Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection
Abstract
:1. Introduction
2. Anti-CCR5 Antibodies
3. Drugs Targeting the Lymphocyte Function-Associated Antigen-1 (LFA-1)
4. Antibodies Targeting CD4-Inducible Epitopes
5. CD4-Binding Site Antibodies
6. Toll-like Receptor Agonists
7. Bispecific Antibodies Targeting CD4
8. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Global HIV & AIDS Statistics—Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 9 August 2021).
- Maartens, G.; Celum, C.; Lewin, S.R. HIV Infection: Epidemiology, Pathogenesis, Treatment, and Prevention. Lancet 2014, 384, 258–271. [Google Scholar] [CrossRef]
- Chun, T.W.; Stuyver, L.; Mizell, S.B.; Ehler, L.A.; Mican, J.A.; Baseler, M.; Lloyd, A.L.; Nowak, M.A.; Fauci, A.S. Presence of an Inducible HIV-1 Latent Reservoir during Highly Active Antiretroviral Therapy. Proc. Natl. Acad. Sci. USA 1997, 94, 13193–13197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finzi, D.; Blankson, J.; Siliciano, J.D.; Margolick, J.B.; Chadwick, K.; Pierson, T.; Smith, K.; Lisziewicz, J.; Lori, F.; Flexner, C.; et al. Latent Infection of CD4+ T Cells Provides a Mechanism for Lifelong Persistence of HIV-1, Even in Patients on Effective Combination Therapy. Nat. Med. 1999, 5, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Deeks, S.G.; Autran, B.; Berkhout, B.; Benkirane, M.; Cairns, S.; Chomont, N.; Chun, T.-W.; Churchill, M.; Mascio, M.D.; Katlama, C.; et al. Towards an HIV Cure: A Global Scientific Strategy. Nat. Rev. Immunol. 2012, 12, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Wilen, C.B.; Tilton, J.C.; Doms, R.W. HIV: Cell Binding and Entry. Cold Spring Harb. Perspect. Med. 2012, 2, a006866. [Google Scholar] [CrossRef] [PubMed]
- Lopalco, L. CCR5: From Natural Resistance to a New Anti-HIV Strategy. Viruses 2010, 2, 574–600. [Google Scholar] [CrossRef] [Green Version]
- Wong, M.M.; Fish, E.N. Chemokines: Attractive Mediators of the Immune Response. Semin. Immunol. 2003, 15, 5–14. [Google Scholar] [CrossRef]
- Liu, R.; Paxton, W.A.; Choe, S.; Ceradini, D.; Martin, S.R.; Horuk, R.; MacDonald, M.E.; Stuhlmann, H.; Koup, R.A.; Landau, N.R. Homozygous Defect in HIV-1 Coreceptor Accounts for Resistance of Some Multiply-Exposed Individuals to HIV-1 Infection. Cell 1996, 86, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Samson, M.; Libert, F.; Doranz, B.J.; Rucker, J.; Liesnard, C.; Farber, C.M.; Saragosti, S.; Lapoumeroulie, C.; Cognaux, J.; Forceille, C.; et al. Resistance to HIV-1 Infection in Caucasian Individuals Bearing Mutant Alleles of the CCR-5 Chemokine Receptor Gene. Nature 1996, 382, 722–725. [Google Scholar] [CrossRef]
- Venuti, A.; Pastori, C.; Lopalco, L. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection. Front. Immunol. 2017, 8, 1358. [Google Scholar] [CrossRef] [Green Version]
- Bouhlal, H.; Hocini, H.; Quillent-Grégoire, C.; Donkova, V.; Rose, S.; Amara, A.; Longhi, R.; Haeffner-Cavaillon, N.; Beretta, A.; Kaveri, S.V.; et al. Antibodies to C-C Chemokine Receptor 5 in Normal Human IgG Block Infection of Macrophages and Lymphocytes with Primary R5-Tropic Strains of HIV-1. J. Immunol. 2001, 166, 7606–7611. [Google Scholar] [CrossRef] [Green Version]
- Ditzel, H.J.; Rosenkilde, M.M.; Garred, P.; Wang, M.; Koefoed, K.; Pedersen, C.; Burton, D.R.; Schwartz, T.W. The CCR5 Receptor Acts as an Alloantigen in CCR5Delta32 Homozygous Individuals: Identification of Chemokineand HIV-1-Blocking Human Antibodies. Proc. Natl. Acad. Sci. USA 1998, 95, 5241–5245. [Google Scholar] [CrossRef] [Green Version]
