrillary tangles in AD [109], SOD1 aggregates in ALS [110], ubiquitin inclusions in PD, Lewy bodies in dementia [111], and huntingtin inclusion in HD [112]. Mutations of the PB1 domain have been reported in both ALS and FTD [113]. Further, deletion of the PB1 domain prevents p62 binding to mutant SOD1 [36]. P62 forms a complex with C9orf72 to recognize stress granules for degradation by autophagy, and a defect in this process is implicated in ALS pathogenesis [114]. Notably, TBK1 controls the autophagosomal engulfment of polyubiquitinated mitochondria through p62 phosphorylation. Unexpectedly, p62 overexpression was shown to significantly promote disease progression in the SOD1 H46R-expressing mice ALS model [115]. The causality of p62 in ALS is still ambiguous, despite evidence linking p62 to ALS.

7. Optineurin (OPTN)

Optineurin is an important autophagy receptor involved in autophagic clearance of damaged mitochondria [116] and protein aggregates [117]. OPTN consists of several domains that interact with different proteins, including multiple coiled-coil motifs, a basic leucine-zipper motif (bZIP), an LIR motif, a UBA, and a C-terminal zinc-finger domain [118,119]. It recognizes various protein aggregates via its C-terminal coiled-coil domain in a ubiquitin-independent manner.
OPTN depletion significantly increases protein aggregation in HeLa cells [120]. The UBA domain of OPTN colocalized with inclusion bodies formed by the truncated form of TDP43ND251 in Neuro2A cells. Overexpression of wild-type OPTN decreased inclusion bodies through K63-linked polyubiquitin-mediated autophagy. However, UBA mutants increased the accumulation of inclusion bodies [121]. OPTN facilitates LC3 lipidation and the expansion of the phagophore into the autophagosome by promoting the recruitment of the Atg12-5-16L1 complex to WIPI2-positive phagophores [122]. OPTN can also undergo post-translational modifications, such as ubiquitination and phosphorylation, affecting its functions and downstream signaling [119]. TBK1, another ALS-causal protein, phosphorylates OPTN to enhance interaction with LC3 and promote autophagy activities [117]. Moreover, OPTN is an important autophagy receptor in parkin-mediated mitophagy. The function of OPTN is disrupted by ALS-linked mutation [123], and phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes mitophagy [124]. TBK1 binds and phosphorylates both OPTN and p62, increasing their autophagy functions. Therefore, the three proteins are considered players in the causal pathway linking autophagy and ALS [125]
OPTN gene mutations have been identified in both fALS and sALS. Three types of OPTN mutations were discovered in fALS patients in 2010—a homozygous deletion of exon 5, a homozygous Q398X nonsense mutation, and a heterozygous E478G missense mutation within the UBA domain [126]. Later, more than 20 OPTN gene mutations were discovered [127]. The Q398X mutation causes a premature stop during translation, resulting in a deletion of the coiled coil 2 domain, which is necessary for binding to ubiquitin and the ubiquitinated receptor-interacting protein. The E478G mutation increased the immunoreactivity for OPTN in the cell body and the neurites. The increased amount and different distribution of the mutated protein might disturb neuronal functions and accelerate the formation of the inclusion body [126].

8. Future Perspectives

In this review, we summarize several proteins involved in the pathogenesis of ALS and aberrant SG dynamics from an aggrephagy perspective. Further studies are needed to explain why mutations of some genes only cause ALS, but not other neurogenerative diseases, while mutations of other ALS genes lead to different neuronal disorders. The link between OPTN, TBK1, and p62 is still not clear, and therefore, it is necessary to investigate mutations of these proteins that may be co-inherited, further promoting ALS. Most current studies focus on dysfunctional protein–protein interactions and phase separations. However, future studies need to focus on RNA alteration in the inclusion or stress granules to reveal the underlying mechanisms from other perspectives. More importantly, it remains poorly understood how autophagy discriminates healthy SGs, which can properly disassemble when the stress fades away, from the unhealthy SGs, which are irreversible and form toxic cytoplasmic inclusions. Further, the upstream signals and how they transduce to mobilize autophagy machinery for proper spatiotemporal control of the surveillance on protein aggregation in the context of ALS pathogenesis needs further exploration. In particular, future studies should reveal when and how aggrephagy receptors recognize specific protein aggregates and how they interact with different cargoes.

