Perfluorocarbon-Based Oxygen Carriers and Subnormothermic Lung Machine Perfusion Decrease Production of Pro-Inflammatory Mediators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Rat Donor Lung Procurment Techniques
2.3. EVLP Procedure and Physiological Variables
2.4. Clinical Biochemistry Parameters
2.5. PFCOC Emulsion Preparation
2.6. Cytokines, Chemokines and Mediators of Wound Healing and Tissue Repair
2.7. Estimates of ATP Content and Myeoloperoxidase Activity in Lung Tissue
2.8. Statistical Method
3. Results
3.1. Lung Physiology during EVLP
3.2. Perfusate Clinical Biochemistry, ATP and MPO Tissue Levels
3.3. Cytokines, Chemokines and Mediators of Wound Healing and Tissue Repair in the Perfusate
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Cdyn | dynamic compliance |
EVLP | ex vivo lung perfusion |
FiO2 | inspired oxygen fraction |
I/R | ischemia-reperfusion |
MPO | myeloperoxidase |
PAP | pulmonary arterial pressure |
PEEP | positive end-expiratory pressure |
PFCOC | perfluorocarbon-based oxygen carriers |
PVR | pulmonary vascular resistance |
ROS | reactive oxygen species |
References
- Shah, R.J.; Diamond, J.M. Primary Graft Dysfunction (PGD) Following Lung Transplantation. Semin. Respir. Crit. Care Med. 2018, 39, 148–154. [Google Scholar] [CrossRef] [PubMed]
- van der Mark, S.C.; Hoek, R.A.S.; Hellemons, M.E. Developments in lung transplantation over the past decade. Eur. Respir. Rev. 2020, 29, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Pierre, A.F.; Sekine, Y.; Hutcheon, M.A.; Waddell, T.K.; Keshavjee, S.H. Marginal donor lungs: A reassessment. J. Thorac. Cardiovasc. Surg. 2002, 123, 421–427; discussion, 427–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Raemdonck, D.; Rega, F.; Rex, S.; Neyrinck, A. Machine perfusion of thoracic organs. J. Thorac. Dis. 2018, 10, S910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dromparis, P.; Aboelnazar, N.S.; Wagner, S.; Himmat, S.; White, C.W.; Hatami, S.; Luc, J.G.Y.; Rotich, S.; Freed, D.H.; Nagendran, J.; et al. Ex vivo perfusion induces a time- and perfusate-dependent molecular repair response in explanted porcine lungs. Am. J. Transplant. 2019, 19, 1024–1036. [Google Scholar] [CrossRef] [PubMed]
- Punch, J.D.; Hayes, D.H.; LaPorte, F.B.; McBride, V.; Seely, M.S. Organ donation and utilization in the United States, 1996–2005. Am. J. Transplant. 2007, 7, 1327–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlegel, A.; Muller, X.; Mueller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Muiesan, P.; Clavien, P.A.; Galkin, A.; Meierhofer, D.; et al. Hypothermic oxygenated perfusion protects from mitochondrial injury before liver transplantation. EBioMedicine 2020, 60, 103014. [Google Scholar] [CrossRef] [PubMed]
- Ravaioli, M.; Baldassare, M.; Vasuri, F.; Pasquinelli, G.; Laggetta, M.; Valente, S.; De Pace, V.; Neri, F.; Siniscalchi, A.; Zanfi, C.; et al. Strategies to restore adenosine triphosphate (ATP) level after more than 20 hours of cold ischemia time in human marginal kidney grafts. Ann. Transplant. 2018, 23, 34–44. [Google Scholar] [CrossRef]