- Lopalco, L.; Barassi, C.; Pastori, C.; Longhi, R.; Burastero, S.E.; Tambussi, G.; Mazzotta, F.; Lazzarin, A.; Clerici, M.; Siccardi, A.G. CCR5-Reactive Antibodies in Seronegative Partners of HIV-Seropositive Individuals down-Modulate Surface CCR5 in Vivo and Neutralize the Infectivity of R5 Strains of HIV-1 In Vitro. J. Immunol. 2000, 164, 3426–3433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastori, C.; Weiser, B.; Barassi, C.; Uberti-Foppa, C.; Ghezzi, S.; Longhi, R.; Calori, G.; Burger, H.; Kemal, K.; Poli, G.; et al. Long-Lasting CCR5 Internalization by Antibodies in a Subset of Long-Term Nonprogressors: A Possible Protective Effect against Disease Progression. Blood 2006, 107, 4825–4833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, J.; Tiraboschi, J.M.; Herrera, C.; Else, L.; Egan, D.; Dickinson, L.; Jackson, A.; Olejniczak, N.; Back, D.; Khoo, S.; et al. Brief Report: Pharmacokinetic/Pharmacodynamic Investigation of Single-Dose Oral Maraviroc in the Context of HIV-1 Pre-Exposure Prophylaxis. J. Acquir. Immune Defic. Syndr. 2016, 73, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Flego, M.; Ascione, A.; Cianfriglia, M.; Vella, S. Clinical Development of Monoclonal Antibody-Based Drugs in HIV and HCV Diseases. BMC Med. 2013, 11, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murga, J.D.; Franti, M.; Pevear, D.C.; Maddon, P.J.; Olson, W.C. Potent Antiviral Synergy between Monoclonal Antibody and Small-Molecule CCR5 Inhibitors of Human Immunodeficiency Virus Type 1. Antimicrob. Agents Chemother. 2006, 50, 3289–3296. [Google Scholar] [CrossRef] [Green Version]
- Trkola, A.; Ketas, T.J.; Nagashima, K.A.; Zhao, L.; Cilliers, T.; Morris, L.; Moore, J.P.; Maddon, P.J.; Olson, W.C. Potent, Broad-Spectrum Inhibition of Human Immunodeficiency Virus Type 1 by the CCR5 Monoclonal Antibody PRO 140. J. Virol. 2001, 75, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.A. The Return of PRO 140, a CCR5-Directed MAb. Curr. Opin. HIV AIDS 2018, 13, 346–353. [Google Scholar] [CrossRef]
- Jacobson, J.M.; Saag, M.S.; Thompson, M.A.; Fischl, M.A.; Liporace, R.; Reichman, R.C.; Redfield, R.R.; Fichtenbaum, C.J.; Zingman, B.S.; Patel, M.C.; et al. Antiviral Activity of Single-Dose PRO 140, a CCR5 Monoclonal Antibody, in HIV-Infected Adults. J. Infect. Dis. 2008, 198, 1345–1352. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, J.M.; Thompson, M.A.; Lalezari, J.P.; Saag, M.S.; Zingman, B.S.; D’Ambrosio, P.; Stambler, N.; Rotshteyn, Y.; Marozsan, A.J.; Maddon, P.J.; et al. Anti-HIV-1 Activity of Weekly or Biweekly Treatment with Subcutaneous PRO 140, a CCR5 Monoclonal Antibody. J. Infect. Dis. 2010, 201, 1481–1487. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, J.M.; Lalezari, J.P.; Thompson, M.A.; Fichtenbaum, C.J.; Saag, M.S.; Zingman, B.S.; D’Ambrosio, P.; Stambler, N.; Rotshteyn, Y.; Marozsan, A.J.; et al. Phase 2a Study of the CCR5 Monoclonal Antibody PRO 140 Administered Intravenously to HIV-Infected Adults. Antimicrob. Agents Chemother. 2010, 54, 4137–4142. [Google Scholar] [CrossRef] [Green Version]
- Dhody, K.; Pourhassan, N.; Kazempour, K.; Green, D.; Badri, S.; Mekonnen, H.; Burger, D.; Maddon, P.J. PRO 140, a Monoclonal Antibody Targeting CCR5, as a Long-Acting, Single-Agent Maintenance Therapy for HIV-1 Infection. HIV Clin. Trials 2018, 19, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Peer, D.; Zhu, P.; Carman, C.V.; Lieberman, J.; Shimaoka, M. Selective Gene Silencing in Activated Leukocytes by Targeting SiRNAs to the Integrin Lymphocyte Function-Associated Antigen-1. Proc. Natl. Acad. Sci. USA 2007, 104, 4095–4100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hioe, C.E.; ChienJr, P.C.; Lu, C.; Springer, T.A.; Wang, X.-H.; Bandres, J.; Tuen, M. LFA-1 Expression on Target Cells Promotes Human Immunodeficiency Virus Type 1 Infection and Transmission. J. Virol. 2001, 15, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Giguère, J.-F.; Tremblay, M.J. Statin Compounds Reduce Human Immunodeficiency Virus Type 1 Replication by Preventing the Interaction between Virion-Associated Host Intercellular Adhesion Molecule 1 and Its Natural Cell Surface Ligand LFA-1. J. Virol. 2004, 78, 12062–12065. [Google Scholar] [CrossRef] [Green Version]