Funding

This study was supported by the National Natural Science Foundation under Grant 91754113, 31970695, 31771525 and 32025012 to Q.S., Ministry of Science and Technology of the People’s Republic of China under Grant 2017YFA0503402 to Q.S.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Wolozin, B.; Ivanov, P. Stress granules and neurodegeneration. Nat. Rev. Neurosci. 2019, 20, 649–666. [Google Scholar] [CrossRef]
  2. Mathieu, C.; Pappu, R.V.; Taylor, J.P. Beyond aggregation: Pathological phase transitions in neurodegenerative disease. Science 2020, 370, 56–60. [Google Scholar] [CrossRef]
  3. He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009, 43, 67–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  4. Nakatogawa, H.; Suzuki, K.; Kamada, Y.; Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: Lessons from yeast. Nat. Rev. Mol. Cell Biol. 2009, 10, 458–467. [Google Scholar] [CrossRef] [Green Version]
  5. Ktistakis, N.T.; Tooze, S.A. Digesting the Expanding Mechanisms of Autophagy. Trends Cell Biol. 2016, 26, 624–635. [Google Scholar] [CrossRef] [PubMed]
  6. Bernard, A.; Klionsky, D.J. Autophagosome formation: Tracing the source. Dev. Cell 2013, 25, 116–117. [Google Scholar] [CrossRef] [Green Version]
  7. Yamamoto, H.; Kakuta, S.; Watanabe, T.M.; Kitamura, A.; Sekito, T.; Kondo-Kakuta, C.; Ichikawa, R.; Kinjo, M.; Ohsumi, Y. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J. Cell Biol. 2012, 198, 219–233. [Google Scholar] [CrossRef] [Green Version]
  8. Ravikumar, B.; Moreau, K.; Jahreiss, L.; Puri, C.; Rubinsztein, D.C. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 2010, 12, 747–757. [Google Scholar] [CrossRef] [PubMed]
  9. Moreau, K.; Ravikumar, B.; Renna, M.; Puri, C.; Rubinsztein, D.C. Autophagosome precursor maturation requires homotypic fusion. Cell 2011, 146, 303–317. [Google Scholar] [CrossRef] [Green Version]
  10. Weidberg, H.; Shvets, E.; Elazar, Z. Biogenesis and cargo selectivity of autophagosomes. Annu. Rev. Biochem. 2011, 80, 125–156. [Google Scholar] [CrossRef]
  11. Rogov, V.; Dotsch, V.; Johansen, T.; Kirkin, V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol. Cell 2014, 53, 167–178. [Google Scholar] [CrossRef] [Green Version]
  12. Farre, J.C.; Subramani, S. Mechanistic insights into selective autophagy pathways: Lessons from yeast. Nat. Rev. Mol. Cell Biol. 2016, 17, 537–552. [Google Scholar] [CrossRef]
  13. Zaffagnini, G.; Martens, S. Mechanisms of Selective Autophagy. J. Mol. Biol. 2016, 428, 1714–1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Khaminets, A.; Behl, C.; Dikic, I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol. 2016, 26, 6–16. [Google Scholar] [CrossRef] [PubMed]
  15. Gatica, D.; Lahiri, V.; Klionsky, D.J. Cargo recognition and degradation by selective autophagy. Nat. Cell Biol. 2018, 20, 233–242. [Google Scholar] [CrossRef]
  16. Anding, A.L.; Baehrecke, E.H. Cleaning House: Selective Autophagy of Organelles. Dev. Cell 2017, 41, 10–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  17. Kirkin, V. History of the Selective Autophagy Research: How Did It Begin and Where Does It Stand Today? J. Mol. Biol. 2019, 432, 3–27. [Google Scholar] [CrossRef]
  18. Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef] [Green Version]
  19. Mizushima, N.; Levine, B.; Cuervo, A.M.; Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature 2008, 451, 1069–1075. [Google Scholar] [CrossRef] [Green Version]
  20. Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell 2008, 132, 27–42. [Google Scholar] [CrossRef] [Green Version]
  21. Hyttinen, J.M.; Amadio, M.; Viiri, J.; Pascale, A.; Salminen, A.; Kaarniranta, K. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases. Ageing Res. Rev. 2014, 18, 16–28. [Google Scholar] [CrossRef]
  22. Kirkin, V.; Rogov, V.V. A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway. Mol. Cell 2019, 76, 268–285. [Google Scholar] [CrossRef] [PubMed]
  23. Sun, D.; Wu, R.; Li, P.; Yu, L. Phase Separation in Regulation of Aggrephagy. J. Mol. Biol. 2020, 432, 160–169. [Google Scholar] [CrossRef]
  24. Monahan, Z.; Shewmaker, F.; Pandey, U.B. Stress granules at the intersection of autophagy and ALS. Brain Res. 2016, 1649, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  25. Evans, C.S.; Holzbaur, E.L.F. Autophagy and mitophagy in ALS. Neurobiol. Dis. 2019, 122, 35–40. [Google Scholar] [CrossRef]