- Fontes, P.; Lopez, R.; van der Plaats, A.; Vodovotz, Y.; Minervini, M.; Scott, V.; Soltys, K.; Shiva, S.; Paranjpe, S.; Sadowsky, D.; et al. Liver preservation with machine perfusion and a newly developed cell-free oxygen carrier solution under subnormothermic conditions. Am. J. Transplant. 2015, 15, 381–394. [Google Scholar] [CrossRef]
- Schlegel, A.; Muller, X.; Dutkowski, P. Hypothermic Machine Preservation of the Liver: State of the Art. Curr. Transplant. Rep. 2018, 5, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.B.; Koh, Y.; Lee, I.C.; Kim, M.J.; Kim, W.S.; Kim, D.S.; Kim, W.D.; Lim, C.M. Induced hypothermia as a new approach to lung rest for the acutely injured lung. Crit. Care Med. 2005, 33, 2049–2055. [Google Scholar] [CrossRef]
- Nakajima, D.; Chen, F.; Yamada, T.; Sakamoto, J.; Osumi, A.; Fujinaga, T.; Shoji, T.; Sakai, H.; Bando, T.; Date, H. Hypothermic machine perfusion ameliorates ischemia-reperfusion injury in rat lungs from non-heart-beating donors. Transplantation 2011, 92, 858–863. [Google Scholar] [CrossRef]
- Ravaioli, M.; De Pace, V.; Angeletti, A.; Comai, G.; Vasuri, F.; Baldassarre, M.; Maroni, L.; Odaldi, F.; Fallani, G.; Caraceni, P.; et al. Hypothermic oxygenated new machine perfusion system in liver and kidney transplantation of extended criteria donors:first italian clinical trial. Sci. Rep. 2020, 10, 6063. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, R.N.; Patel, S.V.B.; Sun, Q.; Jiang, L.; Richard-Mohamed, M.; Ruthirakanthan, A.; Aquil, S.; Al-Ogaili, R.; Juriasingani, S.; Sener, A.; et al. Renal protection against ischemia reperfusion injury: Hemoglobin-based oxygen carrier-201 versus blood as an oxygen carrier in ex vivo subnormothermic machine perfusion. Transplantation 2020, 104, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Bezinover, D.; Ramamoorthy, S.; Postula, M.; Weller, G.; Mahmoud, S.; Mani, H.; Kadry, Z.; Uemura, T.; Mets, B.; Spiess, B.; et al. Effect of cold perfusion and perfluorocarbons on liver graft ischemia in a donation after cardiac death model. J. Surg. Res. 2014, 188, 517–526. [Google Scholar] [CrossRef]
- Spahn, D.R. Artificial oxygen carriers: A new future? Crit. Care 2018, 22, 46. [Google Scholar] [CrossRef] [Green Version]
- Riess, J.G.; Krafft, M.P. Fluorocarbon emulsions as in vivo oxygen delivery systems: Background and Chemistry. In Blood Substitutes; Academic Press: Oxford, UK, 2006; pp. 259–275. [Google Scholar]
- Krafft, M.P.; Riess, J.G. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv. Colloid Interface Sci. 2021, 294, 102407. [Google Scholar] [CrossRef]
- Castro, C.I.; Briceno, J.C. Perfluorocarbon-based oxygen carriers: Review of products and trials. Artif. Organs 2010, 34, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.J.; Huang, K.L.; Wu, S.Y.; Ko, F.C.; Wu, G.C.; Li, R.Y.; Li, M.H. Systemic administration of FC-77 dampens ischemia-reperfusion-induced acute lung injury in rats. Inflammation 2013, 36, 1383–1392. [Google Scholar] [CrossRef] [PubMed]
