Role of Circular RNA in Brain Tumor Development
Abstract
:1. Introduction
2. Challenges, Perspective, and Clinical Significance
3. Circular RNA
4. Role of circRNAs in Medulloblastoma
5. Role of circRNAs in Glioblastoma
5.1. CircRNAs Responsible for the Up-Regulation of Glioblastoma
5.1.1. Mapks Pathway
5.1.2. PI3K/AKT Pathway
5.1.3. SOX4/PI3KCA Pathway
5.1.4. Notch Pathway
5.1.5. Wnt/β-catenin Pathway
5.1.6. IGF1R/Ras/Erk Pathway
5.1.7. MMP2/VEGFA
5.1.8. FOXM1
Sl. No. | CircRNA | Function | Signaling Pathway | Expression | Reference |
---|---|---|---|---|---|
1 | Hsa-circ-0046701 | Sponging miR-142-3p | Upregulated | [67] | |
2 | Circ-UBAP2 | Sponging miR-1205 and miR -382 | Upregulated | [68] | |
3 | Circ-PARP4 | Sponging miR-125a-5p | Upregulated | [69] | |
4 | Hsa-circ-0008344 | miR-433-3p | Upregulated | [65] | |
5 | Hsa-circ-0012129 | Sponging miR -661 | Upregulated | [70] | |
6 | Circ-CDC45 | Sponging miR-485-5p | Upregulated | [71] | |
7 | Circ-0029426 | Sponging miR-197 | Upregulated | [72] | |
8 | Circ-ENTPD7 | Sponging miR-101-3p | Upregulated | [73] | |
9 | Circ-FLNA | Sponging miR-1993p | Upregulated | [38] | |
10 | Hsa-circ-0076248 | Sponging miR-181a | Upregulated | [74] | |
11 | Circ-LGMN | Sponging miR-127-3p | Upregulated | [75] | |
12 | Circ-FOXO3 | Sponging miR-138-5p/miR-432-5p | Upregulated | [76] | |
13 | Circ-0074027 | Sponging miR-518a-5p | Upregulated | [66] | |
14 | Circ-SKA3 | Sponging miR-1 | Upregulated | [77] | |
15 | Circ-0001801 | Sponging miR-628-5p | Upregulated | [78] | |
16 | Circ-FOXM1 | Sponging miR-577 | Upregulated | [79] | |
17 | Circ-NF1 | Sponging miR-340 | Upregulated | [80] | |
18 | Circ-MELK | Sponging miR-593 | Upregulated | [81] | |
19 | Circ-NUP98 | Sponging miR-519a-3p | Upregulated | [82] | |
20 | Circ-PITX1 | Sponging miR-379-5p | Mapks pathway | Upregulated | [83,84] |
21 | Circ-ASAP1 | Sponging miR-502-5p | Mapks pathway | Upregulated | [85] |
22 | Circ-MAPK4 | Sponging miR-125a-3p | Mapks pathway | Upregulated | [86] |
23 | Circ-TTBK2 | Sponging miR-217 | Mapks pathway | Upregulated | [87] |
24 | Circ-0000215 | Sponging miR-495-3p | CXCR2/PI3K/AKT pathway | Upregulated | [88] |
25 | Circ-0037655 | Sponging miR-214 | PI3K pathway | Upregulated | [89] |
26 | Circ-PIP5K1A | Sponging miR-515-5p | TCF12 and PI3K/AKT pathway | Upregulated | [90] |
27 | Cir-SHKBP1 | Sponging miR-544a/miR-379 | PI3K/AKT pathway | Upregulated | [91] |
28 | Hsa-circ-0067934 | PI3K/AKT pathway | Upregulated | [92] | |
29 | Circ-HIPK3 | Sponging miR-654 | IGF2/PI3K/AKT pathway | Upregulated | [93] |
30 | Circ-CFH | Sponging miR-149 | PI3K/AKT pathway | Upregulated | [94] |
31 | Circ-ABCC3 | Sponging miR-770-5p | PI3K/AKT pathway | Upregulated | [95] |
32 | Circ-NT5E | Sponging miR-422a | SOX4/PI3KCA pathway | Upregulated | [96] |
33 | Circ-NFIX | Sponging miR-34a-5p | Notch pathway | Upregulated | [97] |
34 | Circ-0082374 | Sponging miR-326 | Wnt/β-catenin pathway | Upregulated | [98] |
35 | Circ-0001730 | Sponged miR-326 | Wnt/β-catenin pathway | Upregulated | [99] |
36 | Circ-0043278 | Sponged miR-638 | Wnt/β-catenin pathway | Upregulated | [100] |
37 | Circ-0000177 | Sponging miR-638 | Wnt/β-catenin pathway | Upregulated | [101] |
38 | Circ-MMP9 | Sponging miR-124 | Wnt/β-catenin pathway | Upregulated | [102] |
39 | Circ-ZNF292 | Wnt/β-catenin pathway | Upregulated | [103] | |
40 | Hsa-circ-0005114- | Sponging miR-142-3p/miR-590-5p | Wnt/β-catenin pathway | Upregulated | [104] |
41 | Circ-RFX3 | Sponging miR-587 | Wnt/β-catenin pathway | Upregulated | [105] |
42 | Circ-0006168 | Sponging miR-628-5p | IGF1R/Ras/Erk pathway | Upregulated | [68] |
43 | Circ-ATXN1 | Sponging miR-526b-3p | MMP2/VEGFA | Upregulated | [106] |
44 | Circ-ARF1 | Sponging miR-342–3p | MMP2/VEGFA | Upregulated | [107] |
45 | Circ-PIK3C2A | Sponging miR-877-5p | FOXM1 | Upregulated | [108] |
5.2. Circ-RNAs Responsible for the Down-Regulation of Glioblastoma
5.2.1. PI3K/AKT Pathway
5.2.2. Wnt/β-catenin Pathway
5.2.3. VEGFA Pathway
5.2.4. CDR1 Pathway
5.2.5. WWOX Signaling Pathway
5.2.6. SMAD6 Signaling Pathway
Sl. No. | CircRNA | Function | Signaling Pathway | Expression | Reference |
---|---|---|---|---|---|
1 | Circ-SHPRH | Downregulated | [109] | ||
2 | Circ-FBXW7 | Downregulated | [110] | ||
3 | Circ- CDR1 | Downregulated | [111] | ||
4 | Circ-EPB41L5 | Sponging miR -19a | PI3K/AKT pathway | Downregulated | [112] |