  26. Li, Y.R.; King, O.D.; Shorter, J.; Gitler, A.D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 2013, 201, 361–372. [Google Scholar] [CrossRef]
  27. Taylor, J.P.; Brown, R.H., Jr.; Cleveland, D.W. Decoding ALS: From genes to mechanism. Nature 2016, 539, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  28. Kim, G.; Gautier, O.; Tassoni-Tsuchida, E.; Ma, X.R.; Gitler, A.D. ALS Genetics: Gains, Losses, and Implications for Future Therapies. Neuron 2020, 108, 822–842. [Google Scholar] [CrossRef]
  29. Buchan, J.R.; Kolaitis, R.M.; Taylor, J.P.; Parker, R. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013, 153, 1461–1474. [Google Scholar] [CrossRef] [Green Version]
  30. Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng, H.X.; et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993, 362, 59–62. [Google Scholar] [CrossRef] [PubMed]
  31. Furukawa, Y.; O’Halloran, T.V. Amyotrophic lateral sclerosis mutations have the greatest destabilizing effect on the apo- and reduced form of SOD1, leading to unfolding and oxidative aggregation. J. Biol. Chem. 2005, 280, 17266–17274. [Google Scholar] [CrossRef] [Green Version]
  32. Leal, S.S.; Cardoso, I.; Valentine, J.S.; Gomes, C.M. Calcium ions promote superoxide dismutase 1 (SOD1) aggregation into non-fibrillar amyloid: A link to toxic effects of calcium overload in amyotrophic lateral sclerosis (ALS)? J. Biol. Chem. 2013, 288, 25219–25228. [Google Scholar] [CrossRef] [Green Version]
  33. Tompa, D.R.; Kadhirvel, S. Changes in hydrophobicity mainly promotes the aggregation tendency of ALS associated SOD1 mutants. Int. J. Biol. Macromol. 2020, 145, 904–913. [Google Scholar] [CrossRef]
  34. Lee, D.Y.; Jeon, G.S.; Sung, J.J. ALS-Linked Mutant SOD1 Associates with TIA-1 and Alters Stress Granule Dynamics. Neurochem. Res. 2020, 45, 2884–2893. [Google Scholar] [CrossRef]
  35. Gal, J.; Kuang, L.; Barnett, K.R.; Zhu, B.Z.; Shissler, S.C.; Korotkov, K.V.; Hayward, L.J.; Kasarskis, E.J.; Zhu, H. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics. Acta Neuropathol. 2016, 132, 563–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  36. Gal, J.; Strom, A.L.; Kwinter, D.M.; Kilty, R.; Zhang, J.; Shi, P.; Fu, W.; Wooten, M.W.; Zhu, H. Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J. Neurochem. 2009, 111, 1062–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  37. Maday, S.; Wallace, K.E.; Holzbaur, E.L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 2012, 196, 407–417. [Google Scholar] [CrossRef]
  38. Tak, Y.J.; Park, J.H.; Rhim, H.; Kang, S. ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin. Int. J. Mol. Sci. 2020, 21, 7525. [Google Scholar] [CrossRef]
  39. Rudnick, N.D.; Griffey, C.J.; Guarnieri, P.; Gerbino, V.; Wang, X.; Piersaint, J.A.; Tapia, J.C.; Rich, M.M.; Maniatis, T. Distinct roles for motor neuron autophagy early and late in the SOD1(G93A) mouse model of ALS. Proc. Natl. Acad. Sci. USA 2017, 114, E8294–E8303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  40. Afroz, T.; Perez-Berlanga, M.; Polymenidou, M. Structural Transition, Function and Dysfunction of TDP-43 in Neurodegenerative Diseases. CHIMIA Int. J. Chem. 2019, 73, 380–390. [Google Scholar] [CrossRef] [PubMed]
  41. Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  42. Ling, S.C.; Polymenidou, M.; Cleveland, D.W. Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron 2013, 79, 416–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  43. Nonaka, T.; Hasegawa, M. TDP-43 Prions. Cold Spring Harb. Perspect. Med. 2018, 8, a024463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  44. Gasset-Rosa, F.; Lu, S.; Yu, H.; Chen, C.; Melamed, Z.; Guo, L.; Shorter, J.; Da Cruz, S.; Cleveland, D.W. Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death. Neuron 2019, 102, 339–357.e337. [Google Scholar] [CrossRef] [Green Version]
  45. Ratti, A.; Gumina, V.; Lenzi, P.; Bossolasco, P.; Fulceri, F.; Volpe, C.; Bardelli, D.; Pregnolato, F.; Maraschi, A.; Fornai, F.; et al. Chronic stress induces formation of stress granules and pathological TDP-43 aggregates in human ALS fibroblasts and iPSC-motoneurons. Neurobiol. Dis. 2020, 145, 105051. [Google Scholar] [CrossRef]
  46. Gilpin, K.M.; Chang, L.; Monteiro, M.J. ALS-linked mutations in ubiquilin-2 or hnRNPA1 reduce interaction between ubiquilin-2 and hnRNPA1. Hum. Mol. Genet. 2015, 24, 2565–2577. [Google Scholar] [CrossRef] [Green Version]