- Kawamae, K.; Pristine, G.; Chiumello, D.; Tremblay, L.N.; Slutsky, A.S. Partial liquid ventilation decreases serum tumor necrosis factor-alpha concentrations in a rat acid aspiration lung injury model. Crit. Care Med. 2000, 28, 479–483. [Google Scholar] [CrossRef]
- Inci, I.; Arni, S.; Iskender, I.; Citak, N.; Rodriguez, J.M.; Weisskopf, M.; Opitz, I.; Weder, W.; Frauenfelder, T.; Krafft, M.P.; et al. Functional, metabolic and morphologic results of ex vivo donor lung perfusion with a perfluorocarbon-based oxygen carrier nanoemulsion in a large animal transplantation model. Cells 2020, 9, 2501. [Google Scholar] [CrossRef]
- Baba, A.; Kim, Y.K.; Zhang, H.; Liu, M.; Slutsky, A.S. Perfluorocarbon blocks tumor necrosis factor-alpha-induced interleukin-8 release from alveolar epithelial cells in vitro. Crit. Care Med. 2000, 28, 1113–1118. [Google Scholar] [CrossRef]
- Chang, H.; Kuo, F.C.; Lai, Y.S.; Chou, T.C. Inhibition of inflammatory responses by FC-77, a perfluorochemical, in lipopolysaccharide-treated RAW 264.7 macrophages. Intensive Care Med. 2005, 31, 977–984. [Google Scholar] [CrossRef]
- Council, N.R. Guide for the Care and Use of Laboratory Animals: Eighth Edition; The National Academies Press: Washington, DC, USA, 2011; p. 246. [Google Scholar]
- Jacoby, C.; Temme, S.; Mayenfels, F.; Benoit, N.; Krafft, M.P.; Schubert, R.; Schrader, J.; Flogel, U. Probing different perfluorocarbons for in vivo inflammation imaging by 19F MRI: Image reconstruction, biological half-lives and sensitivity. NMR Biomed. 2014, 27, 261–271. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Becker, D.; Bautista Borrego, L.; Hefti, M.; Schuler, M.J.; Hagedorn, C.; Muller, X.; Mueller, M.; Onder, C.; Graf, R.; et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 2020, 38, 189–198. [Google Scholar] [CrossRef]
- Obara, H.; Morito, N.; Matsuno, N.; Yoshikawa, R.; Gouchi, M.; Otani, M.; Shonaka, T.; Takahashi, H.; Enosawa, S.; Hirano, T.; et al. Optimum Perfusate Volume of Purified Subnormothermic Machine Perfusion for Porcine Liver Donated After Cardiac Death. Transplant. Proc. 2018, 50, 2830–2833. [Google Scholar] [CrossRef]
- Vairetti, M.; Ferrigno, A.; Rizzo, V.; Richelmi, P.; Boncompagni, E.; Neri, D.; Freitas, I.; Cillo, U. Subnormothermic machine perfusion protects against rat liver preservation injury: A comparative evaluation with conventional cold storage. Transplant. Proc. 2007, 39, 1765–1767. [Google Scholar] [CrossRef]
- Knaak, J.M.; Spetzler, V.N.; Goldaracena, N.; Louis, K.S.; Selzner, N.; Selzner, M. Technique of subnormothermic ex vivo liver perfusion for the storage, assessment, and repair of marginal liver grafts. J. Vis. Exp. 2014, 90, e51419. [Google Scholar] [CrossRef] [Green Version]
- Krafft, M.P. Overcoming inactivation of the lung surfactant by serum proteins: A potential role for fluorocarbons? Soft Matter 2015, 11, 5982–5994. [Google Scholar] [CrossRef] [Green Version]
- Jagers, J.; Wrobeln, A.; Ferenz, K.B. Perfluorocarbon-based oxygen carriers: From physics to physiology. Pflug. Arch. 2021, 473, 139–150. [Google Scholar] [CrossRef]