5 | Circ-AKT3 | PI3K/AKT pathway | Downregulated | [113] | |
6 | Circ-ITCH | Sponging miR -214 | Wnt pathway | Downregulated | [114] |
7 | Circ-SMARCA5 | VEGFA pathway | Downregulated | [115,116] | |
8 | Circ- 0001946 | Sponging miR-671-5p | CDR1 pathway | Downregulated | [117] |
9 | Circ-MTO1 | Sponging miR-92 | WWOX signaling pathway | Downregulated | [64] |
10 | Circ-CD44 | Sponging miR-326/miR-330-5p | SMAD6 signaling pathway | Downregulated | [118] |
6. Role of circRNAs in Other Brain Tumors
6.1. Pituitary Adenoma
6.2. Ependymoma
7. Future Prospective of Circular RNAs in Brain Tumors
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dolecek, T.A.; Propp, J.M.; Stroup, N.E.; Kruchko, C. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2005–2009. Neuro. Oncol. 2012, 14, v1–v49. [Google Scholar] [CrossRef] [PubMed]
- Huse, J.T.; Holland, E.C. Targeting Brain Cancer: Advances in the Molecular Pathology of Malignant Glioma and Medulloblastoma. Nat. Rev. Cancer 2010, 10, 319–331. [Google Scholar] [CrossRef] [PubMed]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Kesari, S. Malignant Gliomas in Adults. N. Engl. J. Med. 2008, 359, 492–507. [Google Scholar] [CrossRef] [Green Version]
- Gilbertson, R.J. Medulloblastoma: Signalling a Change in Treatment. Lancet. Oncol. 2004, 5, 209–218. [Google Scholar] [CrossRef]
- Cervoni, L.; Maleci, A.; Salvati, M.; Delfini, R.; Cantore, G. Medulloblastoma in Late Adults: Report of Two Cases and Critical Review of the Literature. J. Neurooncol. 1994, 19, 169–173. [Google Scholar] [CrossRef]
- Raffel, C. Medulloblastoma: Molecular Genetics and Animal Models. Neoplasia 2004, 6, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Mueller, S.; Chang, S. Pediatric Brain Tumors: Current Treatment Strategies and Future Therapeutic Approaches. Neurother. J. Am. Soc. Exp. Neurother. 2009, 6, 570–586. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, Q.T.; Gittleman, H.; Farah, P.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Stroup, N.E.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2006–2010. Neuro. Oncol. 2013, 15, ii1–ii56. [Google Scholar] [CrossRef] [Green Version]
- Collins, V.P. Gliomas. Cancer Surv. 1998, 32, 37–51. [Google Scholar]
- Dohrmann, G.J.; Farwell, J.R.; Flannery, J.T. Glioblastoma Multiforme in Children. J. Neurosurg. 1976, 44, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, M.K. Glioblastoma Multiforme: Evidence-Based Approach to Therapy. Expert Rev. Anticancer. Ther. 2007, 7, S23–S27. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.-L.; Yang, L. Regulation of CircRNA Biogenesis. RNA Biol. 2015, 12, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, S.; Chen, H.; Mo, X.; Li, T.; Shao, Y.; Xiao, B.; Guo, J. Using Circular RNA as a Novel Type of Biomarker in the Screening of Gastric Cancer. Clin. Chim. Acta 2015, 444, 132–136. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, K.; Tan, S.; Xin, J.; Yuan, Q.; Xu, H.; Xu, X.; Liang, Q.; Christiani, D.C.; Wang, M.; et al. Circular RNAs in Body Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Mol. Cancer 2021, 20, 13. [Google Scholar] [CrossRef]
- Arnaiz, E.; Sole, C.; Manterola, L.; Iparraguirre, L.; Otaegui, D.; Lawrie, C.H. CrcRNAs and Cancer: Biomiarkers and Master Regulators. Semin. Cancer Biol. 2019, 58, 90–99. [Google Scholar] [CrossRef]
- Patop, I.L.; Kadener, S. CircRNAs in Cancer. Curr. Opin. Genet. Dev. 2018, 48, 121–127. [Google Scholar] [CrossRef]
- Wang, F.; Nazarali, A.J.; Ji, S. Circular RNAs as Potential Biomarkers for Cancer Diagnosis and Therapy. Am. J. Cancer Res. 2016, 6, 1167–1176. [Google Scholar]
- Wang, X.; Xu, D.; Pei, X.; Zhang, Y.; Zhang, Y.; Gu, Y.; Li, Y. Circska3 Modulates Foxm1 to Facilitate Cell Proliferation, Migration, and Invasion While Confine Apoptosis in Medulloblastoma via Mir-383-5p. Cancer Manag. Res. 2020, 12, 13415–13426. [Google Scholar] [CrossRef]
- Zhao, X.; Guan, J.; Luo, M. Circ-SKA3 Upregulates ID3 Expression by Decoying MiR-326 to Accelerate the Development of Medulloblastoma. J. Clin. Neurosci. 2021, 86, 87–96. [Google Scholar] [CrossRef]
- Lv, T.; Miao, Y.F.; Jin, K.; Han, S.; Xu, T.Q.; Qiu, Z.L.; Zhang, X.H. Dysregulated Circular RNAs in Medulloblastoma Regulate Proliferation and Growth of Tumor Cells via Host Genes. Cancer Med. 2018, 7, 6147–6157. [Google Scholar] [CrossRef] [PubMed]