  47. Cassel, J.A.; Reitz, A.B. Ubiquilin-2 (UBQLN2) binds with high affinity to the C-terminal region of TDP-43 and modulates TDP-43 levels in H4 cells: Characterization of inhibition by nucleic acids and 4-aminoquinolines. Biochim. Biophys. Acta 2013, 1834, 964–971. [Google Scholar] [CrossRef] [Green Version]
  48. Kim, H.J.; Kim, N.C.; Wang, Y.D.; Scarborough, E.A.; Moore, J.; Diaz, Z.; MacLea, K.S.; Freibaum, B.; Li, S.; Molliex, A.; et al. Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 2013, 495, 467–473. [Google Scholar] [CrossRef]
  49. Johnson, J.O.; Pioro, E.P.; Boehringer, A.; Chia, R.; Feit, H.; Renton, A.E.; Pliner, H.A.; Abramzon, Y.; Marangi, G.; Winborn, B.J.; et al. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nat. Neurosci. 2014, 17, 664–666. [Google Scholar] [CrossRef]
  50. Mackenzie, I.R.; Nicholson, A.M.; Sarkar, M.; Messing, J.; Purice, M.D.; Pottier, C.; Annu, K.; Baker, M.; Perkerson, R.B.; Kurti, A.; et al. TIA1 Mutations in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia Promote Phase Separation and Alter Stress Granule Dynamics. Neuron 2017, 95, 808–816.e809. [Google Scholar] [CrossRef]
  51. Hiji, M.; Takahashi, T.; Fukuba, H.; Yamashita, H.; Kohriyama, T.; Matsumoto, M. White matter lesions in the brain with frontotemporal lobar degeneration with motor neuron disease: TDP-43-immunopositive inclusions co-localize with p62, but not ubiquitin. Acta Neuropathol. 2008, 116, 183–191. [Google Scholar] [CrossRef] [PubMed]
  52. Ayaki, T.; Ito, H.; Fukushima, H.; Inoue, T.; Kondo, T.; Ikemoto, A.; Asano, T.; Shodai, A.; Fujita, T.; Fukui, S.; et al. Immunoreactivity of valosin-containing protein in sporadic amyotrophic lateral sclerosis and in a case of its novel mutant. Acta Neuropathol. Commun. 2014, 2, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  53. Kumar, S.; Phaneuf, D.; Cordeau, P., Jr.; Boutej, H.; Kriz, J.; Julien, J.P. Induction of autophagy mitigates TDP-43 pathology and translational repression of neurofilament mRNAs in mouse models of ALS/FTD. Mol. Neurodegener. 2021, 16, 1. [Google Scholar] [CrossRef]
  54. Barmada, S.J.; Serio, A.; Arjun, A.; Bilican, B.; Daub, A.; Ando, D.M.; Tsvetkov, A.; Pleiss, M.; Li, X.; Peisach, D.; et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat. Chem. Biol. 2014, 10, 677–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  55. Bose, J.K.; Huang, C.C.; Shen, C.K. Regulation of autophagy by neuropathological protein TDP-43. J. Biol. Chem. 2011, 286, 44441–44448. [Google Scholar] [CrossRef] [Green Version]
  56. Xia, Q.; Wang, H.; Hao, Z.; Fu, C.; Hu, Q.; Gao, F.; Ren, H.; Chen, D.; Han, J.; Ying, Z.; et al. TDP-43 loss of function increases TFEB activity and blocks autophagosome-lysosome fusion. EMBO J. 2016, 35, 121–142. [Google Scholar] [CrossRef] [Green Version]
  57. Crozat, A.; Aman, P.; Mandahl, N.; Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 1993, 363, 640–644. [Google Scholar] [CrossRef]
  58. Rabbitts, T.H.; Forster, A.; Larson, R.; Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat. Genet. 1993, 4, 175–180. [Google Scholar] [CrossRef]
  59. Iko, Y.; Kodama, T.S.; Kasai, N.; Oyama, T.; Morita, E.H.; Muto, T.; Okumura, M.; Fujii, R.; Takumi, T.; Tate, S.; et al. Domain architectures and characterization of an RNA-binding protein, TLS. J. Biol. Chem. 2004, 279, 44834–44840. [Google Scholar] [CrossRef] [Green Version]
  60. Kwiatkowski, T.J., Jr.; Bosco, D.A.; Leclerc, A.L.; Tamrazian, E.; Vanderburg, C.R.; Russ, C.; Davis, A.; Gilchrist, J.; Kasarskis, E.J.; Munsat, T.; et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009, 323, 1205–1208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  61. Vance, C.; Rogelj, B.; Hortobagyi, T.; De Vos, K.J.; Nishimura, A.L.; Sreedharan, J.; Hu, X.; Smith, B.; Ruddy, D.; Wright, P.; et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009, 323, 1208–1211. [Google Scholar] [CrossRef] [Green Version]
  62. Dormann, D.; Madl, T.; Valori, C.F.; Bentmann, E.; Tahirovic, S.; Abou-Ajram, C.; Kremmer, E.; Ansorge, O.; Mackenzie, I.R.; Neumann, M.; et al. Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J. 2012, 31, 4258–4275. [Google Scholar] [CrossRef] [Green Version]