- Nabatov, A.A.; Pollakis, G.; Linnemann, T.; Paxton, W.A.; Baar, M.P. de Statins Disrupt CCR5 and RANTES Expression Levels in CD4+ T Lymphocytes In Vitro and Preferentially Decrease Infection of R5 Versus X4 HIV-1. PLoS ONE 2007, 2, e470. [Google Scholar] [CrossRef] [PubMed]
- Tardif, M.R.; Gilbert, C.; Thibault, S.; Fortin, J.-F.; Tremblay, M.J. LFA-1 Antagonists as Agents Limiting Human Immunodeficiency Virus Type 1 Infection and Transmission and Potentiating the Effect of the Fusion Inhibitor T-20. Antimicrob. Agents Chemother. 2009, 54, 4656–4666. [Google Scholar] [CrossRef] [Green Version]
- del Real, G.; Jiménez-Baranda, S.; Mira, E.; Lacalle, R.A.; Lucas, P.; Gómez-Moutón, C.; Alegret, M.; Peña, J.M.; Rodríguez-Zapata, M.; Alvarez-Mon, M.; et al. Statins Inhibit HIV-1 Infection by down-Regulating Rho Activity. J. Exp. Med. 2004, 200, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Montoya, C.J.; Higuita, E.A.; Estrada, S.; Gutierrez, F.J.; Amariles, P.; Giraldo, N.A.; Jimenez, M.M.; Velasquez, C.P.; Leon, A.L.; Rugeles, M.T.; et al. Randomized Clinical Trial of Lovastatin in HIV-Infected, HAART Naïve Patients (NCT00721305). J. Infect. 2012, 65, 549–558. [Google Scholar] [CrossRef]
- Montoya, C.J.; Jaimes, F.; Higuita, E.A.; Convers-Páez, S.; Estrada, S.; Gutierrez, F.; Amariles, P.; Giraldo, N.; Peñaloza, C.; Rugeles, M.T. Antiretroviral Effect of Lovastatin on HIV-1-Infected Individuals without Highly Active Antiretroviral Therapy (The LIVE Study): A Phase-II Randomized Clinical Trial. Trials 2009, 10, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, A.D.; Hart, D.N.; Hechinger, M.K.; Slattery, M.J.; Chesson, C.V.; Vidikan, P. Leukocyte Adhesion Molecules as a Cofactor in AIDS: Basic Science and Pilot Study. Med. Hypotheses 1995, 45, 164–168. [Google Scholar] [CrossRef]
- Allen, A.D.; Hillis, T.; Vidikan, P.; Beer, V. Pitfalls in the Use of Surrogate Markers for Human Immunodeficiency Virus Disease: Further Evidence on Pathogenesis. Med. Hypotheses 1996, 47, 27–30. [Google Scholar] [CrossRef]
- Rychert, J.; Jones, L.; McGrath, G.; Bazner, S.; Rosenberg, E.S. A Monoclonal Antibody against Lymphocyte Function-Associated Antigen-1 Decreases HIV-1 Replication by Inducing the Secretion of an Antiviral Soluble Factor. Virol. J. 2013, 10, 120. Available online: https://virologyj.biomedcentral.com/articles/10.1186/1743-422X-10-120 (accessed on 21 December 2021). [CrossRef] [Green Version]
- Stein, B.S.; Gowda, S.D.; Lifson, J.D.; Penhallow, R.C.; Bensch, K.G.; Engleman, E.G. PH-Independent HIV Entry into CD4-Positive T Cells via Virus Envelope Fusion to the Plasma Membrane. Cell 1987, 49, 659–668. [Google Scholar] [CrossRef]
- Tolbert, W.D.; Sherburn, R.T.; Van, V.; Pazgier, M. Structural Basis for Epitopes in the Gp120 Cluster A Region That Invokes Potent Effector Cell Activity. Viruses 2019, 11, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVico, A.L. CD4-Induced Epitopes in the HIV Envelope Glycoprotein, Gp120. Curr. HIV Res. 2007, 5, 561–571. [Google Scholar] [CrossRef]