- Autilio, C.; Echaide, M.; De Luca, D.; Perez-Gil, J. Controlled hypothermia may improve surfactant function in asphyxiated neonates with or without meconium aspiration syndrome. PLoS ONE 2018, 13, e0192295. [Google Scholar] [CrossRef] [Green Version]
- Bouma, H.R.; Kroese, F.G.; Kok, J.W.; Talaei, F.; Boerema, A.S.; Herwig, A.; Draghiciu, O.; van Buiten, A.; Epema, A.H.; van Dam, A.; et al. Low body temperature governs the decline of circulating lymphocytes during hibernation through sphingosine-1-phosphate. Proc. Natl. Acad. Sci. USA 2011, 108, 2052–2057. [Google Scholar] [CrossRef] [Green Version]
- Talaei, F.; Hylkema, M.N.; Bouma, H.R.; Boerema, A.S.; Strijkstra, A.M.; Henning, R.H.; Schmidt, M. Reversible remodeling of lung tissue during hibernation in the Syrian hamster. J. Exp. Biol. 2011, 214, 1276–1282. [Google Scholar] [CrossRef] [Green Version]
- Quinones, Q.J.; Ma, Q.; Zhang, Z.; Barnes, B.M.; Podgoreanu, M.V. Organ protective mechanisms common to extremes of physiology: A window through hibernation biology. Integr. Comp. Biol. 2014, 54, 497–515. [Google Scholar] [CrossRef] [Green Version]
- Suri, L.N.; Cruz, A.; Veldhuizen, R.A.; Staples, J.F.; Possmayer, F.; Orgeig, S.; Perez-Gil, J. Adaptations to hibernation in lung surfactant composition of 13-lined ground squirrels influence surfactant lipid phase segregation properties. Biochim. Biophys. Acta 2013, 1828, 1707–1714. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.C.; Buttery, P.J. The patho-physiological basis for tests of viability in isolated perfused organs. Biomedicine 1979, 30, 181–186. [Google Scholar] [PubMed]
- Bortner, C.D.; Hughes, F.M., Jr.; Cidlowski, J.A. A primary role for K+ and Na+ efflux in the activation of apoptosis. J. Biol. Chem. 1997, 272, 32436–32442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koike, T.; Yeung, J.C.; Cypel, M.; Rubacha, M.; Matsuda, Y.; Sato, M.; Waddell, T.K.; Liu, M.; Keshavjee, S. Kinetics of lactate metabolism during acellular normothermic ex vivo lung perfusion. J. Heart Lung Transplant. 2011, 30, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Couto-Mallon, D.; Gonzalez-Vilchez, F.; Almenar-Bonet, L.; Diaz-Molina, B.; Segovia-Cubero, J.; Gonzalez-Costello, J.; Delgado-Jimenez, J.; Castel-Lavilla, M.A.; Crespo-Leiro, M.G.; Rangel-Sousa, D.; et al. prognostic value of serum lactate levels in patients undergoing urgent heart transplant: A subanalysis of the asis-tc spanish multicenter study. Rev. Esp. Cardiol. (Engl. Ed.) 2019, 72, 208–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chouchani, E.T.; Pell, V.R.; James, A.M.; Work, L.M.; Saeb-Parsy, K.; Frezza, C.; Krieg, T.; Murphy, M.P. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury. Cell Metab. 2016, 23, 254–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloria, J.N.; Yerxa, J.; Kesseli, S.J.; Davis, R.P.; Samoylova, M.L.; Barbas, A.S.; Hartwig, M.G.; Zhang, M.; Parker, W.; Zhu, M.; et al. Subnormothermic ex vivo lung perfusion attenuates graft inflammation in a rat transplant model. J. Thorac. Cardiovasc. Surg. 2021. In Press. [Google Scholar] [CrossRef]