  63. Dormann, D.; Rodde, R.; Edbauer, D.; Bentmann, E.; Fischer, I.; Hruscha, A.; Than, M.E.; Mackenzie, I.R.; Capell, A.; Schmid, B.; et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 2010, 29, 2841–2857. [Google Scholar] [CrossRef] [Green Version]
  64. Scekic-Zahirovic, J.; Sendscheid, O.; El Oussini, H.; Jambeau, M.; Sun, Y.; Mersmann, S.; Wagner, M.; Dieterle, S.; Sinniger, J.; Dirrig-Grosch, S.; et al. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J. 2016, 35, 1077–1097. [Google Scholar] [CrossRef] [PubMed]
  65. Hofweber, M.; Hutten, S.; Bourgeois, B.; Spreitzer, E.; Niedner-Boblenz, A.; Schifferer, M.; Ruepp, M.D.; Simons, M.; Niessing, D.; Madl, T.; et al. Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation. Cell 2018, 173, 706–719.e713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  66. Vance, C.; Scotter, E.L.; Nishimura, A.L.; Troakes, C.; Mitchell, J.C.; Kathe, C.; Urwin, H.; Manser, C.; Miller, C.C.; Hortobagyi, T.; et al. ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol. Genet. 2013, 22, 2676–2688. [Google Scholar] [CrossRef] [PubMed]
  67. Patel, A.; Lee, H.O.; Jawerth, L.; Maharana, S.; Jahnel, M.; Hein, M.Y.; Stoynov, S.; Mahamid, J.; Saha, S.; Franzmann, T.M.; et al. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 2015, 162, 1066–1077. [Google Scholar] [CrossRef] [Green Version]
  68. Guo, L.; Kim, H.J.; Wang, H.; Monaghan, J.; Freyermuth, F.; Sung, J.C.; O’Donovan, K.; Fare, C.M.; Diaz, Z.; Singh, N.; et al. Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell 2018, 173, 677–692.e620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  69. Qiu, H.; Lee, S.; Shang, Y.; Wang, W.Y.; Au, K.F.; Kamiya, S.; Barmada, S.J.; Finkbeiner, S.; Lui, H.; Carlton, C.E.; et al. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects. J. Clin. Investig. 2014, 124, 981–999. [Google Scholar] [CrossRef] [PubMed]
  70. Acosta, J.R.; Goldsbury, C.; Winnick, C.; Badrock, A.P.; Fraser, S.T.; Laird, A.S.; Hall, T.E.; Don, E.K.; Fifita, J.A.; Blair, I.P.; et al. Mutant Human FUS Is Ubiquitously Mislocalized and Generates Persistent Stress Granules in Primary Cultured Transgenic Zebrafish Cells. PLoS ONE 2014, 9, e90572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  71. Ryu, H.H.; Jun, M.H.; Min, K.J.; Jang, D.J.; Lee, Y.S.; Kim, H.K.; Lee, J.A. Autophagy regulates amyotrophic lateral sclerosis-linked fused in sarcoma-positive stress granules in neurons. Neurobiol. Aging 2014, 35, 2822–2831. [Google Scholar] [CrossRef]
  72. Conte, A.; Lattante, S.; Zollino, M.; Marangi, G.; Luigetti, M.; Del Grande, A.; Servidei, S.; Trombetta, F.; Sabatelli, M. P525L FUS mutation is consistently associated with a severe form of juvenile Amyotrophic Lateral Sclerosis. Neuromuscul. Disord. 2012, 22, 73–75. [Google Scholar] [CrossRef] [PubMed]
  73. Marrone, L.; Poser, I.; Casci, I.; Japtok, J.; Reinhardt, P.; Janosch, A.; Andree, C.; Lee, H.O.; Moebius, C.; Koerner, E.; et al. Isogenic FUS-eGFP iPSC Reporter Lines Enable Quantification of FUS Stress Granule Pathology that Is Rescued by Drugs Inducing Autophagy. Stem Cell Rep. 2018, 10, 375–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  74. Ho, W.Y.; Ling, S.C. Elevated FUS levels by overriding its autoregulation produce gain-of-toxicity properties that disrupt protein and RNA homeostasis. Autophagy 2019, 15, 1665–1667. [Google Scholar] [CrossRef] [PubMed]
  75. Soo, K.Y.; Sultana, J.; King, A.E.; Atkinson, R.; Warraich, S.T.; Sundaramoorthy, V.; Blair, I.; Farg, M.A.; Atkin, J.D. ALS-associated mutant FUS inhibits macroautophagy which is restored by overexpression of Rab1. Cell Death Discov. 2015, 1, 15030. [Google Scholar] [CrossRef] [PubMed]
  76. Majounie, E.; Renton, A.E.; Mok, K.; Dopper, E.G.; Waite, A.; Rollinson, S.; Chiò, A.; Restagno, G.; Nicolaou, N.; Simon-Sanchez, J.; et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: A cross-sectional study. Lancet Neurol. 2012, 11, 323–330. [Google Scholar] [CrossRef]
  77. Renton, A.E.; Majounie, E.; Waite, A.; Simón-Sánchez, J.; Rollinson, S.; Gibbs, J.R.; Schymick, J.C.; Laaksovirta, H.; van Swieten, J.C.; Myllykangas, L.; et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011, 72, 257–268. [Google Scholar] [CrossRef] [Green Version]
  78. Mori, K.; Arzberger, T.; Grässer, F.A.; Gijselinck, I.; May, S.; Rentzsch, K.; Weng, S.M.; Schludi, M.H.; van der Zee, J.; Cruts, M.; et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol. 2013, 126, 881–893. [Google Scholar] [CrossRef] [PubMed]