- Sullivan, N.; Sun, Y.; Sattentau, Q.; Thali, M.; Wu, D.; Denisova, G.; Gershoni, J.; Robinson, J.; Moore, J.; Sodroski, J. CD4-Induced Conformational Changes in the Human Immunodeficiency Virus Type 1 Gp120 Glycoprotein: Consequences for Virus Entry and Neutralization. J. Virol. 1998, 72, 4694–4703. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, R.; Moore, J.; Accola, M.; Desjardin, E.; Robinson, J.; Sodroski, J. Involvement of the V1/V2 Variable Loop Structure in the Exposure of Human Immunodeficiency Virus Type 1 Gp120 Epitopes Induced by Receptor Binding. J. Virol. 1995, 69, 5723–5733. [Google Scholar] [CrossRef] [Green Version]
- Binley, J.M.; Wyatt, R.; Desjardins, E.; Kwong, P.D.; Hendrickson, W.; Moore, J.P.; Sodroski, J. Analysis of the Interaction of Antibodies with a Conserved Enzymatically Deglycosylated Core of the HIV Type 1 Envelope Glycoprotein 120. AIDS Res. Hum. Retrovir. 1998, 14, 191–198. [Google Scholar] [CrossRef]
- Thali, M.; Charles, M.; Furman, C.; Cavacini, L.; Posner, M.; Robinson, J.; Sodroski, J. Resistance to Neutralization by Broadly Reactive Antibodies to the Human Immunodeficiency Virus Type 1 Gp120 Glycoprotein Conferred by a Gp41 Amino Acid Change. J. Virol. 1994, 68, 674–680. [Google Scholar] [CrossRef] [Green Version]
- Thali, M.; Moore, J.P.; Furman, C.; Charles, M.; Ho, D.D.; Robinson, J.; Sodroski, J. Characterization of Conserved Human Immunodeficiency Virus Type 1 Gp120 Neutralization Epitopes Exposed upon Gp120-CD4 Binding. J. Virol. 1993, 67, 3978–3988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, S.-H.; Doka, N.; Choudhary, R.K.; Sodroski, J.; Robinson, J.E. Characterization of CD4-Induced Epitopes on the HIV Type 1 Gp120 Envelope Glycoprotein Recognized by Neutralizing Human Monoclonal Antibodies. AIDS Res. Hum. Retrovir. 2002, 18, 1207–1217. [Google Scholar] [CrossRef] [Green Version]
- Pollara, J.; Bonsignori, M.; Moody, M.A.; Pazgier, M.; Haynes, B.F.; Ferrari, G. Epitope Specificity of Human Immunodeficiency Virus-1 Antibody Dependent Cellular Cytotoxicity [ADCC] Responses. Curr. HIV Res. 2013, 11, 378–387. [Google Scholar] [CrossRef] [Green Version]
- Lewis, G.K. Qualitative and Quantitative Variables That Affect the Potency of Fc- Mediated Effector Function in Vitro and in Vivo: Considerations for Passive Immunization Using Non-Neutralizing Antibodies. Curr. HIV Res. 2013, 11, 354–364. [Google Scholar] [CrossRef]
- Kant, S.; Zhang, N.; Barbé, A.; Routy, J.-P.; Tremblay, C.; Thomas, R.; Szabo, J.; Côté, P.; Trottier, B.; LeBlanc, R.; et al. Polyfunctional Fc Dependent Activity of Antibodies to Native Trimeric Envelope in HIV Elite Controllers. Front. Immunol. 2020, 11, 583820. [Google Scholar] [CrossRef] [PubMed]
- Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [Google Scholar] [CrossRef]
- Haynes, B.F.; Gilbert, P.B.; McElrath, M.J.; Zolla-Pazner, S.; Tomaras, G.D.; Alam, S.M.; Evans, D.T.; Montefiori, D.C.; Karnasuta, C.; Sutthent, R.; et al. Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial. N. Engl. J. Med. 2012, 366, 1275–1286. [Google Scholar] [CrossRef] [Green Version]
- Tomaras, G.D.; Ferrari, G.; Shen, X.; Alam, S.M.; Liao, H.-X.; Pollara, J.; Bonsignori, M.; Moody, M.A.; Fong, Y.; Chen, X.; et al. Vaccine-Induced Plasma IgA Specific for the C1 Region of the HIV-1 Envelope Blocks Binding and Effector Function of IgG. Proc. Natl. Acad. Sci. USA 2013, 110, 9019–9024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pitisuttithum, P.; Nitayaphan, S.; Chariyalertsak, S.; Kaewkungwal, J.; Dawson, P.; Dhitavat, J.; Phonrat, B.; Akapirat, S.; Karasavvas, N.; Wieczorek, L.; et al. Late Boosting of the RV144 Regimen with AIDSVAX B/E and ALVAC-HIV in HIV-Uninfected Thai Volunteers: A Double-Blind, Randomised Controlled Trial. Lancet HIV 2020, 7, e238–e248. [Google Scholar] [CrossRef]
- Mdluli, T.; Jian, N.; Slike, B.; Paquin-Proulx, D.; Donofrio, G.; Alrubayyi, A.; Gift, S.; Grande, R.; Bryson, M.; Lee, A.; et al. RV144 HIV-1 Vaccination Impacts Post-Infection Antibody Responses. PLoS Pathog. 2020, 16, e1009101. [Google Scholar] [CrossRef] [PubMed]
- Laher, F.; Moodie, Z.; Cohen, K.W.; Grunenberg, N.; Bekker, L.-G.; Allen, M.; Frahm, N.; Yates, N.L.; Morris, L.; Malahleha, M.; et al. Safety and Immune Responses after a 12-Month Booster in Healthy HIV-Uninfected Adults in HVTN 100 in South Africa: A Randomized Double-Blind Placebo-Controlled Trial of ALVAC-HIV (VCP2438) and Bivalent Subtype C Gp120/MF59 Vaccines. PLoS Med. 2020, 17, e1003038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, G.E.; Bekker, L.-G.; Laher, F.; Malahleha, M.; Allen, M.; Moodie, Z.; Grunenberg, N.; Huang, Y.; Grove, D.; Prigmore, B.; et al. Vaccine Efficacy of ALVAC-HIV and Bivalent Subtype C Gp120-MF59 in Adults. N. Engl. J. Med. 2021, 384, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Diskin, R.; Scheid, J.F.; Marcovecchio, P.M.; West, A.P.; Klein, F.; Gao, H.; Gnanapragasam, P.N.P.; Abadir, A.; Seaman, M.S.; Nussenzweig, M.C.; et al. Increasing the Potency and Breadth of an HIV Antibody by Using Structure-Based Rational Design. Science 2011, 334, 1289–1293. [Google Scholar] [CrossRef] [Green Version]
- Scheid, J.F.; Mouquet, H.; Ueberheide, B.; Diskin, R.; Klein, F.; Oliveira, T.Y.K.; Pietzsch, J.; Fenyo, D.; Abadir, A.; Velinzon, K.; et al. Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding. Science 2011, 333, 1633–1637. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhou, T.; Zhu, J.; Zhang, B.; Georgiev, I.; Wang, C.; Chen, X.; Longo, N.S.; Louder, M.; McKee, K.; et al. Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing. Science 2011, 333, 1593–1602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, T.; Georgiev, I.; Wu, X.; Yang, Z.-Y.; Dai, K.; Finzi, A.; Kwon, Y.D.; Scheid, J.F.; Shi, W.; Xu, L.; et al. Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01. Science 2010, 329, 811–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, D.R.; Pyati, J.; Koduri, R.; Sharp, S.J.; Thornton, G.B.; Parren, P.W.; Sawyer, L.S.; Hendry, R.M.; Dunlop, N.; Nara, P.L. Efficient Neutralization of Primary Isolates of HIV-1 by a Recombinant Human Monoclonal Antibody. Science 1994, 266, 1024–1027. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Z.-Y.; Li, Y.; Hogerkorp, C.-M.; Schief, W.R.; Seaman, M.S.; Zhou, T.; Schmidt, S.D.; Wu, L.; Xu, L.; et al. Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science 2010, 329, 856–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, R.M.; Boritz, E.; Coates, E.E.; DeZure, A.; Madden, P.; Costner, P.; Enama, M.E.; Plummer, S.; Holman, L.; Hendel, C.S.; et al. Virologic Effects of Broadly Neutralizing Antibody VRC01 Administration during Chronic HIV-1 Infection. Sci. Transl. Med. 2015, 7, 319ra206. [Google Scholar] [CrossRef] [Green Version]
- Ledgerwood, J.E.; Coates, E.E.; Yamshchikov, G.; Saunders, J.G.; Holman, L.; Enama, M.E.; DeZure, A.; Lynch, R.M.; Gordon, I.; Plummer, S.; et al. Safety, Pharmacokinetics and Neutralization of the Broadly Neutralizing HIV-1 Human Monoclonal Antibody VRC01 in Healthy Adults. Clin. Exp. Immunol. 2015, 182, 289–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, K.H.; Seaton, K.E.; Huang, Y.; Grunenberg, N.; Isaacs, A.; Allen, M.; Ledgerwood, J.E.; Frank, I.; Sobieszczyk, M.E.; Baden, L.R.; et al. Safety, Pharmacokinetics, and Immunological Activities of Multiple Intravenous or Subcutaneous Doses of an Anti-HIV Monoclonal Antibody, VRC01, Administered to HIV-Uninfected Adults: Results of a Phase 1 Randomized Trial. PLoS Med. 2017, 14, e1002435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, C.K.; McFarland, E.J.; Morrison, R.L.; Capparelli, E.V.; Safrit, J.T.; Mofenson, L.M.; Mathieson, B.; Valentine, M.E.; Perlowski, C.; Smith, B.; et al. Safety, Tolerability, and Pharmacokinetics of the Broadly Neutralizing Human Immunodeficiency Virus (HIV)-1 Monoclonal Antibody VRC01 in HIV-Exposed Newborn Infants. J. Infect. Dis. 2020, 222, 628–636. [Google Scholar] [CrossRef]
- McFarland, E.J.; Cunningham, C.K.; Muresan, P.; Capparelli, E.V.; Perlowski, C.; Morgan, P.; Smith, B.; Hazra, R.; Purdue, L.; Harding, P.A.; et al. Safety, Tolerability, and Pharmacokinetics of a Long-Acting Broadly Neutralizing HIV-1 Monoclonal Antibody VRC01LS in HIV-1-Exposed Newborn Infants. J. Infect. Dis. 2021, 224, 1916–1924. [Google Scholar] [CrossRef]
- Bar, K.J.; Sneller, M.C.; Harrison, L.J.; Justement, J.S.; Overton, E.T.; Petrone, M.E.; Salantes, D.B.; Seamon, C.A.; Scheinfeld, B.; Kwan, R.W.; et al. Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. N. Engl. J. Med. 2016, 375, 2037–2050. [Google Scholar] [CrossRef] [PubMed]
- Crowell, T.A.; Colby, D.J.; Pinyakorn, S.; Sacdalan, C.; Pagliuzza, A.; Intasan, J.; Benjapornpong, K.; Tangnaree, K.; Chomchey, N.; Kroon, E.; et al. Safety and Efficacy of VRC01 Broadly Neutralising Antibodies in Adults with Acutely Treated HIV (RV397): A Phase 2, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet HIV 2019, 6, e297–e306. [Google Scholar] [CrossRef]
- Corey, L.; Gilbert, P.B.; Juraska, M.; Montefiori, D.C.; Morris, L.; Karuna, S.T.; Edupuganti, S.; Mgodi, N.M.; deCamp, A.C.; Rudnicki, E.; et al. Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. N. Engl. J. Med. 2021, 384, 1003–1014. [Google Scholar] [CrossRef]
- Caskey, M.; Klein, F.; Lorenzi, J.C.C.; Seaman, M.S.; West, A.P.; Buckley, N.; Kremer, G.; Nogueira, L.; Braunschweig, M.; Scheid, J.F.; et al. 3BNC117 a Broadly Neutralizing Antibody Suppresses Viremia in HIV-1-Infected Humans. Nature 2015, 522, 487–491. [Google Scholar] [CrossRef] [Green Version]
- Schoofs, T.; Klein, F.; Braunschweig, M.; Kreider, E.F.; Feldmann, A.; Nogueira, L.; Oliveira, T.; Lorenzi, J.C.C.; Parrish, E.H.; Learn, G.H.; et al. HIV-1 Therapy with Monoclonal Antibody 3BNC117 Elicits Host Immune Responses against HIV-1. Science 2016, 352, 997–1001. [Google Scholar] [CrossRef] [Green Version]
- Rudicell, R.S.; Kwon, Y.D.; Ko, S.-Y.; Pegu, A.; Louder, M.K.; Georgiev, I.S.; Wu, X.; Zhu, J.; Boyington, J.C.; Chen, X.; et al. Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody in Vitro Improves Protection against Lentiviral Infection in Vivo. J. Virol. 2014, 88, 12669–12682. [Google Scholar] [CrossRef] [Green Version]
- Gaudinski, M.R.; Houser, K.V.; Doria-Rose, N.A.; Chen, G.L.; Rothwell, R.S.S.; Berkowitz, N.; Costner, P.; Holman, L.A.; Gordon, I.J.; Hendel, C.S.; et al. Safety and Pharmacokinetics of Broadly Neutralising Human Monoclonal Antibody VRC07-523LS in Healthy Adults: A Phase 1 Dose-Escalation Clinical Trial. Lancet HIV 2019, 6, e667–e679. [Google Scholar] [CrossRef]
- Huang, J.; Kang, B.H.; Ishida, E.; Zhou, T.; Griesman, T.; Sheng, Z.; Wu, F.; Doria-Rose, N.A.; Zhang, B.; McKee, K.; et al. Identification of a CD4-Binding-Site Antibody to HIV That Evolved Near-Pan Neutralization Breadth. Immunity 2016, 45, 1108–1121. [Google Scholar] [CrossRef] [Green Version]
- Tsai, A.; Irrinki, A.; Kaur, J.; Cihlar, T.; Kukolj, G.; Sloan, D.D.; Murry, J.P. Toll-Like Receptor 7 Agonist GS-9620 Induces HIV Expression and HIV-Specific Immunity in Cells from HIV-Infected Individuals on Suppressive Antiretroviral Therapy. J. Virol. 2017, 91, e02166-16. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.-Y.; Osuna, C.E.; Hraber, P.T.; Hesselgesser, J.; Gerold, J.M.; Barnes, T.L.; Sanisetty, S.; Seaman, M.S.; Lewis, M.G.; Geleziunas, R.; et al. TLR7 Agonists Induce Transient Viremia and Reduce the Viral Reservoir in SIV-Infected Rhesus Macaques on Antiretroviral Therapy. Sci. Transl. Med. 2018, 10, eaao4521. [Google Scholar] [CrossRef] [Green Version]
- Macedo, A.B.; Novis, C.L.; De Assis, C.M.; Sorensen, E.S.; Moszczynski, P.; Huang, S.-H.; Ren, Y.; Spivak, A.M.; Jones, R.B.; Planelles, V.; et al. Dual TLR2 and TLR7 Agonists as HIV Latency-Reversing Agents. JCI Insight 2018, 3, 122673. [Google Scholar] [CrossRef]
- Saxena, M.; Sabado, R.L.; La Mar, M.; Mohri, H.; Salazar, A.M.; Dong, H.; Correa Da Rosa, J.; Markowitz, M.; Bhardwaj, N.; Miller, E. Poly-ICLC, a TLR3 Agonist, Induces Transient Innate Immune Responses in Patients With Treated HIV-Infection: A Randomized Double-Blinded Placebo Controlled Trial. Front. Immunol. 2019, 10, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riddler, S.A.; Para, M.; Benson, C.A.; Mills, A.; Ramgopal, M.; DeJesus, E.; Brinson, C.; Cyktor, J.; Jacobs, J.; Koontz, D.; et al. Vesatolimod, a Toll-like Receptor 7 Agonist, Induces Immune Activation in Virally Suppressed Adults Living With Human Immunodeficiency Virus-1. Clin. Infect. Dis. 2021, 72, e815–e824. [Google Scholar] [CrossRef] [PubMed]
- Wittig, B.; Schmidt, M.; Scheithauer, W.; Schmoll, H.-J. MGN1703, an Immunomodulator and Toll-like Receptor 9 (TLR-9) Agonist: From Bench to Bedside. Crit. Rev. Oncol. Hematol. 2015, 94, 31–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vibholm, L.; Schleimann, M.H.; Højen, J.F.; Benfield, T.; Offersen, R.; Rasmussen, K.; Olesen, R.; Dige, A.; Agnholt, J.; Grau, J.; et al. Short-Course Toll-Like Receptor 9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals With Human Immunodeficiency Virus Infection. Clin. Infect. Dis. 2017, 64, 1686–1695. [Google Scholar] [CrossRef] [PubMed]
- Vibholm, L.K.; Konrad, C.V.; Schleimann, M.H.; Frattari, G.; Winckelmann, A.; Klastrup, V.; Jensen, N.M.; Jensen, S.S.; Schmidt, M.; Wittig, B.; et al. Effects of 24-Week Toll-like Receptor 9 Agonist Treatment in HIV Type 1+ Individuals. AIDS 2019, 33, 1315–1325. [Google Scholar] [CrossRef]
- Gardner, M.R.; Kattenhorn, L.M.; Kondur, H.R.; von Schaewen, M.; Dorfman, T.; Chiang, J.J.; Haworth, K.G.; Decker, J.M.; Alpert, M.D.; Bailey, C.C.; et al. AAV-Expressed ECD4-Ig Provides Durable Protection from Multiple SHIV Challenges. Nature 2015, 519, 87–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pace, C.S.; Song, R.; Ochsenbauer, C.; Andrews, C.D.; Franco, D.; Yu, J.; Oren, D.A.; Seaman, M.S.; Ho, D.D. Bispecific Antibodies Directed to CD4 Domain 2 and HIV Envelope Exhibit Exceptional Breadth and Picomolar Potency against HIV-1. Proc. Natl. Acad. Sci. USA 2013, 110, 13540–13545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.; Pace, C.S.; Yao, X.; Yu, F.; Padte, N.N.; Huang, Y.; Seaman, M.S.; Li, Q.; Ho, D.D. Rational Design and Characterization of the Novel, Broad and Potent Bispecific HIV-1 Neutralizing Antibody IMabm36. J. Acquir. Immune Defic. Syndr. 2014, 66, 473–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, R.M.; Hwang, Y.C.; Liu, I.J.; Lee, C.C.; Tsai, H.Z.; Li, H.J.; Wu, H.C. Development of Therapeutic Antibodies for the Treatment of Diseases. J. Biomed. Sci. 2020, 27, 1. Available online: https://jbiomedsci.biomedcentral.com/articles/10.1186/s12929-019-0592-z (accessed on 18 December 2021). [CrossRef]
- Julg, B.; Barouch, D.H. Neutralizing Antibodies for HIV-1 Prevention. Curr. Opin. HIV AIDS 2019, 14, 318–324. [Google Scholar] [CrossRef]
Target | Mab | Status | Phase | ClinicalTrials.Gov Identifier |
---|---|---|---|---|
CCR5 | ||||
PRO 140 | Completed, with results | Phase 1 | NCT00110591 | |
Phase 2 | NCT00613379, NCT00642707 | |||
Completed, without results | Phase 2 | NCT02175680 | ||
Phase 2/3 | NCT02483078 | |||
Active, not recruiting | Phase 2 | NCT02355184 | ||
Phase 2/3 | NCT02859961, NCT03902522, NCT02990858 | |||
LFA-1 | Cytolin | Completed | Observational | NCT010483725 |
CD4-i epitopes | ||||
RV144 | Completed, with results | Phase 1 | NCT03368053 | |
Phase 3 | NCT00223080 | |||
Follow up | NCT00337181 | |||
Active, not recruiting | Phase 2 | NCT01931358, NCT01435135 | ||
Recruiting | Phase 1 | NCT03875209 | ||
CD4-bs | ||||
VRC01 | Completed, with results | Phase 1 | NCT02471326, NCT02411539, NCT02463227, NCT02840474 | |
Phase 2 | NCT02664415, NCT02568215, NCT02716675 | |||
Completed, without results | Phase 1 | NCT02165267, NCT02599896, NCT01993706, NCT01950325 | ||
Phase 1/2 | NCT03208231 | |||
Phase 1/2 | NCT03707977 | |||
Recruiting | Phase 1 | NCT02591420, NCT03705169 | ||
3BNC117 | Completed, with results | Phase 2 | NCT02446847, NCT02588586 | |
Completed, without results | Phase 1 | NCT03468582, NCT03254277 | ||
Phase 2 | NCT02850016 | |||
Active, not recruiting | Phase 2 | NCT03041012 | ||
Recruiting | Phase 1 | NCT04811040 | ||
Phase 2 | NCT04560569, NCT03719664, NCT03837756, NCT04319367, | |||
Phase 1/2 | NCT04173819 | |||
VRC07 | Completed, with results | Phase 1 | NCT02840474, NCT03015181 | |
Completed, without results | Phase 1 | NCT03735849, NCT03387150, NCT03205917, NCT03803605 | ||
Active, not recruiting | Phase 1 | NCT04212091, NCT02256631, NCT03374202 | ||
Phase 2 | NCT03739996 | |||
Phase 1/2 | NCT03721510, NCT04357821 | |||
N6 | Recruiting | Phase 1 | NCT03538626 | |
Phase 2 | NCT04871113 |
Mab | Status | Phase | ClinicalTrials.Gov Identifier |
---|---|---|---|
VRC01+ VRC01LS | Completed, with results | Phase 1 | NCT02797171 |
VRC01+ VRC01LS + VRC07-523LS | Active, not recruiting | Phase 1 | NCT02256631 |
3BNC117 + 10-1074 | Completed, without results | Phase 1 | NCT02824536, NCT02825797 |
3BNC117-LS + 10-1074 | Completed, without results | Phase 1 | NCT03554408 |
3BNC117-LS + 10-1074-LS | Active, not recruiting | Phase 1 | NCT04250636 |
3BNC117 + 10-1074 + peg-IFN-α2b | Active, not recruiting | Phase 1 | NCT03588715 |
3BNC117 + 10-1074 | Active, not recruiting | Phase 1 | NCT03526848 |
VRC07-523LS + 10-1074 + PGT121 + PGDM1400 | Completed, without results | Phase 1 | NCT03928821 |
VRC07-523LS + 10-1074 + N-803 | Recruiting | Phase 1 | NCT04340596 |
Agonist | Status | Phase | ClinicalTrials.Gov Identifier |
---|---|---|---|
GS-9620 | Completed, with results | Phase 1 | NCT02858401, NCT03060447 |
Phase 2 | NCT02664415 | ||
Active, not recruiting | Phase 1 | NCT04364035 | |
MGN1703 | Completed, without results | Phase 1/2 | NCT02443935 |
Active, not recruiting | Phase 2 | NCT03837756 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siracusano, G.; Lopalco, L. Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection. Cells 2022, 11, 77. https://doi.org/10.3390/cells11010077
Siracusano G, Lopalco L. Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection. Cells. 2022; 11(1):77. https://doi.org/10.3390/cells11010077
Chicago/Turabian StyleSiracusano, Gabriel, and Lucia Lopalco. 2022. "Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection" Cells 11, no. 1: 77. https://doi.org/10.3390/cells11010077
APA StyleSiracusano, G., & Lopalco, L. (2022). Immunotherapy with Cell-Based Biological Drugs to Cure HIV-1 Infection. Cells, 11(1), 77. https://doi.org/10.3390/cells11010077