- Arni, S.; Maeyashiki, T.; Citak, N.; Opitz, I.; Inci, I. subnormothermic ex vivo lung perfusion temperature improves graft preservation in lung transplantation. Cells 2021, 10, 748. [Google Scholar] [CrossRef]
- Arni, S.; Maeyashiki, T.; Opitz, I.; Inci, I. Subnormothermic ex vivo lung perfusion attenuates ischemia reperfusion injury from donation after circulatory death donors. PLoS ONE 2021, 16, e0255155. [Google Scholar] [CrossRef]
- Noda, K.; Tane, S.; Haam, S.J.; D’Cunha, J.; Hayanga, A.J.; Luketich, J.D.; Shigemura, N. Targeting circulating leukocytes and pyroptosis during ex vivo lung perfusion improves lung preservation. Transplantation 2017, 101, 2841–2849. [Google Scholar] [CrossRef]
Analytes 1 | Control | Control | PFCOC | PFCOC |
---|---|---|---|---|
Normo. (n = 6) | Subnormo. (n = 6) | Normo. (n = 6) | Subnormo. (n = 6) | |
TNF-α | 1345 (1148) | 53.9 (78.2) ** | 1197 (924.7) | 34.4 (26.1) ** |
MCP-1 | 100.7 (40.75) | 22.85 (10.05) ** | 97.95 (46.43) | 19.71 (8.89) ** |
GM-CSF | 1.09 (0.70) | 0.52 (0.16) * | 0.51 (0.12) | 0.45 (0.01) ** |
RANTES | 11.67 (5.38) | 6.80 (3.37) | 19.16 (7.97) | 15.61 (5.09) |
MIP-3α | 7.88 (8.36) | 0.58 (0.03) ** | 8.15 (6.36) | 0.5 (0.01)** |
MIP-1α | 2184 (1321) | 319 (119.8) ** | 1846 (1232) | 950 (647.1) |
M-CSF | 0.58 (0.41) | 0.69 (0.61) | 0.64 (0.62) | 0.53 (0.58) |
G-CSF | 0.14 (0.15) | 0.04 (0.004) * | 0.07 (0.09) | 0.03 (0.001) ** |
GRO/KC | 4096 (2734) | 204.7 (242) ** | 3831 (2350) | 288 (198.7) ** |
IL-1α | 0.09 (0.001) | 0.09 (0.003) | 0.49 (0.63) | 0.49 (0.37) |
IL-1β | 8.16 (5.54) | 10.04 (4.14) | 11.45 (5.07) | 11.53 (3.01) |
IL-4 | 1.16 (0.84) | 0.41 (0.12) * | 0.79 (0.82) | 0.61 (0.38) * |
IL-5 | 5.35 (6.05) | 3.95 (2.33) | 3.85 (2.15) | 3.35 (2.46) |
IL-6 | 143.8 (86.42) | 3.03 (0.02) ** | 137.4 (76.89) | 2.97 (0.009) ** |
IL-7 | 0.22 (0.05) | 0.20 (0.003) ** | 0.33 (0.34) | 0.18 (0.001) ** |
IL-10 | 3.473 (2.98) | 0.51 (0.63) * | 3.40 (4.34) | 4.23 (8.66) |
IL-12(p70) | 1.38 (1.08) | 0.76 (1.05) | 0.62 (0.85) | 0.51 (0.72) |
IL-17A | 0.96 (0.25) | 0.8 (0.0) | 0.98 (0.44) | 0.8 (0.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arni, S.; Necati, C.; Maeyashiki, T.; Opitz, I.; Inci, I. Perfluorocarbon-Based Oxygen Carriers and Subnormothermic Lung Machine Perfusion Decrease Production of Pro-Inflammatory Mediators. Cells 2021, 10, 2249. https://doi.org/10.3390/cells10092249
Arni S, Necati C, Maeyashiki T, Opitz I, Inci I. Perfluorocarbon-Based Oxygen Carriers and Subnormothermic Lung Machine Perfusion Decrease Production of Pro-Inflammatory Mediators. Cells. 2021; 10(9):2249. https://doi.org/10.3390/cells10092249
Chicago/Turabian StyleArni, Stephan, Citak Necati, Tatsuo Maeyashiki, Isabelle Opitz, and Ilhan Inci. 2021. "Perfluorocarbon-Based Oxygen Carriers and Subnormothermic Lung Machine Perfusion Decrease Production of Pro-Inflammatory Mediators" Cells 10, no. 9: 2249. https://doi.org/10.3390/cells10092249
APA StyleArni, S., Necati, C., Maeyashiki, T., Opitz, I., & Inci, I. (2021). Perfluorocarbon-Based Oxygen Carriers and Subnormothermic Lung Machine Perfusion Decrease Production of Pro-Inflammatory Mediators. Cells, 10(9), 2249. https://doi.org/10.3390/cells10092249