  79. Mori, K.; Weng, S.M.; Arzberger, T.; May, S.; Rentzsch, K.; Kremmer, E.; Schmid, B.; Kretzschmar, H.A.; Cruts, M.; Van Broeckhoven, C.; et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 2013, 339, 1335–1338. [Google Scholar] [CrossRef]
  80. Troakes, C.; Maekawa, S.; Wijesekera, L.; Rogelj, B.; Siklos, L.; Bell, C.; Smith, B.; Newhouse, S.; Vance, C.; Johnson, L.; et al. An MND/ALS phenotype associated with C9orf72 repeat expansion: Abundant p62-positive, TDP-43-negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline. Neuropathology 2012, 32, 505–514. [Google Scholar] [CrossRef]
  81. Chew, J.; Cook, C.; Gendron, T.F.; Jansen-West, K.; Del Rosso, G.; Daughrity, L.M.; Castanedes-Casey, M.; Kurti, A.; Stankowski, J.N.; Disney, M.D.; et al. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy. Mol. Neurodegener. 2019, 14, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  82. Cook, C.N.; Wu, Y.; Odeh, H.M.; Gendron, T.F.; Jansen-West, K.; Del Rosso, G.; Yue, M.; Jiang, P.; Gomes, E.; Tong, J.; et al. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy. Sci. Transl. Med. 2020, 12, eabb3774. [Google Scholar] [CrossRef]
  83. Saberi, S.; Stauffer, J.E.; Jiang, J.; Garcia, S.D.; Taylor, A.E.; Schulte, D.; Ohkubo, T.; Schloffman, C.L.; Maldonado, M.; Baughn, M.; et al. Sense-encoded poly-GR dipeptide repeat proteins correlate to neurodegeneration and uniquely co-localize with TDP-43 in dendrites of repeat-expanded C9orf72 amyotrophic lateral sclerosis. Acta Neuropathol. 2018, 135, 459–474. [Google Scholar] [CrossRef]
  84. Zhang, K.; Donnelly, C.J.; Haeusler, A.R.; Grima, J.C.; Machamer, J.B.; Steinwald, P.; Daley, E.L.; Miller, S.J.; Cunningham, K.M.; Vidensky, S.; et al. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 2015, 525, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  85. Maharjan, N.; Kunzli, C.; Buthey, K.; Saxena, S. C9ORF72 Regulates Stress Granule Formation and Its Deficiency Impairs Stress Granule Assembly, Hypersensitizing Cells to Stress. Mol. Neurobiol. 2017, 54, 3062–3077. [Google Scholar] [CrossRef]
  86. Boeynaems, S.; Bogaert, E.; Kovacs, D.; Konijnenberg, A.; Timmerman, E.; Volkov, A.; Guharoy, M.; De Decker, M.; Jaspers, T.; Ryan, V.H.; et al. Phase Separation of C9orf72 Dipeptide Repeats Perturbs Stress Granule Dynamics. Mol. Cell 2017, 65, 1044–1055.e1045. [Google Scholar] [CrossRef] [Green Version]
  87. Zhang, Y.J.; Gendron, T.F.; Ebbert, M.T.W.; O’Raw, A.D.; Yue, M.; Jansen-West, K.; Zhang, X.; Prudencio, M.; Chew, J.; Cook, C.N.; et al. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Nat. Med. 2018, 24, 1136–1142. [Google Scholar] [CrossRef] [PubMed]
  88. Beckers, J.; Tharkeshwar, A.K.; Van Damme, P. C9orf72 ALS-FTD: Recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels. Autophagy 2021, 1–17. [Google Scholar] [CrossRef]
  89. Zhang, Y.; Burberry, A.; Wang, J.Y.; Sandoe, J.; Ghosh, S.; Udeshi, N.D.; Svinkina, T.; Mordes, D.A.; Mok, J.; Charlton, M.; et al. The C9orf72-interacting protein Smcr8 is a negative regulator of autoimmunity and lysosomal exocytosis. Genes Dev. 2018, 32, 929–943. [Google Scholar] [CrossRef] [Green Version]
  90. Yang, M.; Liang, C.; Swaminathan, K.; Herrlinger, S.; Lai, F.; Shiekhattar, R.; Chen, J.F. A C9ORF72/SMCR8-containing complex regulates ULK1 and plays a dual role in autophagy. Sci. Adv. 2016, 2, e1601167. [Google Scholar] [CrossRef] [Green Version]
  91. Webster, C.P.; Smith, E.F.; Bauer, C.S.; Moller, A.; Hautbergue, G.M.; Ferraiuolo, L.; Myszczynska, M.A.; Higginbottom, A.; Walsh, M.J.; Whitworth, A.J.; et al. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 2016, 35, 1656–1676. [Google Scholar] [CrossRef]
  92. Iyer, S.; Subramanian, V.; Acharya, K.R. C9orf72, a protein associated with amyotrophic lateral sclerosis (ALS) is a guanine nucleotide exchange factor. PeerJ 2018, 6, e5815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  93. Gao, J.; Wang, L.; Huntley, M.L.; Perry, G.; Wang, X. Pathomechanisms of TDP-43 in neurodegeneration. J. Neurochem. 2018, 146, 7–20. [Google Scholar] [CrossRef] [PubMed]
  94. Deng, H.; Gao, K.; Jankovic, J. The role of FUS gene variants in neurodegenerative diseases. Nat. Rev. Neurol. 2014, 10, 337–348. [Google Scholar] [CrossRef]