- Salami, R.; Salami, M.; Mafi, A.; Vakili, O.; Asemi, Z. Circular RNAs and Glioblastoma Multiforme: Focus on Molecular Mechanisms. Cell Commun. Signal. 2022, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lin, X.; Geng, X.; Shi, L.; Li, Q.; Liu, F.; Fang, C.; Wang, H. Advances in Circular RNAs and Their Role in Glioma (Review). Int. J. Oncol. 2020, 57, 67–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.D.; Northcott, P.A.; Korshunov, A.; Remke, M.; Cho, Y.-J.; Clifford, S.C.; Eberhart, C.G.; Parsons, D.W.; Rutkowski, S.; Gajjar, A.; et al. Molecular Subgroups of Medulloblastoma: The Current Consensus. Acta Neuropathol. 2012, 123, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Smoll, N.R.; Drummond, K.J. The Incidence of Medulloblastomas and Primitive Neurectodermal Tumours in Adults and Children. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2012, 19, 1541–1544. [Google Scholar] [CrossRef] [PubMed]
- Van Ommeren, R.; Garzia, L.; Holgado, B.L.; Ramaswamy, V.; Taylor, M.D. The Molecular Biology of Medulloblastoma Metastasis. Brain Pathol. 2020, 30, 691–702. [Google Scholar] [CrossRef]
- Phoenix, T.N.; Patmore, D.M.; Boop, S.; Boulos, N.; Jacus, M.O.; Patel, Y.T.; Roussel, M.F.; Finkelstein, D.; Goumnerova, L.; Perreault, S.; et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell 2016, 29, 508–522. [Google Scholar] [CrossRef] [Green Version]
- Massimino, M.; Biassoni, V.; Gandola, L.; Garrè, M.L.; Gatta, G.; Giangaspero, F.; Poggi, G.; Rutkowski, S. Childhood Medulloblastoma. Crit. Rev. Oncol. Hematol. 2016, 105, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro. Oncol. 2018, 20, iv1–iv86. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, Q.T.; Cote, D.J.; Ascha, M.; Kruchko, C.; Barnholtz-Sloan, J.S. Adult Glioma Incidence and Survival by Race or Ethnicity in the United States from 2000 to 2014. JAMA Oncol. 2018, 4, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, M.; Abi-Said, D.; Fourney, D.R.; Gokaslan, Z.L.; Shi, W.; DeMonte, F.; Lang, F.F.; McCutcheon, I.E.; Hassenbusch, S.J.; Holland, E.; et al. A Multivariate Analysis of 416 Patients with Glioblastoma Multiforme: Prognosis, Extent of Resection, and Survival. J. Neurosurg. 2001, 95, 190–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamborn, K.R.; Chang, S.M.; Prados, M.D. Prognostic Factors for Survival of Patients with Glioblastoma: Recursive Partitioning Analysis. Neuro. Oncol. 2004, 6, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinchon, M.; Leblond, P. Medulloblastoma: Clinical Presentation. Neurochirurgie 2021, 67, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Zapotocky, M.; Mata-Mbemba, D.; Sumerauer, D.; Liby, P.; Lassaletta, A.; Zamecnik, J.; Krskova, L.; Kyncl, M.; Stary, J.; Laughlin, S.; et al. Differential Patterns of Metastatic Dissemination across Medulloblastoma Subgroups. J. Neurosurg. Pediatr. 2018, 21, 145–152. [Google Scholar] [CrossRef]
- Packer, R.J.; Sutton, L.N.; D’Angio, G.; Evans, A.E.; Schut, L. Management of Children with Primitive Neuroectodermal Tumors of the Posterior Fossa/Medulloblastoma. Pediatr. Neurosci. 1986, 12, 272–282. [Google Scholar] [CrossRef]
- Packer, R.J.; Sutton, L.N.; Elterman, R.; Lange, B.; Goldwein, J.; Nicholson, H.S.; Mulne, L.; Boyett, J.; D’Angio, G.; Wechsler-Jentzsch, K. Outcome for Children with Medulloblastoma Treated with Radiation and Cisplatin, CCNU, and Vincristine Chemotherapy. J. Neurosurg. 1994, 81, 690–698. [Google Scholar] [CrossRef]
- Udaka, Y.T.; Packer, R.J. Pediatric Brain Tumors. Neurol. Clin. 2018, 36, 533–556. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, G.; Xiang, H.; Wang, X.; Wang, H.; Zhang, Y.; Qie, F.; Li, C. CircFLNA Promotes Glioblastoma Proliferation and Invasion by Negatively Regulating MiR-199-3p Expression. Mol. Med. Rep. 2021, 24, 786. [Google Scholar] [CrossRef]
- Cocquerelle, C.; Mascrez, B.; Hétuin, D.; Bailleul, B. Mis-Splicing Yields Circular RNA. FASEB J. 1993, 7, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Nigro, J.M.; Cho, K.R.; Fearon, E.R.; Kern, S.E.; Ruppert, J.M.; Oliner, J.D.; Kinzler, K.W.; Vogelstein, B. Scrambled Exons. Cell 1991, 64, 607–613. [Google Scholar] [CrossRef]
- Zaphiropoulos, P.G. Circular RNAs from Transcripts of the Rat Cytochrome P450 2C24 Gene: Correlation with Exon Skipping Gene:Correlation with Exon Skipping. Proc. Natl. Acad. Sci. USA 1996, 93, 6536–6541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadov, U.; Bendikas, M.M.; Ebbesen, K.K.; Sehested, A.M.; Kjems, J.; Broholm, H.; Kristensen, L.S. Distinct Circular RNA Expression Profiles in Pediatric Ependymomas. Brain Pathol. 2021, 31, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.O.; Wang, H.B.; Zhang, Y.; Lu, X.; Chen, L.L.; Yang, L. Complementary Sequence-Mediated Exon Circularization. Cell 2014, 159, 134–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okholm, T.L.H.; Nielsen, M.M.; Hamilton, M.P.; Christensen, L.L.; Vang, S.; Hedegaard, J.; Hansen, T.B.; Kjems, J.; Dyrskjøt, L.; Pedersen, J.S. Circular RNA Expression Is Abundant and Correlated to Aggressiveness in Early-Stage Bladder Cancer. NPJ Genom. Med. 2017, 2, 36. [Google Scholar] [CrossRef]
- Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell 2015, 58, 870–885. [Google Scholar] [CrossRef] [Green Version]
- Piwecka, M.; Glažar, P.; Hernandez-Miranda, L.R.; Memczak, S.; Wolf, S.A.; Rybak-Wolf, A.; Filipchyk, A.; Klironomos, F.; Jara, C.A.C.; Fenske, P.; et al. Loss of a Mammalian Circular RNA Locus Causes MiRNA Deregulation and Affects Brain Function. Science 2017, 357, eaam8526. [Google Scholar] [CrossRef] [Green Version]
- Salzman, J.; Gawad, C.; Wang, P.L.; Lacayo, N.; Brown, P.O. Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types. PLoS ONE 2012, 7, e30733. [Google Scholar] [CrossRef] [Green Version]
- Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; et al. Circular RNAs Are a Large Class of Animal RNAs with Regulatory Potency. Nature 2013, 495, 333–338. [Google Scholar] [CrossRef]
- Rossi, A.; Caracciolo, V.; Russo, G.; Reiss, K.; Giordano, A. Medulloblastoma: From Molecular Pathology to Therapy. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Rutka, J.T.; Hoffman, H.J. Medulloblastoma: A Historical Perspective and Overview. J. Neurooncol. 1996, 29, 1–7. [Google Scholar] [CrossRef]
- Pollack, I.F.; Jakacki, R.I. Childhood Brain Tumors: Epidemiology, Current Management and Future Directions. Nat. Rev. Neurol. 2011, 7, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Packer, R.J.; Gajjar, A.; Vezina, G.; Rorke-Adams, L.; Burger, P.C.; Robertson, P.L.; Bayer, L.; LaFond, D.; Donahue, B.R.; Marymont, M.H.; et al. Phase III Study of Craniospinal Radiation Therapy Followed by Adjuvant Chemotherapy for Newly Diagnosed Average-Risk Medulloblastoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2006, 24, 4202–4208. [Google Scholar] [CrossRef] [PubMed]
- Strother, D.; Lafay-Cousin, L. Adjuvant Therapy for High-Risk Medulloblastoma: More Is Better? Neuro. Oncol. 2021, 23, 1048–1049. [Google Scholar] [CrossRef] [PubMed]
- Gajjar, A.; Chintagumpala, M.; Ashley, D.; Kellie, S.; Kun, L.E.; Merchant, T.E.; Woo, S.; Wheeler, G.; Ahern, V.; Krasin, M.J.; et al. Risk-Adapted Craniospinal Radiotherapy Followed by High-Dose Chemotherapy and Stem-Cell Rescue in Children with Newly Diagnosed Medulloblastoma (St Jude Medulloblastoma-96): Long-Term Results from a Prospective, Multicentre Trial. Lancet Oncol. 2006, 7, 813–820. [Google Scholar] [CrossRef]
- Ray, S.; Chaturvedi, N.K.; Bhakat, K.K.; Rizzino, A.; Mahapatra, S. Subgroup-Specific Diagnostic, Prognostic, and Predictive Markers Influencing Pediatric Medulloblastoma Treatment. Diagnostics 2022, 12, 61. [Google Scholar] [CrossRef]
- Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L. Epidemiologic and Molecular Prognostic Review of Glioblastoma. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1985–1996. [Google Scholar] [CrossRef] [Green Version]
- Tielking, K.; Fischer, S.; Preissner, K.T.; Vajkoczy, P.; Xu, R. Extracellular RNA in Central Nervous System Pathologies. Front. Mol. Neurosci. 2019, 12, 254. [Google Scholar] [CrossRef] [Green Version]
- Fareh, M.; Turchi, L.; Virolle, V.; Debruyne, D.; Almairac, F.; De-La-Forest, D.S.; Paquis, P.; Preynat-Seauve, O.; Krause, K.-H.; Chneiweiss, H.; et al. The MiR 302-367 Cluster Drastically Affects Self-Renewal and Infiltration Properties of Glioma-Initiating Cells through CXCR4 Repression and Consequent Disruption of the SHH-GLI-NANOG Network. Cell Death Differ. 2012, 19, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Glaser, T.; Han, I.; Wu, L.; Zeng, X. Targeted Nanotechnology in Glioblastoma Multiforme. Front. Pharmacol. 2017, 8, 166. [Google Scholar] [CrossRef] [Green Version]
- Id, K.C.; Chen, P.; Ho, K.; Shih, C. IGF-1-Enhanced MiR-513a-5p Signaling Desensitizes Glioma Cells to Temozolomide by Targeting the NEDD4L-Inhibited Wnt/β-Catenin Pathway. PLoS ONE 2019, 14, e0225913. [Google Scholar] [CrossRef] [Green Version]
- Skarkova, V.; Krupova, M.; Vitovcova, B.; Skarka, A.; Kasparova, P.; Krupa, P.; Kralova, V.; Rudolf, E. The Evaluation of Glioblastoma Cell Dissociation and Its Influence on Its Behavior. Int. J. Mol. Sci. 2019, 20, 4630. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Xu, R.; Chen, B.; Dong, S.; Zhou, F.; Yu, T.; Xu, G.; Zhang, J.; Wang, Y.; You, Y. MicroRNA-940 Inhibits Glioma Cells Proliferation and Cell Cycle Progression by Targeting CKS1. Am. J. Transl. Res. 2019, 11, 4851–4865. [Google Scholar] [PubMed]
- Swalih, A.P.; Javier, S. Glioblastoma and MiRNAs. Cancers 2021, 13, 1581. [Google Scholar] [CrossRef]
- Zhang, X.; Zhong, B.; Zhang, W.; Wu, J. Circular RNA CircMTO1 Inhibits Proliferation of Glioblastoma Cells via MiR-92/WWOX Signaling Pathway. Med. Sci. Monit. 2019, 25, 6454–6461. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; Chu, J.; Huang, Q.; Li, G.; Yan, Y.; Xu, T.; Chen, J.; Wang, Y. Circular RNA Hsa_circ_0008344 Regulates Glioblastoma Cell Proliferation, Migration, Invasion, and Apoptosis. J. Clin. Lab. Anal. 2018, 32, e22454. [Google Scholar] [CrossRef] [Green Version]
- Qian, L.; Guan, J.; Wu, Y.; Wang, Q. Upregulated Circular RNA Circ_0074027 Promotes Glioblastoma Cell Growth and Invasion by Regulating MiR-518a-5p/IL17RD Signaling Pathway. Biochem. Biophys. Res. Commun. 2019, 510, 515–519. [Google Scholar] [CrossRef]
- Li, G.; Yang, H.; Han, K.; Zhu, D.; Lun, P.; Zhao, Y. A Novel Circular RNA, Hsa_circ_0046701, Promotes Carcinogenesis by Increasing the Expression of MiR-142-3p Target ITGB8 in Glioma. Biochem. Biophys. Res. Commun. 2018, 498, 254–261. [Google Scholar] [CrossRef]
- Wang, T.; Mao, P.; Feng, Y.; Cui, B.; Zhang, B.; Chen, C.; Xu, M.; Gao, K. Blocking Hsa_circ_0006168 Suppresses Cell Proliferation and Motility of Human Glioblastoma Cells by Regulating Hsa_circ_0006168/MiR-628-5p/IGF1R CeRNA Axis. Cell Cycle 2021, 20, 1181–1194. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, H.; Hong, F.; Hu, S.; Su, X.; Chen, J.; Chu, J. CircularRNA CircPARP4 Promotes Glioblastoma Progression through Sponging MiR-125a-5p and Regulating FUT4. Am. J. Cancer Res. 2021, 11, 138–156. [Google Scholar]
- Xie, G. Circular RNA Hsa-Circ-0012129 Promotes Cell Proliferation and Invasion in 30 Cases of Human Glioma and Human Glioma Cell Lines U373, A172, and SHG44, by Targeting MicroRNA-661 (MiR-661). Med. Sci. Monit. 2018, 24, 2497–2507. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Dai, W.; Wu, A.; Li, Y. CircCDC45 Promotes the Malignant Progression of Glioblastoma by Modulating the MiR-485-5p/CSF-1 Axis. BMC Cancer 2021, 21, 1090. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Sun, W.; Zhu, L.; Feng, Y.; Wu, L.; Li, T. Overexpressed Circ_0029426 in Glioblastoma Forecasts Unfavorable Prognosis and Promotes Cell Progression by Sponging MiR-197. J. Cell. Biochem. 2019, 120, 10295–10302. [Google Scholar] [CrossRef]
- Zhu, F.; Cheng, C.; Qin, H.; Wang, H.; Yu, H. A Novel Circular RNA CircENTPD7 Contributes to Glioblastoma Progression by Targeting ROS1. Cancer Cell Int. 2020, 20, 118. [Google Scholar] [CrossRef]
- Lei, B.; Huang, Y.; Zhou, Z.; Zhao, Y.; Thapa, A.J.; Li, W.; Cai, W.; Deng, Y. Circular RNA Hsa_circ_0076248 Promotes Oncogenesis of Glioma by Sponging MiR-181a to Modulate SIRT1 Expression. J. Cell. Biochem. 2019, 120, 6698–6708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, B.; Wang, M.; Huang, R.; Liao, K.; Wang, T.; Yang, R.; Zhang, W.; Shi, Z.; Ren, L.; Lv, Q.; et al. Circular RNA CircLGMN Facilitates Glioblastoma Progression by Targeting MiR-127-3p/LGMN Axis. Cancer Lett. 2021, 522, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Liao, K.; Miao, Z.; Wang, Q.; Miao, Y.; Guo, Z.; Qiu, Y.; Chen, B.; Ren, L.; Wei, Z.; et al. CircFOXO3 Promotes Glioblastoma Progression by Acting as a Competing Endogenous RNA for NFAT5. Neuro. Oncol. 2019, 21, 1284–1296. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Li, H.; Chen, K.; Ding, W.; Yang, C.; Wang, X. Circska3 Downregulates Mir-1 through Methylation in Glioblastoma to Promote Cancer Cell Proliferation. Cancer Manag. Res. 2021, 13, 509–514. [Google Scholar] [CrossRef]
- Chen, W.L.; Jiang, L.; Wang, J.S.; Liao, C.X. Circ-0001801 Contributes to Cell Proliferation, Migration, Invasion and Epithelial to Mesenchymal Transition (EMT) in Glioblastoma by Regulating MiR-628-5p/HMGB3 Axis. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 10874–10885. [Google Scholar] [CrossRef]
- Fan, X.; Liu, M.; Fei, L.; Huang, Z.; Yan, Y. CircFOXM1 Promotes the Proliferation, Migration, Invasion, and Glutaminolysis of Glioblastoma by Regulating the MiR-577/E2F5 Axis. Bosn. J. Basic Med. Sci. 2021, 8601, 205. [Google Scholar] [CrossRef]
- Liu, L.; Jia, L.; Shao, J.; Liu, H.; Wu, Q.; Wu, X. Circular RNA CircNF1 SiRNA Silencing Inhibits Glioblastoma Cell Proliferation by Promoting the Maturation of MiR-340. Front. Neurol. 2021, 12, 658076. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, B.; Wang, H.; Hu, L.; Zhang, J.; Yu, T.; Xu, X.; Tian, W.; Zhao, C.; Zhu, H.; et al. CircMELK Promotes Glioblastoma Multiforme Cell Tumorigenesis through the MiR-593/EphB2 Axis. Mol. Ther. Nucleic Acids 2021, 25, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Lou, G.; Jiang, L.; Liu, X.; Jiang, J.; Wang, X. CircNUP98 Suppresses the Maturation of MiR-519a-3p in Glioblastoma. Front. Neurol. 2021, 12, 2039. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Wang, M.; Qiang, J.; Guo, S. Circular RNA Circ-PITX1 Promotes the Progression of Glioblastoma by Acting as a Competing Endogenous RNA to Regulate MiR-379–5p/MAP3K2 Axis. Eur. J. Pharmacol. 2019, 863, 172643. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, F.; Chen, Y.; Wang, Y.; Song, H.; Long, J. CircPITX1 Regulates Proliferation, Angiogenesis, Migration, Invasion, and Cell Cycle of Human Glioblastoma Cells by Targeting MiR-584-5p/KPNB1 Axis. J. Mol. Neurosci. 2021, 71, 1683–1695. [Google Scholar] [CrossRef]
- Wei, Y.; Lu, C.; Zhou, P.; Zhao, L.; Lyu, X.; Yin, J.; Shi, Z.M.; You, Y. EIF4A3-Induced Circular RNA ASAP1 Promotes Tumorigenesis and Temozolomide Resistance of Glioblastoma via NRAS/MEK1/ERK1-2 Signaling. Neuro. Oncol. 2021, 23, 611–624. [Google Scholar] [CrossRef]
- He, J.; Huang, Z.; He, M.; Liao, J.; Zhang, Q.; Wang, S.; Xie, L.; Ouyang, L.; Koeffler, H.P.; Yin, D.; et al. Circular RNA MAPK4 (Circ-MAPK4) Inhibits Cell Apoptosis via MAPK Signaling Pathway by Sponging MiR-125a-3p in Gliomas. Mol. Cancer 2020, 19, 17. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Xue, Y.; Gong, W.; Ma, J.; Xi, Z.; Que, Z.; Liu, Y. TTBK2 Circular RNA Promotes Glioma Malignancy by Regulating MiR-217/HNF1β/Derlin-1 Pathway. J. Hematol. Oncol. 2017, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Mutalifu, N.; Du, P.; Zhang, J.; Akbar, H.; Yan, B.; Alimu, S.; Tong, L.; Luan, X. Circ_0000215 Increases the Expression of CXCR2 and Promoted the Progression of Glioma Cells by Sponging MiR-495-3p. Technol. Cancer Res. Treat. 2020, 19, 1533033820957026. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, M.; Tian, Q.; Liu, X. Microarray Analysis of CircRNAs Expression Profile in Gliomas Reveals That Circ_0037655 Could Promote Glioma Progression by Regulating MiR-214/PI3K Signaling. Life Sci. 2020, 245, 117363. [Google Scholar] [CrossRef]
- Zheng, K.; Xie, H.; Wu, W.; Wen, X.; Zeng, Z.; Shi, Y. CircRNA PIP5K1A Promotes the Progression of Glioma through Upregulation of the TCF12/PI3K/AKT Pathway by Sponging MiR-515-5p. Cancer Cell Int. 2021, 21, 27. [Google Scholar] [CrossRef]
- He, Q.; Zhao, L.; Liu, Y.; Liu, X.; Zheng, J.; Yu, H.; Cai, H.; Ma, J.; Liu, L.; Wang, P.; et al. Circ-SHKBP1 Regulates the Angiogenesis of U87 Glioma-Exposed Endothelial Cells through MiR-544a/FOXP1 and MiR-379/FOXP2 Pathways. Mol. Ther. Nucleic Acids 2018, 10, 331–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, J.; Zhang, X.Y.; Sun, D.K.; Tian, L.Q.; Xu, P. Up-Regulated Circular RNA Hsa_circ_0067934 Contributes to Glioblastoma Progression through Activating PI3K-AKT Pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Huang, Y.; Zhu, P.; Zou, Y.; Shao, T.; Wang, O. CircRNA CircHIPK3 Serves as a Prognostic Marker to Promote Glioma Progression by Regulating MiR-654/IGF2BP3 Signaling. Biochem. Biophys. Res. Commun. 2018, 503, 1570–1574. [Google Scholar] [CrossRef] [PubMed]
- Bian, A.; Wang, Y.; Liu, J.; Wang, X.; Liu, D.; Jiang, J.; Ding, L.; Hui, X. Circular RNA Complement Factor H (CFH) Promotes Glioma Progression by Sponging MIR-149 and Regulating AKT1. Med. Sci. Monit. 2018, 24, 5704–5712. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, W. CircABCC3 Knockdown Inhibits Glioblastoma Cell Malignancy by Regulating MiR-770-5p/SOX2 Axis through PI3K/AKT Signaling Pathway. Brain Res. 2021, 1764, 147465. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, S.; Chen, X.; Li, N.; Li, J.; Jia, R.; Pan, Y.; Liang, H. CircNT5E Acts as a Sponge of MiR-422a to Promote Glioblastoma Tumorigenesis. Cancer Res. 2018, 78, 4812–4825. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhang, Y.; Qi, L.; Ding, L.; Jiang, H.; Yu, H. NFIX Circular RNA Promotes Glioma Progression by Regulating MiR-34a-5p via Notch Signaling Pathway. Front. Mol. Neurosci. 2018, 11, 225. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Li, B.; Si, T. Knockdown of Circ0082374 Inhibits Cell Viability, Migration, Invasion and Glycolysis in Glioma Cells by MiR-326/SIRT1. Brain Res. 2020, 1748, 147108. [Google Scholar] [CrossRef]
- Lu, Y.; Deng, X.; Xiao, G.; Zheng, X.; Ma, L.; Huang, W. Circ0001730 Promotes Proliferation and Invasion via the MIR-326/Wnt7B Axis in Glioma Cells. Epigenomics 2019, 11, 1335–1352. [Google Scholar] [CrossRef]
- Wu, Z.; Zheng, M.; Zhang, Y.; Xie, M.; Tian, S.; Ding, T.; Li, L.; Guan, Q. Hsa_circ_0043278 Functions as Competitive Endogenous RNA to Enhance Glioblastoma Multiforme Progression by Sponging MiR-638. Aging 2020, 12, 21114–21128. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, X. Hsa-Circ-0000177-MiR-638-FZD7-Wnt Signaling Cascade Contributes to the Malignant Behaviors in Glioma. DNA Cell Biol. 2018, 37, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhang, S.; Chen, X.; Li, N.; Li, J.; Jia, R.; Pan, Y.; Liang, H. Correction to: EIF4A3-Induced Circular RNA MMP9 (CircMMP9) Acts as a Sponge of MiR-124 and Promotes Glioblastoma Multiforme Cell Tumorigenesis. Mol. Cancer 2018, 17, 166. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Qiu, Z.; Jiang, Y.; Dong, L.; Yang, W.; Gu, C.; Li, G.; Zhu, Y. Silencing of CZNF292 Circular RNA Suppresses Human Glioma Tube Formation via the Wnt/β-Catenin Signaling Pathway. Oncotarget 2016, 7, 63449–63455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, B.; Wang, L.; Zhao, J. Circular RNA Hsa_circ_0005114-MiR-142-3p/MiR-590-5p-Adenomatous Polyposis Coli Protein Axis as a Potential Target for Treatment of Glioma. Oncol. Lett. 2021, 21, 58. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Liu, Y. A Novel Circular RNA CircRFX3 Serves as a Sponge for MicroRNA-587 in Promoting Glioblastoma Progression via Regulating PDIA3. Front. Cell Dev. Biol. 2021, 9, 3167. [Google Scholar] [CrossRef]
- Liu, X.; Shen, S.; Zhu, L.; Su, R.; Zheng, J.; Ruan, X.; Shao, L.; Wang, D.; Yang, C.; Liu, Y. SRSF10 Inhibits Biogenesis of Circ-ATXN1 to Regulate Glioma Angiogenesis via MiR-526b-3p/MMP2 Pathway. J. Exp. Clin. Cancer Res. 2020, 39, 121. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, J.; Zhao, J.; Zhang, H.; Li, L.; Li, H.; Chen, L.; Hu, J.; Zheng, W.; Jing, Z. The U2AF2/CircRNA ARF1/MiR-342-3p/ISL2 Feedback Loop Regulates Angiogenesis in Glioma Stem Cells. J. Exp. Clin. Cancer Res. 2020, 39, 182. [Google Scholar] [CrossRef]
- Yang, J.; Tian, S.; Wang, B.; Wang, J.; Cao, L.; Wang, Q.; Xie, W.; Liang, Z.; Zhao, H.; Zhao, Y.; et al. CircPIK3C2A Facilitates the Progression of Glioblastoma via Targeting MiR-877-5p/FOXM1 Axis. Front. Oncol. 2021, 11, 801776. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, N.; Yang, X.; Luo, J.; Yan, S.; Xiao, F.; Chen, W.; Gao, X.; Zhao, K.; Zhou, H.; et al. A Novel Protein Encoded by the Circular Form of the SHPRH Gene Suppresses Glioma Tumorigenesis. Oncogene 2018, 37, 1805–1814. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, X.; Zhang, M.; Yan, S.; Sun, C.; Xiao, F.; Huang, N.; Yang, X.; Zhao, K.; Zhou, H.; et al. Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis. J. Natl. Cancer Inst. 2018, 110, 304–315. [Google Scholar] [CrossRef] [Green Version]
- Lou, J.; Hao, Y.; Lin, K.; Lyu, Y.; Chen, M.; Wang, H.; Zou, D.; Jiang, X.; Wang, R.; Jin, D.; et al. Circular RNA CDR1as Disrupts the P53/MDM2 Complex to Inhibit Gliomagenesis. Mol. Cancer 2020, 19, 138. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Miao, Y.; Xu, T.; Sun, W.; Sang, Y.; Jia, F.; Zhang, X. Circ-EPB41L5 Regulates the Host Gene EPB41L5 via Sponging MiR-19a to Repress Glioblastoma Tumorigenesis. Aging 2020, 12, 318–339. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Li, X.; Li, F.; Wu, X.; Zhang, M.; Zhou, H.; Huang, N.; Yang, X.; Xiao, F.; Liu, D.; et al. A Novel Tumor Suppressor Protein Encoded by Circular AKT3 RNA Inhibits Glioblastoma Tumorigenicity by Competing with Active Phosphoinositide-Dependent Kinase-1. Mol. Cancer 2019, 18, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Ma, K.; Sun, M.; Shi, S. Identification of the Tumor-Suppressive Function of Circular RNA ITCH in Glioma Cells through Sponging MiR-214 and Promoting Linear ITCH Expression. Am. J. Transl. Res. 2018, 10, 1373–1386, Erratum in Am. J. Transl. Res. 2021, 13, 14239. [Google Scholar]
- Barbagallo, D.; Caponnetto, A.; Brex, D.; Mirabella, F.; Barbagallo, C.; Lauretta, G.; Morrone, A.; Certo, F.; Broggi, G.; Caltabiano, R.; et al. CircSMARCA5 Regulates VEGFA MRNA Splicing and Angiogenesis in Glioblastoma Multiforme through the Binding of SRSF1. Cancers 2019, 11, 194. [Google Scholar] [CrossRef] [Green Version]
- Barbagallo, D.; Caponnetto, A.; Cirnigliaro, M.; Brex, D.; Barbagallo, C.; D’Angeli, F.; Morrone, A.; Caltabiano, R.; Barbagallo, G.M.; Ragusa, M.; et al. CircSMARCA5 Inhibits Migration of Glioblastoma Multiforme Cells by Regulating a Molecular Axis Involving Splicing Factors SRSF1/SRSF3/PTB. Int. J. Mol. Sci. 2018, 19, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Diao, H. Circular RNA Circ_0001946 Acts as a Competing Endogenous RNA to Inhibit Glioblastoma Progression by Modulating MiR-671-5p and CDR1. J. Cell. Physiol. 2019, 234, 13807–13819. [Google Scholar] [CrossRef]
- Feng, J.; Ren, X.; Fu, H.; Li, D.; Chen, X.; Zu, X.; Liu, Q.; Wu, M. LRRC4 Mediates the Formation of Circular RNA CD44 to InhibitGBM Cell Proliferation. Mol. Ther. Nucleic Acids 2021, 26, 473–487. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Du, Q.; Bian, P.; Chen, Y.; Liu, Z.; Zheng, J.; Sai, K.; Mou, Y.; Chen, Z.; et al. CircVPS13C Promotes Pituitary Adenoma Growth by Decreasing the Stability of IFITM1 MRNA via Interacting with RRBP1. Oncogene 2022, 41, 1550–1562. [Google Scholar] [CrossRef]
- Cheng, J.; Nie, D.; Li, B.; Gui, S.B.; Li, C.Z.; Zhang, Y.Z.; Zhao, P. CircNFIX Promotes Progression of Pituitary Adenoma via CCNB1 by Sponging MiR-34a -5p. Mol. Cell. Endocrinol. 2021, 525, 111140. [Google Scholar] [CrossRef]
- Du, Q.; Hu, B.; Feng, Y.; Wang, Z.; Wang, X.; Zhu, D.; Zhu, Y.; Jiang, X.; Wang, H. Circoma1-Mediated MiR-145-5p Suppresses Tumor Growth of Nonfunctioning Pituitary Adenomas by Targeting TPT1. J. Clin. Endocrinol. Metab. 2019, 104, 2419–2434. [Google Scholar] [CrossRef] [PubMed]
Sl. No. | CircRNA | Function | Expression | Reference |
---|---|---|---|---|
1 | Circ-SKA3 | Sponging miR-383-5p/miR-326 | Upregulated | [19,20] |
2 | Circ-CASC15 | Upregulated | [21] | |
3 | Circ-DTL | Upregulated | [21] | |
4 | Circ-UNC13C | Downregulated | [21] | |
5 | Circ-BRWD3 | Downregulated | [21] | |
6 | Circ- CNTN6 | Downregulated | [21] | |
7 | Circ- CRTAM | Downregulated | [21] | |
8 | Circ-MCU | Downregulated | [21] | |
9 | Circ-RIMS1-1 | Downregulated | [21] | |
10 | Circ-FLT31 | Downregulated | [21] | |
11 | Circ-DGKH | Downregulated | [21] | |
12 | Circ-FLT3-2 | Downregulated | [21] | |
13 | Circ-SPHKAP | Downregulated | [21] | |
14 | Circ-GRM1 | Downregulated | [21] | |
15 | Circ-GABRB2 | Downregulated | [21] | |
16 | Circ-RIMS1-2 | Downregulated | [21] | |
17 | Circ-ICA1 | Downregulated | [21] | |
18 | Circ-GRIK2 | Downregulated | [21] | |
19 | Circ-ATP8A2 | Downregulated | [21] | |
20 | Circ-EPHX2 | Downregulated | [21] | |
21 | Circ- WAC | Downregulated | [21] | |
22 | Circ-TENM1 | Downregulated | [21] | |
23 | Circ-SNORD109A | Downregulated | [21] | |
24 | Circ-UNC13C | Downregulated | [21] | |
25 | Circ-GRIK2 | Downregulated | [21] | |
26 | Circ-MAP3K5 | Downregulated | [21] | |
27 | Circ-CAMKK2 | Downregulated | [21] | |
28 | Circ-SVEP1 | Downregulated | [21] | |
29 | Circ-CADPS2 | Downregulated | [21] | |
30 | Circ-CAMK4-1 | Downregulated | [21] | |
31 | Circ-CAMK4-2 | Downregulated | [21] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.P.; Castresana, J.S.; Shahi, M.H. Role of Circular RNA in Brain Tumor Development. Cells 2022, 11, 2130. https://doi.org/10.3390/cells11142130
Ahmed SP, Castresana JS, Shahi MH. Role of Circular RNA in Brain Tumor Development. Cells. 2022; 11(14):2130. https://doi.org/10.3390/cells11142130
Chicago/Turabian StyleAhmed, Swalih P., Javier S. Castresana, and Mehdi H. Shahi. 2022. "Role of Circular RNA in Brain Tumor Development" Cells 11, no. 14: 2130. https://doi.org/10.3390/cells11142130
APA StyleAhmed, S. P., Castresana, J. S., & Shahi, M. H. (2022). Role of Circular RNA in Brain Tumor Development. Cells, 11(14), 2130. https://doi.org/10.3390/cells11142130