  95. Xu, X.F.; Su, Y.; Zou, Z.Y.; Zhou, Y.L.; Yan, J.G. Correlation between C9ORF72 mutation and neurodegenerative diseases: A comprehensive review of the literature. Int. J. Med. Sci. 2021, 18, 378–386. [Google Scholar] [CrossRef]
  96. Hayashi, Y.; Homma, K.; Ichijo, H. SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv. Biol. Regul. 2016, 60, 95–104. [Google Scholar] [CrossRef] [PubMed]
  97. Renaud, L.; Picher-Martel, V.; Codron, P.; Julien, J.P. Key role of UBQLN2 in pathogenesis of amyotrophic lateral sclerosis and frontotemporal dementia. Acta Neuropathol. Commun. 2019, 7, 103. [Google Scholar] [CrossRef]
  98. Nahm, M.; Lim, S.M.; Kim, Y.E.; Park, J.; Noh, M.Y.; Lee, S.; Roh, J.E.; Hwang, S.M.; Park, C.K.; Kim, Y.H.; et al. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci. Transl. Med. 2020, 12, eaax3993. [Google Scholar] [CrossRef] [PubMed]
  99. Huryn, D.M.; Kornfilt, D.J.P.; Wipf, P. p97: An Emerging Target for Cancer, Neurodegenerative Diseases, and Viral Infections. J. Med. Chem. 2020, 63, 1892–1907. [Google Scholar] [CrossRef]
  100. Malik, A.M.; Barmada, S.J. Matrin 3 in neuromuscular disease: Physiology and pathophysiology. JCI Insight 2021, 6, e143948. [Google Scholar] [CrossRef] [PubMed]
  101. Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.A.; Outzen, H.; Overvatn, A.; Bjorkoy, G.; Johansen, T. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282, 24131–24145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  102. Bjørkøy, G.; Lamark, T.; Pankiv, S.; Øvervatn, A.; Brech, A.; Johansen, T. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzym. 2009, 452, 181–197. [Google Scholar] [CrossRef]
  103. Noda, N.N.; Ohsumi, Y.; Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 2010, 584, 1379–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  104. Sun, D.; Wu, R.; Zheng, J.; Li, P.; Yu, L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 2018, 28, 405–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  105. Fecto, F.; Yan, J.H.; Vemula, S.P.; Liu, E.D.; Yang, Y.; Chen, W.J.; Zheng, J.G.; Shi, Y.; Siddique, N.; Arrat, H.; et al. SQSTM1 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis. Arch. Neurol. 2011, 68, 1440–1446. [Google Scholar] [CrossRef]
  106. Rubino, E.; Rainero, I.; Chio, A.; Rogaeva, E.; Galimberti, D.; Fenoglio, P.; Grinberg, Y.; Isaia, G.; Calvo, A.; Gentile, S.; et al. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology 2012, 79, 1556–1562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  107. Bartolome, F.; Esteras, N.; Martin-Requero, A.; Boutoleau-Bretonniere, C.; Vercelletto, M.; Gabelle, A.; Le Ber, I.; Honda, T.; Dinkova-Kostova, A.T.; Hardy, J.; et al. Pathogenic p62/SQSTM1 mutations impair energy metabolism through limitation of mitochondrial substrates. Sci. Rep. 2017, 7, 1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  108. Blauwendraat, C.; Wilke, C.; Simon-Sanchez, J.; Jansen, I.E.; Reifschneider, A.; Capell, A.; Haass, C.; Castillo-Lizardo, M.; Biskup, S.; Maetzler, W.; et al. The wide genetic landscape of clinical frontotemporal dementia: Systematic combined sequencing of 121 consecutive subjects. Genet. Med. 2018, 20, 240–249. [Google Scholar] [CrossRef] [Green Version]
  109. Kuusisto, E.; Salminen, A.; Alafuzoff, I. Early accumulation of p62 in neurofibrillary tangles in Alzheimer’s disease: Possible role in tangle formation. Neuropathol. Appl. Neurobiol. 2002, 28, 228–237. [Google Scholar] [CrossRef]
  110. Gal, J.; Strom, A.L.; Kilty, R.; Zhang, F.; Zhu, H. p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J. Biol. Chem. 2007, 282, 11068–11077. [Google Scholar] [CrossRef] [Green Version]
  111. Kuusisto, E.; Parkkinen, L.; Alafuzoff, I. Morphogenesis of Lewy bodies: Dissimilar incorporation of alpha-synuclein, ubiquitin, and p62. J. Neuropathol. Exp. Neurol. 2003, 62, 1241–1253. [Google Scholar] [CrossRef] [PubMed]
  112. Rue, L.; Lopez-Soop, G.; Gelpi, E.; Martinez-Vicente, M.; Alberch, J.; Perez-Navarro, E. Brain region- and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington’s disease. Neurobiol. Dis. 2013, 52, 219–228. [Google Scholar] [CrossRef]
  113. Le Ber, I. Genetics of frontotemporal lobar degeneration: An up-date and diagnosis algorithm. Rev. Neurol. 2013, 169, 811–819. [Google Scholar] [CrossRef]
  114. Chitiprolu, M.; Jagow, C.; Tremblay, V.; Bondy-Chorney, E.; Paris, G.; Savard, A.; Palidwor, G.; Barry, F.A.; Zinman, L.; Keith, J.; et al. A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nat. Commun. 2018, 9, 2794. [Google Scholar] [CrossRef] [Green Version]
  115. Mitsui, S.; Otomo, A.; Nozaki, M.; Ono, S.; Sato, K.; Shirakawa, R.; Adachi, H.; Aoki, M.; Sobue, G.; Shang, H.F.; et al. Systemic overexpression of SQSTM1/p62 accelerates disease onset in a SOD1(H46R)-expressing ALS mouse model. Mol. Brain 2018, 11, 30. [Google Scholar] [CrossRef]
  116. Moore, A.S.; Holzbaur, E.L. Spatiotemporal dynamics of autophagy receptors in selective mitophagy. Autophagy 2016, 12, 1956–1957. [Google Scholar] [CrossRef] [PubMed]
  117. Wild, P.; Farhan, H.; McEwan, D.G.; Wagner, S.; Rogov, V.V.; Brady, N.R.; Richter, B.; Korac, J.; Waidmann, O.; Choudhary, C.; et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 2011, 333, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  118. Kachaner, D.; Genin, P.; Laplantine, E.; Weil, R. Toward an integrative view of Optineurin functions. Cell Cycle 2012, 11, 2808–2818. [Google Scholar] [CrossRef]
  119. Slowicka, K.; Vereecke, L.; van Loo, G. Cellular Functions of Optineurin in Health and Disease. Trends Immunol. 2016, 37, 621–633. [Google Scholar] [CrossRef] [PubMed]
  120. Korac, J.; Schaeffer, V.; Kovacevic, I.; Clement, A.M.; Jungblut, B.; Behl, C.; Terzic, J.; Dikic, I. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 2013, 126, 580–592. [Google Scholar] [CrossRef] [Green Version]
  121. Shen, W.C.; Li, H.Y.; Chen, G.C.; Chern, Y.; Tu, P.H. Mutations in the ubiquitin-binding domain of OPTN/optineurin interfere with autophagy-mediated degradation of misfolded proteins by a dominant-negative mechanism. Autophagy 2015, 11, 685–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  122. Bansal, M.; Moharir, S.C.; Sailasree, S.P.; Sirohi, K.; Sudhakar, C.; Sarathi, D.P.; Lakshmi, B.J.; Buono, M.; Kumar, S.; Swarup, G. Optineurin promotes autophagosome formation by recruiting the autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2 protein. J. Biol. Chem. 2018, 293, 132–147. [Google Scholar] [CrossRef] [Green Version]
  123. Wong, Y.C.; Holzbaur, E.L. Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. USA 2014, 111, E4439–E4448. [Google Scholar] [CrossRef] [Green Version]
  124. Richter, B.; Sliter, D.A.; Herhaus, L.; Stolz, A.; Wang, C.; Beli, P.; Zaffagnini, G.; Wild, P.; Martens, S.; Wagner, S.A.; et al. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, 4039–4044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  125. Yilmaz, R.; Muller, K.; Brenner, D.; Volk, A.E.; Borck, G.; Hermann, A.; Meitinger, T.; Strom, T.M.; Danzer, K.M.; Ludolph, A.C.; et al. SQSTM1/p62 variants in 486 patients with familial ALS from Germany and Sweden. Neurobiol. Aging 2020, 87, 139.e9–139.e15. [Google Scholar] [CrossRef]
  126. Maruyama, H.; Morino, H.; Ito, H.; Izumi, Y.; Kato, H.; Watanabe, Y.; Kinoshita, Y.; Kamada, M.; Nodera, H.; Suzuki, H.; et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature 2010, 465, 223–226. [Google Scholar] [CrossRef] [PubMed]
  127. Bury, J.J.; Highley, J.R.; Cooper-Knock, J.; Goodall, E.F.; Higginbottom, A.; McDermott, C.J.; Ince, P.G.; Shaw, P.J.; Kirby, J. Oligogenic inheritance of optineurin (OPTN) and C9ORF72 mutations in ALS highlights localisation of OPTN in the TDP-43-negative inclusions of C9ORF72-ALS. Neuropathology 2016, 36, 125–134. [Google Scholar] [CrossRef] [Green Version]
Figure 1. Schematic representation of aggrephagy.
Figure 1. Schematic representation of aggrephagy.
Cells 10 02247 g001
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhang, Y.; Gu, J.; Sun, Q. Aberrant Stress Granule Dynamics and Aggrephagy in ALS Pathogenesis. Cells 2021, 10, 2247. https://doi.org/10.3390/cells10092247

AMA Style

Zhang Y, Gu J, Sun Q. Aberrant Stress Granule Dynamics and Aggrephagy in ALS Pathogenesis. Cells. 2021; 10(9):2247. https://doi.org/10.3390/cells10092247

Chicago/Turabian Style

Zhang, Yi, Jiayu Gu, and Qiming Sun. 2021. "Aberrant Stress Granule Dynamics and Aggrephagy in ALS Pathogenesis" Cells 10, no. 9: 2247. https://doi.org/10.3390/cells10092247

APA Style

Zhang, Y., Gu, J., & Sun, Q. (2021). Aberrant Stress Granule Dynamics and Aggrephagy in ALS Pathogenesis. Cells, 10(9), 2247. https://doi.org/10.3390/cells10092247

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop