Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer
Abstract
:1. Role of Exonucleases
2. Exonucleases and Cancer
2.1. AEN
2.2. APE1
2.3. ARTEMIS
2.4. EXD2
2.5. EXO1
2.6. EXOG
2.7. FAN1
2.8. FEN1
2.9. MRE11A
2.10. p53
2.11. PLD3 and PLD4
2.12. POLD and POLE
2.13. RAD9A
2.14. TREX1
2.15. TREX2
2.16. WRN
Gene | Alteration | Type of Cancer | Biomarker | Ref. |
---|---|---|---|---|
AEN | High expression | Prostate | High-risk recurrence | [40] |
Colorectal | Reduced survival | [41] | ||
APE1 | Exonuclease mutations | Glioblastoma, endometrial | [59,60] | |
High expression | Lung, colorectal, cervical, prostate, bladder, gastric, hepatic, glioblastoma, osteosarcoma, head, and neck, ovarian, breast | Tumour aggressiveness, poor prognosis | [55,56] | |
ARTEMIS | Hypomorphic mutations | Lymphoma | High risk | [74,75] |
EXO1 | Exonuclease inactivating mutations | Colorectal tumours, small intestine tumours | [100] | |
High expression | Prostate, breast, lung, liver, bladder, melanoma | [89,90,91,92,93,95,96,97,98,99] | ||
FAN1 | Exonuclease inactivating mutations | Pancreatic, colorectal, hepatic | High risk | [122,123,124,125] |
High expression | Ovarian | Poor prognosis | [128] | |
FEN1 | High expression | Prostate, testis, lung, brain, gastric, breast | Increased tumour grade and aggressiveness | [133,134,135,136,137,138] |
SNP | Lung, ovary, bladder, breast, glioma, digestive | High risk | [139,140,141,142,143,144,145,146,147,148,149,150,151,152] | |
Esophagus, breast, leukemia | Protective role | [144,146,147] | ||
MRE11A | Exonuclease inactivating mutations | Breast, endometrium, colon | [154,155,156,157] | |
High expression | Bladder | Good prognosis | [159] | |
PLD3 | High expression | Osteosarcoma | Good prognosis | [174,175] |
PLD4 | High expression | HER2-positive breast cancer | Better survival | [176] |
POLD | Somatic exonuclease domain mutations | Colon, endometrium, and melanoma | Good prognosis | [179,180,181] |
POLE | Exo domains mutated | Colon, endometrium | High risk and increased mutation rate | [179] |
RAD9 | High expression | Lung, thyroid, prostate, breast | Bigger tumours, recurrence, and aggressiveness | [184,185,186,187,188,189] |
Low expression | Gastric | [191] | ||
TREX1 | High expression | Esophageal, cervix | [212,213] | |
Low expression | Melanoma, osteosarcoma | [214,215] | ||
TREX2 | High expression | Low-grade HNSCC, laryngeal | Good prognosis | [22,236] |
Colorectal | Reduced survival | [237] | ||
Low expression | Metastatic HNSCC | [22] | ||
WRN | Somatic mutations | Sarcomas, melanoma, thyroid, breast | [238] | |
Low expression | Colorectal, breast | Bad prognosis | [239,240] |
Exonucl. | Mutant Mice | Alteration | Phenotype | Ref. |
---|---|---|---|---|
APE1 | Ape1−/− | Gene deletion | Lethal | [50] |
Ape1+/− | Hemizygous | Cancer prone, lymphomas, sarcomas & adenocarcinomas | [52,53,54] | |
ARTEMIS | ArtN/N | Gene deletion | Severe combined immunodeficiency | [70] |
ArtN/NTrp53N/N | Gene deletion | Increased carcinogenesis in Art vs. p53 null mice | [72] | |
EXO1 | Exo−/− | Gene deletion | Lymphoma; reduced survival; sterility | [112] |
FAN1 | Fannd/nd | Nuclease defective | Cancer prone, carcinomas & lymphomas | [126] |
FEN1 | Fen1−/− | Gene deletion | Lethal | [130] |
Fen1+/− | Hemizygous | Tumours, mainly lymphomas | [131] | |
Fen1+/− Apc1368N | Hemizygous Mutation | Increased adenocarcinomas & decreased survival compared to Apc1268N | [131] | |
Fen1E160D | Inactivation of exo- & endonuclease activities | Autoimmunity, chronic inflammation, and tumours. Spontaneous mutations; accumulation of non-digested DNA in apoptotic cells. | [129] | |
PLD3 and PLD4 | Pld3−/− | Gene deletion | No inflammation | [26] |
Pld4−/− | Gene deletion | Inflammation, splenomegaly, high IFNγ levels | [26] | |
Pld3−/−Pld4−/− | Gene deletion | Lethal liver inflammation, hemophagocytic lymphohistiocytosis, high IFNγ levels | [27] | |
POLD | Pold1D400A | Exonuclease domain mutated | Increased epithelial cancer | [178] |
RAD9 | Rad9−/− | Gene deletion | Lethal | [192] |
Rad9K5−/− | Gene deletion in keratinocytes | Enhanced tumour development upon exposure to carcinogen | [193] | |
TREX1 | Trex1−/− | Gene deletion | Not cancer-prone. Inflammatory myocarditis | [206] |
Trex1D18N | Exonuclease defective | Not cancer-prone. Systemic inflammation. Lupus-like inflammatory syndrome. | [208] | |
TREX2 | Trex2−/− | Gene deletion | Not cancer-prone. Increased carcinogenesis upon exposure to genotoxins. Reduced inflammation. | [22,224,226] |
3. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Watson, J.D.; Crick, F.H.C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738. [Google Scholar] [CrossRef]
- Westheimer, F.H. Why nature chose phosphates. Science 1987, 235, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Deutscher, M.P. Exoribonuclease superfamilies: Structural analysis and phylogenetic distribution. Nucleic Acids Res. 2001, 29, 1017–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranovskii, A.G.; Buneva, V.N.; Nevinsky, G.A. Human deoxyribonucleases. Biochem. Biokhimiia 2004, 69, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Dehé, P.-M.; Gaillard, P.-H.L. Control of structure-specific endonucleases to maintain genome stability. Nat. Rev. Mol. Cell Biol. 2017, 18, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Yang, W. Nucleases: Diversity of structure, function and mechanism. Q. Rev. Biophys. 2010, 44, 1–93. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.-B.S.; Elledge, S.J. The DNA damage response: Putting checkpoints in perspective. Nature 2000, 408, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Blackford, A.N.; Jackson, S.P. ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Mol. Cell 2017, 66, 801–817. [Google Scholar] [CrossRef] [Green Version]
- Kastenhuber, E.R.; Lowe, S.W. Putting p53 in context. Cell 2017, 170, 1062–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.-C.; Guo, K.-W.; Chu, J.-W.; Hsiao, Y.-Y. Understanding APE1 cellular functions by the structural preference of exonuclease activities. Comput. Struct. Biotechnol. J. 2021, 19, 3682–3691. [Google Scholar] [CrossRef]
- Keijzers, G.; Liu, D.; Rasmussen, L.J. Exonuclease 1 and its versatile roles in DNA repair. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 440–451. [Google Scholar] [CrossRef]
- Deshmukh, A.L.; Porro, A.; Mohiuddin, M.; Lanni, S.; Panigrahi, G.B.; Caron, M.-C.; Masson, J.-Y.; Sartori, A.A.; Pearson, C.E. FAN1, a DNA repair nuclease, as a modifier of repeat expansion disorders. J. Huntingt. Dis. 2021, 10, 95–122. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Jia, J.; Finger, L.D.; Guo, Z.; Zer, C.; Shen, B. Functional regulation of FEN1 nuclease and its link to cancer. Nucleic Acids Res. 2010, 39, 781–794. [Google Scholar] [CrossRef] [Green Version]
- Nishino, T.; Morikawa, K. Structure and function of nucleases in DNA repair: Shape, grip and blade of the DNA scissors. Oncogene 2002, 21, 9022–9032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, J.A.; Schandl, C.A.; Young, K.K.; Vesely, J.; Willingham, M.C. Major DNA fragmentation is a late event in apoptosis. J. Histochem. Cytochem. 1997, 45, 923–934. [Google Scholar] [CrossRef]
- Bosurgi, L.; Hughes, L.D.; Rothlin, C.V.; Ghosh, S. Death begets a new beginning. Immunol. Rev. 2017, 280, 8–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Koh, Y.A.; Cho, C.-K.; Lee, S.-J.; Lee, Y.-S.; Bae, S. Identification of a novel ionizing radiation-induced nuclease, AEN, and its functional characterization in apoptosis. Biochem. Biophys. Res. Commun. 2005, 337, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Kawase, T.; Ichikawa, H.; Ohta, T.; Nozaki, N.; Tashiro, F.; Ohki, R.; Taya, Y. p53 target gene AEN is a nuclear exonuclease required for p53-dependent apoptosis. Oncogene 2008, 27, 3797–3810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christmann, M.; Tomicic, M.T.; Aasland, D.; Berdelle, N.; Kaina, B. Three prime exonuclease I (TREX1) is Fos/AP-1 regulated by genotoxic stress and protects against ultraviolet light and benzo(a)pyrene-induced DNA damage. Nucleic Acids Res. 2010, 38, 6418–6432. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J. Granzyme A activates another way to die. Immunol. Rev. 2010, 235, 93–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, D.; Beresford, P.J.; Zhu, P.; Zhang, D.; Sung, J.-S.; Demple, B.; Perrino, F.W.; Lieberman, J. The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme a-mediated cell death. Mol. Cell 2006, 23, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Manils, J.; Gómez, D.; Salla-Martret, M.; Fischer, H.; Fye, J.M.; Marzo, E.; Marruecos, L.; Serrano, I.; Salgado, R.; Rodrigo, J.P.; et al. Multifaceted role of TREX2 in the skin defense against UV-induced skin carcinogenesis. Oncotarget 2015, 6, 22375–22396. [Google Scholar] [CrossRef] [PubMed]
- Britton, S.; Frit, P.; Biard, D.; Salles, B.; Calsou, P. ARTEMIS nuclease facilitates apoptotic chromatin cleavage. Cancer Res. 2009, 69, 8120–8126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santa, P.; Garreau, A.; Serpas, L.; Ferriere, A.; Blanco, P.; Soni, C.; Sisirak, V. The role of nucleases and nucleic acid editing enzymes in the regulation of self-nucleic acid sensing. Front. Immunol. 2021, 12, 629922. [Google Scholar] [CrossRef]
- Bartok, E.; Hartmann, G. Immune sensing mechanisms that discriminate self from altered self and foreign nucleic acids. Immunity 2020, 53, 54–77. [Google Scholar] [CrossRef]
- Gavin, A.L.; Huang, D.; Huber, C.; Mårtensson, A.; Tardif, V.; Skog, P.D.; Blane, T.R.; Thinnes, T.C.; Osborn, K.; Chong, H.S.; et al. PLD3 and PLD4 are single-stranded acid exonucleases that regulate endosomal nucleic-acid sensing. Nat. Immunol. 2018, 19, 942–953. [Google Scholar] [CrossRef]
- Gavin, A.L.; Huang, D.; Blane, T.R.; Thinnes, T.C.; Murakami, Y.; Fukui, R.; Miyake, K.; Nemazee, D. Cleavage of DNA and RNA by PLD3 and PLD4 limits autoinflammatory triggering by multiple sensors. Nat. Commun. 2021, 12, 5874. [Google Scholar] [CrossRef]
- Rice, G.; Newman, W.G.; Dean, J.; Patrick, T.; Parmar, R.; Flintoff, K.; Robins, P.; Harvey, S.; Hollis, T.; O’Hara, A.; et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutières syndrome. Am. J. Hum. Genet. 2007, 80, 811–815. [Google Scholar] [CrossRef]
- Chen, W.-C.; Wang, W.-C.; Okada, Y.; Chang, W.-C.; Chou, Y.-H.; Chang, H.-H.; Huang, J.-D.; Chen, D.-Y. rs2841277 (PLD4) is associated with susceptibility and rs4672495 is associated with disease activity in rheumatoid arthritis. Oncotarget 2017, 8, 64180–64190. [Google Scholar] [CrossRef] [Green Version]
- Song, L.; Wang, Y.; Zhang, J.; Song, N.; Xu, X.; Lu, Y. The risks of cancer development in systemic lupus erythematosus (SLE) patients: A systematic review and meta-analysis. Arthritis Res. Ther. 2018, 20, 270. [Google Scholar] [CrossRef] [Green Version]
- Hemminki, K.; Liu, X.; Ji, J.; Sundquist, J.; Sundquist, K. Effect of autoimmune diseases on risk and survival in histology-specific lung cancer. Eur. Respir. J. 2012, 40, 1489–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimitou, E.P.; Symington, L.S. DNA end resection—Unraveling the tail. DNA Repair 2011, 10, 344–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperka, T.; Wang, J.; Rudolph, K.L. DNA damage checkpoints in stem cells, ageing and cancer. Nat. Rev. Mol. Cell Biol. 2012, 13, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Syeda, A.H.; Hawkins, M.; McGlynn, P. Recombination and replication. Cold Spring Harb Perspect. Biol. 2014, 6, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Knijnenburg, T.A.; Wang, L.; Zimmermann, M.T.; Chambwe, N.; Gao, G.F.; Cherniack, A.D.; Fan, H.; Shen, H.; Way, G.P.; Greene, C.S.; et al. Genomic and molecular landscape of DNA damage repair deficiency across the cancer genome atlas. Cell Rep. 2018, 23, 239–254.e6. [Google Scholar] [CrossRef] [Green Version]
- Eby, K.G.; Rosenbluth, J.M.; Mays, D.J.; Marshall, C.B.; Barton, C.E.; Sinha, S.; Johnson, K.N.; Tang, L.; Pietenpol, J.A. ISG20L1 is a p53 family target gene that modulates genotoxic stress-induced autophagy. Mol. Cancer 2010, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Kaatsch, H.L.; Becker, B.V.; Schüle, S.; Ostheim, P.; Nestler, K.; Jakobi, J.; Schäfer, B.; Hantke, T.; Brockmann, M.A.; Abend, M.; et al. Gene expression changes and DNA damage after ex vivo exposure of peripheral blood cells to various CT photon spectra. Sci. Rep. 2021, 11, 12060. [Google Scholar] [CrossRef]
- Moschella, F.; Torelli, G.F.; Valentini, M.; Urbani, F.; Buccione, C.; Petrucci, M.T.; Natalino, F.; Belardelli, F.; Foà, R.; Proietti, E. Cyclophosphamide induces a type I interferon–associated sterile inflammatory response signature in cancer patients’ blood cells: Implications for cancer chemoimmunotherapy. Clin. Cancer Res. 2013, 19, 4249–4261. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.-H.; Hsiao, Y.-T.; Chen, J.-C.; Lin, J.-H.; Hsu, S.-C.; Hsia, T.-C.; Yang, S.-T.; Hsu, W.-H.; Chung, J.-G. Bufalin alters gene expressions associated DNA damage, cell cycle, and apoptosis in human lung cancer NCI-H460 cells in vitro. Molecules 2014, 19, 6047–6057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, G.; Ouyang, W.; Zhang, Y.; Sun, G.; Gan, J.; Hu, Z.; Li, H. Identification of a DNA repair gene signature and establishment of a prognostic nomogram predicting biochemical-recurrence-free survival of prostate cancer. Front. Mol. Biosci. 2021, 8, 608369. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, H.; Su, B.; Wang, J.; Quan, W.; Li, Q.; Mi, D. Construction and validation of an RNA-binding protein-associated prognostic model for colorectal cancer. PeerJ 2021, 9, e11219. [Google Scholar] [CrossRef] [PubMed]
- Dyrkheeva, N.S.; Khodyreva, S.N.; Lavrik, O.I. Multifunctional human apurinic/apyrimidinic endonuclease 1: Role of additional functions. Mol. Biol. 2007, 41, 402–416. [Google Scholar] [CrossRef]
- Kaur, G.; Cholia, R.P.; Mantha, A.K.; Kumar, R. DNA repair and redox activities and inhibitors of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1): A comparative analysis and their scope and limitations toward anticancer drug development. J. Med. Chem. 2014, 57, 10241–10256. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Sarkar, B.; Cholia, R.P.; Gautam, N.; Dhiman, M.; Mantha, A.K. APE1/Ref-1 as an emerging therapeutic target for various human diseases: Phytochemical modulation of its functions. Exp. Mol. Med. 2014, 46, e106. [Google Scholar] [CrossRef]
- Laev, S.S.; Salakhutdinov, N.F.; Lavrik, O.I. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorg. Med. Chem. 2017, 25, 2531–2544. [Google Scholar] [CrossRef]
- Ma, X.; Dang, C.; Min, W.; Diao, Y.; Hui, W.; Wang, X.; Dai, Z.; Wang, X.; Kang, H. Downregulation of APE1 potentiates breast cancer cells to Olaparib by inhibiting PARP-1 expression. Breast Cancer Res. Treat. 2019, 176, 109–117. [Google Scholar] [CrossRef]
- Krutá, M.; Bálek, L.; Hejnová, R.; Dobšáková, Z.; Eiselleová, L.; Matulka, K.; Bárta, T.; Fojtík, P.; Fajkus, J.; Hampl, A.; et al. Decrease in abundance of apurinic/apyrimidinic endonuclease causes failure of base excision repair in culture-adapted human embryonic stem cells. Stem Cells 2013, 31, 693–702. [Google Scholar] [CrossRef]
- Heo, J.-Y.; Jing, K.; Song, K.-S.; Seo, K.-S.; Park, J.-H.; Kim, J.-S.; Jung, Y.-J.; Hur, G.-M.; Jo, D.-Y.; Kweon, G.-R.; et al. Downregulation of APE1/Ref-1 is involved in the senescence of mesenchymal stem cells. Stem Cells 2009, 27, 1455–1462. [Google Scholar] [CrossRef]
- Li, M.; Yang, X.; Lu, X.; Dai, N.; Zhang, S.; Cheng, Y.; Zhang, L.; Yang, Y.; Liu, Y.; Yang, Z.; et al. APE1 deficiency promotes cellular senescence and premature aging features. Nucleic Acids Res. 2018, 46, 5664–5677. [Google Scholar] [CrossRef]
- Xanthoudakis, S.; Smeyne, R.J.; Wallace, J.D.; Curran, T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc. Natl. Acad. Sci. USA 1996, 93, 8919–8923. [Google Scholar] [CrossRef] [Green Version]
- von Zglinicki, T. Oxidative stress shortens telomeres. Trends Biochem. Sci. 2002, 27, 339–344. [Google Scholar] [CrossRef]
- Meira, L.B.; Devaraj, S.; Kisby, G.E.; Burns, D.K.; Daniel, R.L.; Hammer, R.E.; Grundy, S.; Jialal, I.; Friedberg, E.C. Heterozygosity for the mouse apex gene results in phenotypes associated with oxidative stress. Cancer Res. 2001, 61, 5552–5557. [Google Scholar] [PubMed]
- Vogel, K.S.; Perez, M.; Momand, J.R.; Acevedo-Torres, K.; Hildreth, K.; Garcia, R.A.; Torres-Ramos, C.A.; Ayala-Torres, S.; Prihoda, T.J.; McMahan, C.A.; et al. Age-related instability in spermatogenic cell nuclear and mitochondrial DNA obtained fromApex1heterozygous mice. Mol. Reprod. Dev. 2011, 78, 906–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huamani, J.; McMahan, C.A.; Herbert, D.C.; Reddick, R.; McCarrey, J.R.; MacInnes, M.I.; Chen, D.J.; Walter, C.A. Spontaneous mutagenesis is enhanced in Apex heterozygous mice. Mol. Cell. Biol. 2004, 24, 8145–8153. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Wilson, D.M. Human apurinic/apyrimidinic endonuclease 1. Antioxid. Redox. Signal. 2014, 20, 678–707. [Google Scholar] [CrossRef] [Green Version]
- Abbotts, R.; Madhusudan, S. Human AP endonuclease 1 (APE1): From mechanistic insights to druggable target in cancer. Cancer Treat. Rev. 2010, 36, 425–435. [Google Scholar] [CrossRef]
- Karimi-Busheri, F.; Rasouli-Nia, A.; Mackey, J.R.; Weinfeld, M. Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res. 2010, 12, R31. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Raj, J.; Li, J.; Ha, A.; Hossain, M.A.; Richardson, C.; Mukherjee, P.; Yan, S. APE1 senses DNA single-strand breaks for repair and signaling. Nucleic Acids Res. 2020, 48, 1925–1940. [Google Scholar] [CrossRef] [Green Version]
- Pieretti, M.; Khattar, N.H.; Smith, S.A. Common polymorphisms and somatic mutations in human base excision repair genes in ovarian and endometrial cancers. Mutat. Res. Res. Genom. 2001, 432, 53–59. [Google Scholar] [CrossRef]
- Illuzzi, J.L.; Harris, N.A.; Manvilla, B.A.; Kim, D.; Li, M.; Drohat, A.; Wilson, D.M. Functional assessment of population and tumor-associated APE1 protein variants. PLoS ONE 2013, 8, e65922. [Google Scholar] [CrossRef]
- Lo, Y.-L.; Jou, Y.-S.; Hsiao, C.-F.; Chang, G.-C.; Tsai, Y.-H.; Su, W.-C.; Chen, K.-Y.; Chen, Y.-M.; Huang, M.-S.; Hu, C.Y.; et al. A polymorphism in the APE1 gene promoter is associated with lung cancer risk. Cancer Epidemiol. Biomark. Prev. 2009, 18, 223–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Zhang, S.; Chen, D.; Wang, H.; Wu, W.; Wang, X.; Lei, Y.; Wang, J.; Qian, J.; Fan, W.; et al. Functional characterization of a promoter polymorphism in APE1/Ref-1 that contributes to reduced lung cancer susceptibility. FASEB J. 2009, 23, 3459–3469. [Google Scholar] [CrossRef]
- Ma, Y.; Pannicke, U.; Schwarz, K.; Lieber, M.R. Hairpin opening and overhang processing by an artemis/DNA-dependent protein kinase complex in nonhomologous end joining and V(D)J recombination. Cell 2002, 108, 781–794. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Chang, H.H.; Niewolik, D.; Hedrick, M.P.; Pinkerton, A.B.; Hassig, C.A.; Schwarz, K.; Lieber, M.R. Evidence that the DNA endonuclease ARTEMIS also has intrinsic 5′-exonuclease activity. J. Biol. Chem. 2014, 289, 7825–7834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rooney, S.; Alt, F.W.; Lombard, D.; Whitlow, S.; Eckersdorff, M.; Fleming, J.; Fugmann, S.; Ferguson, D.O.; Schatz, D.G.; Sekiguchi, J. Defective DNA repair and increased genomic instability in artemis-deficient murine cells. J. Exp. Med. 2003, 197, 553–565. [Google Scholar] [CrossRef] [PubMed]
- Moshous, D.; Callebaut, I.; de Chasseval, R.; Corneo, B.; Cavazzana-Calvo, M.; Le Deist, F.; Tezcan, I.; Sanal, O.; Bertrand, Y.; Philippe, N.; et al. Artemis, a Novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001, 105, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Kurosawa, A.; Koyama, H.; Takayama, S.; Miki, K.; Ayusawa, D.; Fujii, M.; Iiizumi, S.; Adachi, N. The requirement of artemis in double-strand break repair depends on the type of DNA damage. DNA Cell Biol. 2008, 27, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Drayna, D.; Hu, D.; Hayward, A.; Gahagan, S.; Pabst, H.; Cowan, M.J. The gene for severe combined immunodeficiency disease in athabascan-speaking native americans is located on chromosome 10p. Am. J. Hum. Genet. 1998, 62, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, S.; Trqup, G.; Hayward, A.; Devor, E.; Coons, T. Gene enrichment in an American Indian population: An excess of severe combined immunodeficiency disease. Lancet 1980, 316, 502–505. [Google Scholar] [CrossRef]
- Rooney, S.; Sekiguchi, J.; Zhu, C.; Cheng, H.-L.; Manis, J.; Whitlow, S.; DeVido, J.; Foy, D.; Chaudhuri, J.; Lombard, D.; et al. Leaky scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol. Cell 2002, 10, 1379–1390. [Google Scholar] [CrossRef]
- Rooney, S.; Sekiguchi, J.; Whitlow, S.; Eckersdorff, M.; Manis, J.P.; Lee, C.; Ferguson, D.O.; Alt, F.W. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc. Natl. Acad. Sci. USA 2004, 101, 2410–2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhu, Y.; Geng, L.; Wang, H.; Legerski, R.J. Artemis is a negative regulator of p53 in response to oxidative stress. Oncogene 2009, 28, 2196–2204. [Google Scholar] [CrossRef] [Green Version]
- Sallmyr, A.; Tomkinson, A.E.; Rassool, F.V. Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: Consequences for the repair of DNA double-strand breaks. Blood 2008, 112, 1413–1423. [Google Scholar] [CrossRef] [Green Version]
- Moshous, D.; Pannetier, C.; de Chasseval, R.; le Deist, F.; Cavazzana, M.; Romana, S.P.; Macintyre, E.; Canioni, D.; Brousse, N.; Fischer, A.; et al. Partial T and B lymphocyte immunodeficiency and predisposition to lymphoma in patients with hypomorphic mutations in Artemis. J. Clin. Investig. 2003, 111, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Fevang, B.; Fagerli, U.M.; Sorte, H.; Aarset, H.; Hov, H.; Langmyr, M.; Keil, T.M.; Bjørge, E.; Aukrust, P.; Stray-Pedersen, A.; et al. Runaway train: A leaky radiosensitive SCID with skin lesions and multiple lymphomas. Case Rep. Immunol. 2018, 2053716. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, C.; Huang, Y.; Masud, T.; Lu, W.; Westfield, G.; Giblin, W.; Sekiguchi, J.M. A hypomorphic Artemis human disease allele causes aberrant chromosomal rearrangements and tumorigenesis. Hum. Mol. Genet. 2010, 20, 806–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, C.; Wang, X.; Li, P.; Zhu, Y.; Sun, Y.; Hu, J.; Liu, H.; Sun, X. Developing a peptide that inhibits DNA repair by blocking the binding of Artemis and DNA ligase IV to enhance tumor radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, 515–527. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.-Y.; Jeong, H.; Kang, M.-G.; Van Haute, L.; Minczuk, M.; Seo, J.K.; Jun, Y.; Myung, K.; Rhee, H.-W.; et al. The structure of human EXD2 reveals a chimeric 3′ to 5′ exonuclease domain that discriminates substrates via metal coordination. Nucleic Acids Res. 2019, 47, 7078–7093. [Google Scholar] [CrossRef] [Green Version]
- Zid, B.M.; Kapahi, P. Exonuclease EXD2 in mitochondrial translation. Nat. Cell Biol. 2018, 20, 120–122. [Google Scholar] [CrossRef]
- Nieminuszczy, J.; Broderick, R.; Bellani, M.A.; Smethurst, E.; Schwab, R.A.; Cherdyntseva, V.; Evmorfopoulou, T.; Lin, Y.-L.; Minczuk, M.; Pasero, P.; et al. EXD2 protects stressed replication forks and is required for cell viability in the absence of BRCA1/2. Mol. Cell 2019, 75, 605–619.e6. [Google Scholar] [CrossRef] [Green Version]
- Broderick, R.; Nieminuszczy, J.; Baddock, H.T.; Deshpande, R.A.; Gileadi, O.; Paull, T.T.; McHugh, P.J.; Niedzwiedz, W. EXD2 promotes homologous recombination by facilitating DNA end resection. Nat. Cell Biol. 2016, 18, 271–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sertic, S.; Quadri, R.; Lazzaro, F.; Muzi-Falconi, M. EXO1: A tightly regulated nuclease. DNA Repair 2020, 93, 102929. [Google Scholar] [CrossRef] [PubMed]
- Goellner, E.M.; Putnam, C.D.; Kolodner, R.D. Exonuclease 1-dependent and independent mismatch repair. DNA Repair 2015, 32, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Bolderson, E.; Tomimatsu, N.; Richard, D.J.; Boucher, D.; Kumar, R.; Pandita, T.K.; Burma, S.; Khanna, K.K. Phosphorylation of Exo1 modulates homologous recombination repair of DNA double-strand breaks. Nucleic Acids Res. 2010, 38, 1821–1831. [Google Scholar] [CrossRef] [Green Version]
- Schaetzlein, S.; Chahwan, R.; Avdievich, E.; Roa, S.; Wei, K.; Eoff, R.L.; Sellers, R.S.; Clark, A.B.; Kunkel, T.A.; Scharff, M.D.; et al. Mammalian Exo1 encodes both structural and catalytic functions that play distinct roles in essential biological processes. Proc. Natl. Acad. Sci. USA 2013, 110, E2470–E2479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mimitou, E.P.; Symington, L.S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 2008, 455, 770–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sertic, S.; Mollica, A.; Campus, I.; Roma, S.; Tumini, E.; Aguilera, A.; Muzi-Falconi, M. Coordinated activity of Y family TLS polymerases and EXO1 protects Non-S phase cells from UV-induced cytotoxic lesions. Mol. Cell 2018, 70, 34–47.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannattasio, M.; Follonier, C.; Tourrière, H.; Puddu, F.; Lazzaro, F.; Pasero, P.; Lopes, M.; Plevani, P.; Muzi-Falconi, M. Exo1 competes with repair synthesis, converts Ner intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 2010, 40, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Wang, Y.; Lin, D.; Li, J.; Yang, K. Exonuclease 1 expression is associated with clinical progression, metastasis, and survival prognosis of prostate cancer. J. Cell. Biochem. 2019, 120, 11383–11389. [Google Scholar] [CrossRef]
- Teng, P.-C.; Huang, S.-P.; Liu, C.-H.; Lin, T.-Y.; Cho, Y.-C.; Lai, Y.-L.; Wang, S.-C.; Yeh, H.-C.; Chuu, C.-P.; Chen, D.-N.; et al. Identification of DNA damage repair-associated prognostic biomarkers for prostate cancer using transcriptomic data analysis. Int. J. Mol. Sci. 2021, 22, 11771. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, J. Elevated EXO1 expression is associated with breast carcinogenesis and poor prognosis. Ann. Transl. Med. 2021, 9, 135. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Zhang, W.; Wang, X.; Chen, L.; Wang, S. BKM120 sensitizes BRCA-proficient triple negative breast cancer cells to olaparib through regulating FOXM1 and Exo1 expression. Sci. Rep. 2021, 11, 4774. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Wu, Y.; Xie, Y.; Huang, L.; Liu, H. Analyzing mRNAsi-related genes identifies novel prognostic markers and potential drug combination for patients with basal breast cancer. Dis. Markers 2021, 2021, 4731349. [Google Scholar] [CrossRef]
- He, D.; Li, T.; Sheng, M.; Yang, B. Exonuclease 1 (Exo1) participates in mammalian non-homologous end joining and contributes to drug resistance in ovarian cancer. Med Sci. Monit. 2020, 26, e918751-1–e918751-8. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.-S.; Feng, M.-T.; Chen, X.; Gao, Y.; Chen, L.; Li, L.-D.; Li, D.-H.; Cao, Y.-Q. Exonuclease 1 (EXO1) is a potential prognostic biomarker and correlates with immune infiltrates in lung adenocarcinoma. OncoTargets Ther. 2021, 14, 1033–1048. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Tang, Z.; Yang, Z.; Zhang, L.; Deng, Q.; Zhang, X.; Yu, Y.; Liu, X.; Zhu, J. EXO1 overexpression is associated with poor prognosis of hepatocellular carcinoma patients. Cell Cycle 2018, 17, 2386–2397. [Google Scholar] [CrossRef]
- Yang, G.; Dong, K.; Zhang, Z.; Zhang, E.; Liang, B.; Chen, X.; Huang, Z. EXO1 plays a carcinogenic role in hepatocellular carcinoma and is related to the regulation of FOXP3. J. Cancer 2020, 11, 4917–4932. [Google Scholar] [CrossRef]
- Fan, J.; Zhao, Y.; Yuan, H.; Yang, J.; Li, T.; He, Z.; Wu, X.; Luo, C. Phospholipase C-ε regulates bladder cancer cells via ATM/EXO1. Am. J. Cancer Res. 2020, 10, 2319–2336. [Google Scholar]
- Song, F.; Qureshi, A.A.; Zhan, J.; Amos, C.I.; Lee, J.E.; Wei, Q.; Han, J. Exonuclease 1 (EXO1) gene variation and melanoma risk. DNA Repair 2012, 11, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zheng, L.; Shen, B. Functional alterations of human exonuclease 1 mutants identified in atypical hereditary nonpolyposis colorectal cancer syndrome. Cancer Res. 2002, 62, 6026–6030. [Google Scholar]
- Zhang, Y.; Li, P.; Xu, A.; Chen, J.; Ma, C.; Sakai, A.; Xie, L.; Wang, L.; Na, Y.; Kaku, H.; et al. Influence of a single-nucleotide polymorphism of the DNA mismatch repair-related gene exonuclease-1 (rs9350) with prostate cancer risk among Chinese people. Tumor Biol. 2015, 37, 6653–6659. [Google Scholar] [CrossRef]
- Shi, T.; Jiang, R.; Wang, P.; Xu, Y.; Yin, S.; Cheng, X.; Zang, R. Significant association of the EXO1 rs851797 polymorphism with clinical outcome of ovarian cancer. OncoTargets Ther. 2017, 10, 4841–4851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, G.; Wang, H.; Hu, Z.; Liu, H.; Sun, W.; Ma, H.; Chen, D.; Miao, R.; Tian, T.; Jin, L.; et al. Potentially functional polymorphisms of EXO1 and risk of lung cancer in a Chinese population: A case-control analysis. Lung Cancer 2008, 60, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Song, C.; Dai, L.; Cui, S.; Zhang, X.; Zhao, X. The significance of Exo1 K589E polymorphSism on cancer susceptibility: Evidence based on a meta-analysis. PLoS ONE 2014, 9, e96764. [Google Scholar] [CrossRef]
- Genetic Risk of Lung Cancer Associated with a Single Nucleotide Polymorphism from EXO1: A Meta Analysis—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/26379914/ (accessed on 15 April 2022).
- Tsai, M.-H.; Tseng, H.-C.; Liu, C.-S.; Chang, C.-L.; Tsai, C.-W.; Tsou, Y.-A.; Wang, R.-F.; Lin, C.-C.; Wang, H.-C.; Chiu, C.-F.; et al. Interaction of Exo1 genotypes and smoking habit in oral cancer in Taiwan. Oral Oncol. 2009, 45, e90–e94. [Google Scholar] [CrossRef]
- Bayram, S.; Akkiz, H.; Bekar, A.; Akgöllü, E.; Yildirim, S. The significance of Exonuclease 1 K589E polymorphism on hepatocellular carcinoma susceptibility in the Turkish population: A case-control study. Mol. Biol. Rep.Mol. Biol. Rep. 2012, 39, 5943–5951. [Google Scholar] [CrossRef]
- Wu, Y.; Mensink, R.G.; Verlind, E.; Sijmons, R.; Buys, C.H.; Hofstra, R.M.; Berends, M.J.; Kleibeuker, J.H.; Post, J.G.; Kempinga, C.; et al. Germline mutations of EXO1 gene in patients with hereditary nonpolyposis colorectal cancer (HNPCC) and atypical HNPCC forms. Gastroenterology 2001, 120, 1580–1587. [Google Scholar] [CrossRef]
- Bau, D.-T. Single-nucleotide polymorphism of the Exo1 gene: Association with gastric cancer susceptibility and interaction with smoking in Taiwan. Chin. J. Physiol. 2009, 52, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Qin, R.; Zhu, X.; Tan, C.; Song, J.; Qin, L.; Liu, L.; Huang, X.; Li, A.; Qiu, X. Associations between single-nucleotide polymorphisms of human exonuclease 1 and the risk of hepatocellular carcinoma. Oncotarget 2016, 7, 87180–87193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghighi, M.M.; Taleghani, M.Y.; Mohebbi, S.R.; Vahedi, M.; Fatemi, S.R.; Zali, N.; Shemirani, A.I.; Zali, M.R. Impact of EXO1 polymorphism in susceptibility to colorectal cancer. Genet. Test. Mol. Biomark. 2010, 14, 649–652. [Google Scholar] [CrossRef]
- Wei, K.; Clark, A.B.; Wong, E.; Kane, M.F.; Mazur, D.J.; Parris, T.; Kolas, N.K.; Russell, R.; Hou, H., Jr.; Kneitz, B.; et al. Inactivation of exonuclease 1 in mice results in DNA mismatch repair defects, increased cancer susceptibility, and male and female sterility. Genes Dev. 2003, 17, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Guan, J.; Lu, C.; Jin, Q.; Lu, H.; Chen, X.; Tian, L.; Zhang, Y.; Rodriguez, J.O.; Zhang, J.; Siteni, S.; et al. MLH1 deficiency-triggered DNA Hyperexcision by exonuclease 1 activates the cGAS-STING pathway. Cancer Cell 2021, 39, 109–121.e5. [Google Scholar] [CrossRef] [PubMed]
- Kieper, J.; Lauber, C.; Gimadutdinow, O.; Urbańska, A.; Cymerman, I.; Ghosh, M.; Szczesny, B.; Meiss, G. Production and characterization of recombinant protein preparations of endonuclease G-homologs from yeast, C. elegans and humans. Protein Expr. Purif. 2010, 73, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Cymerman, I.A.; Chung, I.; Beckmann, B.M.; Bujnicki, J.M.; Meiss, G. EXOG, a novel paralog of Endonuclease G in higher eukaryotes. Nucleic Acids Res. 2008, 36, 1369–1379. [Google Scholar] [CrossRef] [Green Version]
- Tann, A.W.; Boldogh, I.; Meiss, G.; Qian, W.; Van Houten, B.; Mitra, S.; Szczesny, B. Apoptosis induced by persistent single-strand breaks in mitochondrial genome: Critical role of EXOG (5′-EXO/endonuclease) in their repair. J. Biol. Chem. 2011, 286, 31975–31983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczesny, B.; Marcatti, M.; Zatarain, J.R.; Druzhyna, N.; Wiktorowicz, J.E.; Nagy, P.; Hellmich, M.R.; Szabo, C. Inhibition of hydrogen sulfide biosynthesis sensitizes lung adenocarcinoma to chemotherapeutic drugs by inhibiting mitochondrial DNA repair and suppressing cellular bioenergetics. Sci. Rep. 2016, 6, 36125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-C.; Lin, J.L.J.; Yang-Yen, H.-F.; Yuan, H.S. A unique exonuclease ExoG cleaves between RNA and DNA in mitochondrial DNA replication. Nucleic Acids Res. 2019, 47, 5405–5419. [Google Scholar] [CrossRef] [Green Version]
- Lung, M.S.; Australian Ovarian Cancer Study Group; Mitchell, C.A.; Doyle, M.A.; Lynch, A.C.; Gorringe, K.L.; Bowtell, D.D.L.; Campbell, I.G.; Trainer, A.H. Germline whole exome sequencing of a family with appendiceal mucinous tumours presenting with pseudomyxoma peritonei. BMC Cancer 2020, 20, 369. [Google Scholar] [CrossRef]
- Jin, H.; Cho, Y. Structural and functional relationships of FAN1. DNA Repair 2017, 56, 135–143. [Google Scholar] [CrossRef]
- Fiévet, A.; Mouret-Fourme, E.; Colas, C.; de Pauw, A.; Stoppa-Lyonnet, D.; Buecher, B. Prevalence of pathogenic variants of FAN1 in more than 5000 patients assessed for genetic predisposition to colorectal, breast, ovarian, or other cancers. Gastroenterology 2019, 156, 1919–1920. [Google Scholar] [CrossRef]
- Smith, A.L.; Alirezaie, N.; Connor, A.; Chan-Seng-Yue, M.; Grant, R.; Selander, I.; Bascuñana, C.; Borgida, A.; Hall, A.; Whelan, T.; et al. Candidate DNA repair susceptibility genes identified by exome sequencing in high-risk pancreatic cancer. Cancer Lett. 2015, 370, 302–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belhadj, S.; Terradas, M.; Munoz-Torres, P.M.; Aiza, G.; Navarro, M.; Capellá, G.; Valle, L. Candidate genes for hereditary colorectal cancer: Mutational screening and systematic review. Hum. Mutat. 2020, 41, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Seguí, N.; Mina, L.B.; Lázaro, C.; Sanz-Pamplona, R.; Pons, T.; Navarro, M.; Bellido, F.; López-Doriga, A.; Valdés-Mas, R.; Pineda, M.; et al. Germline mutations in FAN1 cause hereditary colorectal cancer by impairing DNA repair. Gastroenterology 2015, 149, 563–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, P.; Su, X.; Cao, W.; Xu, L.; Zhang, R.; Huang, Z.; Wang, J.; Li, L.; Wu, L.; Liao, W. Whole-exome sequencing reveals the etiology of the rare primary hepatic mucoepidermoid carcinoma. Diagn. Pathol. 2021, 16, 29. [Google Scholar] [CrossRef]
- Lachaud, C.; Moreno, A.; Marchesi, F.; Toth, R.; Blow, J.J.; Rouse, J. Ubiquitinated Fancd2 recruits Fan1 to stalled replication forks to prevent genome instability. Science 2016, 351, 846–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porro, A.; Berti, M.; Pizzolato, J.; Bologna, S.; Kaden, S.; Saxer, A.; Ma, Y.; Nagasawa, K.; Sartori, A.A.; Jiricny, J. FAN1 interaction with ubiquitylated PCNA alleviates replication stress and preserves genomic integrity independently of BRCA2. Nat. Commun. 2017, 8, 1073. [Google Scholar] [CrossRef] [Green Version]
- Santarpia, L.; Iwamoto, T.; Di Leo, A.; Hayashi, N.; Bottai, G.; Stampfer, M.; André, F.; Turner, N.C.; Symmans, W.F.; Hortobágyi, G.N.; et al. DNA repair gene patterns as prognostic and predictive factors in molecular breast cancer subtypes. Oncology 2013, 18, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Dai, H.; Zhou, M.; Li, M.; Singh, P.; Qiu, J.; Tsark, W.; Huang, Q.; Kernstine, K.; Zhang, X.; et al. Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat. Med. 2007, 13, 812–819. [Google Scholar] [CrossRef]
- Larsen, E.; Gran, C.; Sæther, B.E.; Seeberg, E.; Klungland, A. Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage. Mol. Cell. Biol. 2003, 23, 5346–5353. [Google Scholar] [CrossRef] [Green Version]
- Kucherlapati, M.; Yang, K.; Kuraguchi, M.; Zhao, J.; Lia, M.; Heyer, J.; Kane, M.F.; Fan, K.; Russell, R.; Brown, A.M.C.; et al. Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression. Proc. Natl. Acad. Sci. USA 2002, 99, 9924–9929. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; He, L.; Wu, H.; Pan, F.; Wu, X.; Zhao, J.; Hu, Z.; Sekhar, C.; Li, H.; Zheng, L.; et al. The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene 2016, 36, 194–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, J.S.; Seligson, D.B.; Yu, H.; Li, A.; Eeva, M.; Pantuck, A.J.; Zeng, G.; Horvath, S.; Belldegrun, A.S. Flap endonuclease 1 is overexpressed in prostate cancer and is associated with a high Gleason score. Br. J. Urol. 2006, 98, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, T.; Christmann, M.; Kaina, B. FEN1 is overexpressed in testis, lung and brain tumors. Anticancer Res. 2009, 29, 2453–2459. [Google Scholar] [PubMed]
- Sato, M.; Girard, L.; Sekine, I.; Sunaga, N.; Ramirez, R.D.; Kamibayashi, C.; Minna, J.D. Increased expression and no mutation of the Flap endonuclease (FEN1) gene in human lung cancer. Oncogene 2003, 22, 7243–7246. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Xie, C.; Chen, D. Flap endonuclease 1 is a promising candidate biomarker in gastric cancer and is involved in cell proliferation and apoptosis. Int. J. Mol. Med. 2014, 33, 1268–1274. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Yang, M.; Dai, H.; Yu, D.; Huang, Q.; Tan, W.; Kernstine, K.H.; Lin, D.; Shen, B. Overexpression and hypomethylation of Flap Endonuclease 1 gene in breast and other cancers. Mol. Cancer Res. 2008, 6, 1710–1717. [Google Scholar] [CrossRef]
- Abdel-Fatah, T.M.; Russell, R.; Albarakati, N.; Maloney, D.J.; Dorjsuren, D.; Rueda, O.M.; Moseley, P.; Mohan, V.; Sun, H.; Abbotts, R.; et al. Genomic and protein expression analysis reveals flap endonuclease 1 (FEN1) as a key biomarker in breast and ovarian cancer. Mol. Oncol. 2014, 8, 1326–1338. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, C.; Zhou, L.; Peng, L.; Li, D.; Zhang, X.; Zhou, M.; Kuang, P.; Yuan, Q.; Song, X.; et al. Functional FEN1 genetic variants contribute to risk of hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer. Carcinogenesis 2011, 33, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-D.; Zhang, X.; Qiu, X.-G.; Li, J.; Yuan, Q.; Jiang, T.; Yang, M. Functional FEN1 genetic variants and haplotypes are associated with glioma risk. J. Neuro-Oncol. 2012, 111, 145–151. [Google Scholar] [CrossRef]
- Lv, Z.; Liu, W.; Li, D.; Liu, L.; Wei, J.; Zhang, J.; Ge, Y.; Wang, Z.; Chen, H.; Zhou, C.; et al. Association of functional FEN1 genetic variants and haplotypes and breast cancer risk. Gene 2014, 538, 42–45. [Google Scholar] [CrossRef]
- Ren, H.; Ma, H.; Ke, Y.; Ma, X.; Xu, D.; Lin, S.; Wang, X.; Dai, Z.-J. Flap endonuclease 1 polymorphisms (rs174538 and rs4246215) contribute to an increased cancer risk: Evidence from a meta-analysis. Mol. Clin. Oncol. 2015, 3, 1347–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, X.; Wu, Y.; Zhou, L.; He, J.; Yang, C.; Zhang, P.; Hu, R.; Luo, C.; Du, J.; Fu, J.; et al. Variants and haplotypes in Flap endonuclease 1 and risk of gallbladder cancer and gallstones: A population-based study in China. Sci. Rep. 2015, 5, 18160. [Google Scholar] [CrossRef] [Green Version]
- Pei, J.S.; Chang, W.S.; Hsu, P.C.; Tsai, C.W.; Hsu, C.M.; Ji, H.X.; Hsiao, C.L.; Hsu, Y.N.; Bau, D.T. The association of flap endonuclease 1 genotypes with the risk of childhood leukemia. Cancer Genom. Proteomics. 2016, 13, 69–74. [Google Scholar]
- Rezaei, M.; Hashemi, M.; Sanaei, S.; Mashhadi, M.A.; Hashemi, S.M.; Bahari, G.; Taheri, M. FEN1 −69G>A and +4150G>T polymorphisms and breast cancer risk. Biomed. Rep. 2016, 5, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.; Wang, M.; Liu, X.; Lu, Y.; Gong, Z.; Guo, Y.; Yang, P.; Tian, T.; Dai, C.; Zheng, Y.; et al. FEN1 gene variants confer reduced risk of breast cancer in Chinese women: A case-control study. Oncotarget 2016, 7, 78110–78118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sang, Y.; Bo, L.; Gu, H.; Yang, W.; Chen, Y. Flap endonuclease-1 rs174538 G>A polymorphisms are associated with the risk of esophageal cancer in a Chinese population. Thorac. Cancer 2017, 8, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Krupa, R.; Czarny, P.; Wigner, P.; Wozny, J.; Jablkowski, M.; Kordek, R.; Szemraj, J.; Sliwinski, T. The relationship between single-nucleotide polymorphisms, the expression of DNA damage response genes, and hepatocellular carcinoma in a Polish population. DNA Cell Biol. 2017, 36, 693–708. [Google Scholar] [CrossRef]
- Moazeni-Roodi, A.; Ghavami, S.; Ansari, H.; Hashemi, M. Association between the flap endonuclease 1 gene polymorphisms and cancer susceptibility: An updated meta-analysis. J. Cell. Biochem. 2019, 120, 13583–13597. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, Z.; Chen, S.; Liang, Z.; Zhu, J.; Zhao, M.; Xu, C.; He, J.; Duan, P.; Zhang, A. The association of polymorphisms in base excision repair genes with ovarian cancer susceptibility in Chinese women: A two-center case-control study. J. Cancer 2021, 12, 264–269. [Google Scholar] [CrossRef]
- Yang, M.; Guo, H.; Wu, C.; He, Y.; Yu, D.; Zhou, L.; Wang, F.; Xu, J.; Tan, W.; Wang, G.; et al. FunctionalFEN1polymorphisms are associated with DNA damage levels and lung cancer risk. Hum. Mutat. 2009, 30, 1320–1328. [Google Scholar] [CrossRef]
- Ying, N.; Wang, S.; Xu, H.; Wang, Y. Association between FEN1 Polymorphisms -69G>A and 4150G>T with Susceptibility in Human Disease: A Meta-Analysis. Iran. J. Public Health 2015, 44, 1574–1579. [Google Scholar] [PubMed]
- Reginato, G.; Cejka, P. The MRE11 complex: A versatile toolkit for the repair of broken DNA. DNA Repair 2020, 91–92, 102869. [Google Scholar] [CrossRef] [PubMed]
- Damiola, F.; Pertesi, M.; Oliver, J.; Le Calvez-Kelm, F.; Voegele, C.; Young, E.L.; Robinot, N.; Forey, N.; Durand, G.; Vallée, M.P.; et al. Rare key functional domain missense substitutions in MRE11A, RAD50, and NBN contribute to breast cancer susceptibility: Results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res. 2014, 16, R58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.; Beikzadeh, M.; Latham, M.P. Biochemical and structural characterization of analogs of MRE11 breast cancer-associated mutant F237C. Sci. Rep. 2021, 11, 7089. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Scorah, J.; Phear, G.; Rodgers, G.; Rodgers, S.; Meuth, M. A Mutant allele of MRE11 found in mismatch repair-deficient tumor cells suppresses the cellular response to DNA replication fork stress in a dominant negative manner. Mol. Biol. Cell 2008, 19, 1693–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannini, G.; Rinaldi, C.; Ristori, E.; Ambrosini, M.I.; Cerignoli, F.; Viel, A.; Bidoli, E.; Berni, S.; D’Amati, G.; Scambia, G.; et al. Mutations of an intronic repeat induce impaired MRE11 expression in primary human cancer with microsatellite instability. Oncogene 2004, 23, 2640–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, S.; Beikzadeh, M.; Canny, M.D.; Kaur, N.; Latham, M.P. Mutation of conserved mre11 residues alter protein dynamics to separate nuclease functions. J. Mol. Biol. 2020, 432, 3289–3308. [Google Scholar] [CrossRef]
- Choudhury, A.; Nelson, L.D.; Teo, M.T.; Chilka, S.; Bhattarai, S.; Johnston, C.F.; Elliott, F.; Lowery, J.; Taylor, C.F.; Churchman, M.; et al. MRE11 Expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer. Cancer Res. 2010, 70, 7017–7026. [Google Scholar] [CrossRef] [Green Version]
- Mummenbrauer, T.; Janus, F.; Müller, B.; Wiesmüller, L.; Deppert, W.; Grosse, F. p53 Protein exhibits 3′-to-5′ exonuclease activity. Cell 1996, 85, 1089–1099. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Poyurovsky, M.V.; Baptiste, N.; Beckerman, R.; Cain, C.; Mattia, M.; McKinney, K.; Zhou, J.; Zupnick, A.; Gottifredi, V.; et al. Dissection of the sequence-specific DNA binding and exonuclease activities reveals a superactive yet apoptotically impaired mutant p53 protein. Cell Cycle 2009, 8, 1603–1615. [Google Scholar] [CrossRef]
- Ho, T.; Tan, B.X.; Lane, D. How the other half lives: What p53 does when it is not being a transcription factor. Int. J. Mol. Sci. 2019, 21, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumakov, P.M. Versatile functions of p53 protein in multicellular organisms. Biochemistry 2007, 72, 1399–1421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janus, F.; Albrechtsen, N.; Knippschild, U.; Wiesmüller, L.; Grosse, F.; Deppert, W. Different regulation of the p53 core domain activities 3′-to-5′ exonuclease and sequence-specific DNA binding. Mol. Cell. Biol. 1999, 19, 2155–2168. [Google Scholar] [CrossRef] [Green Version]
- Gila, L.; Elena, N.; Yechezkel, S.; Mary, B. p53-associated 3′–>5′ exonuclease activity in nuclear and cytoplasmic compartments of cells. Oncogene 2003, 22, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Janus, F.; Albrechtsen, N.; Dornreiter, I.; Wiesmuller, L.; Grosse, F.; Deppert, W. The dual role model for p53 in maintaining genomic integrity. Cell Mol. Life Sci. 1999, 55, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Schmale, H.; Bamberger, C. A novel protein with strong homology to the tumor suppressor p53. Oncogene 1997, 15, 1363–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhanashvili, M.; Gedelovich, R.; Grinberg, S.; Rahav, G. Exonucleolytic degradation of RNA by p53 protein in cytoplasm. Klin. Wochenschr. 2007, 86, 75–88. [Google Scholar] [CrossRef]
- Grinberg, S.; Teiblum, G.; Rahav, G.; Bakhanashvili, M. p53 in cytoplasm exerts 3′→5′ exonuclease activity with dsRNA. Cell Cycle 2010, 9, 2442–2455. [Google Scholar] [CrossRef]
- Jenkins, G.M.; Frohman, M.A. Phospholipase D: A lipid centric review. Cell Mol. Life Sci. 2005, 62, 2305–2316. [Google Scholar] [CrossRef]
- Brown, H.A.; Thomas, P.G.; Lindsley, C.W. Targeting phospholipase D in cancer, infection and neurodegenerative disorders. Nat. Rev. Drug Discov. 2017, 16, 351–367. [Google Scholar] [CrossRef]
- Akizuki, S.; Ishigaki, K.; Kochi, Y.; Law, S.-M.; Matsuo, K.; Ohmura, K.; Suzuki, A.; Nakayama, M.; Iizuka, Y.; Koseki, H.; et al. PLD4 is a genetic determinant to systemic lupus erythematosus and involved in murine autoimmune phenotypes. Ann. Rheum. Dis. 2019, 78, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Cruchaga, C.; Karch, C.M.; Jin, S.C.; Benitez, B.A.; Cai, Y.; Guerreiro, R.; Harari, O.; Norton, J.; Budde, J.; Bertelsen, S.; et al. Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer’s disease. Nature 2014, 505, 550–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Li, X.; Shen, S.; Wu, X. Expression of immune-related genes as prognostic biomarkers for the assessment of osteosarcoma clinical outcomes. Sci. Rep. 2021, 11, 24123. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Ru, J.; Liu, T.; Ma, C. Identification of a novel prognostic gene signature from the immune cell infiltration landscape of osteosarcoma. Front. Cell Dev. Biol. 2021, 9, 2394. [Google Scholar] [CrossRef]
- Zhou, D.; Wu, Y.; Jiang, K.; Xu, F.; Hong, R.; Wang, S. Identification of a risk prediction model for clinical prognosis in HER2 positive breast cancer patients. Genomics 2021, 113, 4088–4097. [Google Scholar] [CrossRef]
- Gao, L.; Zhou, Y.; Zhou, S.-X.; Yu, X.-J.; Xu, J.-M.; Zuo, L.; Luo, Y.-H.; Li, X.-A. PLD4 promotes M1 macrophages to perform antitumor effects in colon cancer cells. Oncol. Rep. 2016, 37, 408–416. [Google Scholar] [CrossRef] [Green Version]
- Goldsby, R.E.; Hays, L.E.; Chen, X.; Olmsted, E.A.; Slayton, W.B.; Spangrude, G.J.; Preston, B.D. High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading. Proc. Natl. Acad. Sci. USA 2002, 99, 15560–15565. [Google Scholar] [CrossRef] [Green Version]
- Park, V.S.; Pursell, Z.F. POLE proofreading defects: Contributions to mutagenesis and cancer. DNA Repair 2019, 76, 50–59. [Google Scholar] [CrossRef]
- Magrin, L.; Fanale, D.; Brando, C.; Fiorino, A.; Corsini, L.R.; Sciacchitano, R.; Filorizzo, C.; Dimino, A.; Russo, A.; Bazan, V. POLE, POLD1, and NTHL1: The last but not the least hereditary cancer-predisposing genes. Oncogene 2021, 40, 5893–5901. [Google Scholar] [CrossRef]
- Mur, P.; Ms, S.G.-M.; del Valle, J.; Ms, L.M.-P.; Vidal, A.; Pineda, M.; Cinnirella, G.; Ms, E.M.-R.; Pons, T.; López-Doriga, A.; et al. Role of POLE and POLD1 in familial cancer. Genet. Med. 2020, 22, 2089–2100. [Google Scholar] [CrossRef]
- Broustas, C.G.; Lieberman, H.B. Contributions of Rad9 to tumorigenesis. J. Cell. Biochem. 2011, 113, 742–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roos-Mattjus, P.; Hopkins, K.M.; Oestreich, A.J.; Vroman, B.T.; Johnson, K.L.; Naylor, S.; Lieberman, H.B.; Karnitz, L.M. Phosphorylation of human Rad9 is required for genotoxin-activated checkpoint signaling. J. Biol. Chem. 2003, 278, 24428–24437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maniwa, Y.; Yoshimura, M.; Bermudez, V.P.; Yuki, T.; Okada, K.; Kanomata, N.; Ohbayashi, C.; Hayashi, Y.; Hurwitz, J.; Okita, Y. Accumulation of hRad9 protein in the nuclei of nonsmall cell lung carcinoma cells. Cancer 2004, 103, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Maniwa, Y.; Yuki, T.; Doi, T.; Okada, K.; Nishio, W.; Hayashi, Y.; Okita, Y. DNA damage sensor protein hRad9, a novel molecular target for lung cancer treatment. Oncol. Rep. 1994, 20, 1047–1052. [Google Scholar] [CrossRef]
- Kebebew, E.; Peng, M.; Reiff, E.; Duh, Q.-Y.; Clark, O.H.; McMillan, A. Diagnostic and prognostic value of cell-cycle regulatory genes in malignant thyroid neoplasms. World J. Surg. 2006, 30, 767–774. [Google Scholar] [CrossRef]
- Zhu, A.; Zhang, C.X.; Lieberman, H.B. Rad9 has a functional role in human prostate carcinogenesis. Cancer Res. 2008, 68, 1267–1274. [Google Scholar] [CrossRef] [Green Version]
- Broustas, C.G.; Hopkins, K.M.; Panigrahi, S.K.; Wang, L.; Virk, R.K.; Lieberman, H.B. RAD9A promotes metastatic phenotypes through transcriptional regulation of anterior gradient 2 (AGR2). Carcinogenesis 2018, 40, 164–172. [Google Scholar] [CrossRef]
- Cheng, C.K.; Chow, L.W.; Loo, W.T.; Chan, T.K.; Chan, V. The cell cycle checkpoint gene rad9 is a novel oncogene activated by 11q13 amplification and dna methylation in breast cancer. Cancer Res. 2005, 65, 8646–8654. [Google Scholar] [CrossRef] [Green Version]
- Galetzka, D.; Boeck, J.; Dittrich, M.; Sinizyn, O.; Ludwig, M.; Rossmann, H.; Spix, C.; Radsak, M.; Scholz-Kreisel, P.; Mirsch, J.; et al. Schmidberger HHypermethylation of RAD9A intron 2 in childhood cancer patients, leukemia and tumor cell lines suggest a role for oncogenic transformation. EXCLI J 2022, 21, 117–143. [Google Scholar]
- Lee, H.S.; Cho, S.-B.; Lee, H.E.; Kim, M.A.; Kim, J.H.; Park, D.J.; Kim, J.H.; Yang, H.-K.; Lee, B.L.; Kim, W.H. Protein expression profiling and molecular classification of gastric cancer by the tissue array method. Clin. Cancer Res. 2007, 13, 4154–4163. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, K.M.; Auerbach, W.; Wang, X.Y.; Hande, M.P.; Hang, H.; Wolgemuth, D.J.; Joyner, A.L.; Lieberman, H.B. Deletion of mouse rad9 causes abnormal cellular responses to DNA damage, genomic instability, and embryonic lethality. Mol. Cell Biol. 2004, 24, 7235–7248. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Liu, Y.; Zhang, C.; Zhao, Y.; He, W.; Han, L.; Yang, L.; Hopkins, K.M.; Yang, X.; Lieberman, H.B.; et al. Targeted deletion of Rad9 in mouse skin keratinocytes enhances genotoxin-induced tumor development. Cancer Res. 2008, 68, 5552–5561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur, D.J.; Perrino, F.W. Structure and expression of the TREX1 and TREX2 3′–> 5′ exonuclease genes. J. Biol. Chem. 2001, 276, 14718–14727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höss, M.; Robins, P.; Naven, T.J.; Pappin, D.; Sgouros, J.; Lindahl, T. A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein. EMBO J. 1999, 18, 3868–3875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, W.; Mohr, L.; Maciejowski, J.; Kranzusch, P.J. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol. Cell 2021, 81, 739–755.e7. [Google Scholar] [CrossRef]
- Mohr, L.; Toufektchan, E.; von Morgen, P.; Chu, K.; Kapoor, A.; Maciejowski, J. ER-directed TREX1 limits cGAS activation at micronuclei. Mol. Cell 2021, 81, 724–738.e9. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Morrison, J.H.; Dingli, D.; Poeschla, E. HIV-1 Activation of innate immunity depends strongly on the intracellular level of TREX1 and sensing of incomplete reverse transcription products. J. Virol. 2018, 92, e00001-18. [Google Scholar] [CrossRef] [Green Version]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; DeMaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef]
- Hasan, M.; Gonugunta, V.K.; Dobbs, N.; Ali, A.; Palchik, G.; Calvaruso, M.A.; DeBerardinis, R.J.; Yan, N. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism. Proc. Natl. Acad. Sci. USA 2017, 114, 746–751. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Fermaintt, C.S.; Gao, N.; Sakai, T.; Miyazaki, T.; Jiang, S.; Li, Q.-Z.; Atkinson, J.P.; Morse, H.C.; Lehrman, M.A.; et al. Cytosolic nuclease TREX1 regulates Oligosaccharyl transferase activity independent of nuclease activity to suppress immune activation. Immunity 2015, 43, 463–474. [Google Scholar] [CrossRef] [Green Version]
- Lee-Kirsch, M.A.; Gong, M.; Chowdhury, D.; Senenko, L.; Engel, K.; Lee, Y.-A.; De Silva, U.; Bailey, S.L.; Witte, T.; Vyse, T.J.; et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 2007, 39, 1065–1067. [Google Scholar] [CrossRef] [PubMed]
- Crow, Y.J.; Hayward, B.E.; Parmar, R.; Robins, P.; Leitch, A.; Ali, M.; Black, D.N.; van Bokhoven, H.; Brunner, H.G.; Hamel, B.C.; et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus. Nat. Genet. 2006, 38, 917–920. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.R.; Hemphill, W.O.; Hudson, T.; Perrino, F.W. TREX1—Apex predator of cytosolic DNA metabolism. DNA Repair 2020, 94, 102894. [Google Scholar] [CrossRef]
- Yan, N. Immune diseases associated with TREX1 and STING dysfunction. J. Interf. Cytokine Res. 2017, 37, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Stamp, G.; Robins, P.; Dulic, A.; Rosewell, I.; Hrivnak, G.; Daly, G.; Lindahl, T.; Barnes, D.E. Gene-targeted mice lacking the Trex1 (DNase III) 3′-->5′ DNA exonuclease develop inflammatory myocarditis. Mol. Cell Biol. 2004, 24, 6719–6727. [Google Scholar] [CrossRef] [Green Version]
- Sakai, T.; Miyazaki, T.; Shin, D.-M.; Kim, Y.-S.; Qi, C.-F.; Fariss, R.; Munasinghe, J.; Wang, H.; Kovalchuk, A.L.; Kothari, P.H.; et al. DNase-active TREX1 frame-shift mutants induce serologic autoimmunity in mice. J. Autoimmun. 2017, 81, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Grieves, J.L.; Fye, J.M.; Harvey, S.; Grayson, J.M.; Hollis, T.; Perrino, F.W. Exonuclease TREX1 degrades double-stranded DNA to prevent spontaneous lupus-like inflammatory disease. Proc. Natl. Acad. Sci. USA 2015, 112, 5117–5122. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, T.; Kim, Y.S.; Yoon, J.; Wang, H.; Suzuki, T.; Morse, H.C. The 3′-5′ DNA exonuclease TREX1 directly interacts with poly(ADP-ribose) polymerase-1 (PARP1) during the DNA damage response. J. Biol. Chem. 2014, 289, 32548–32558. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-G.; Lindahl, T.; Barnes, D.E. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 2007, 131, 873–886. [Google Scholar] [CrossRef] [Green Version]
- Maciejowski, J.; Chatzipli, A.; Dananberg, A.; Chu, K.; Toufektchan, E.; Klimczak, L.J.; Gordenin, D.A.; Campbell, P.J.; De Lange, T. APOBEC3-dependent kataegis and TREX1-driven chromothripsis during telomere crisis. Nat. Genet. 2020, 52, 884–890. [Google Scholar] [CrossRef]
- Han, G.; Tian, Y.; Duan, B.; Sheng, H.; Gao, H.; Huang, J. Association of nuclear annexin A1 with prognosis of patients with esophageal squamous cell carcinoma. Int. J. Clin. Exp. Pathol. 2014, 7, 751–759. [Google Scholar] [PubMed]
- Prati, B.; Abjaude, W.D.S.; Termini, L.; Morale, M.; Herbster, S.; Longatto-Filho, A.; Nunes, R.A.L.; Camacho, L.C.C.; Rabelo-Santos, S.H.; Zeferino, L.C.; et al. Three prime repair exonuclease 1 (TREX1) expression correlates with cervical cancer cells growth in vitro and disease progression in vivo. Sci. Rep. 2019, 9, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomicic, M.T.; Aasland, D.; Nikolova, T.; Kaina, B.; Christmann, M. Human three prime exonuclease TREX1 is induced by genotoxic stress and involved in protection of glioma and melanoma cells to anticancer drugs. Biochim. Biophys. Acta 2013, 1833, 1832–1843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Lan, R.; Cai, G.; Lin, J. TREX1 suppression imparts cancer-stem-cell-like characteristics to CD133- osteosarcoma cells through the activation of E2F4 signaling. Int. J. Clin. Exp. Pathol. 2019, 12, 1134–1153. [Google Scholar]
- Erdal, E.; Haider, S.; Rehwinkel, J.; Harris, A.L.; McHugh, P.J. A prosurvival DNA damage-induced cytoplasmic interferon response is mediated by end resection factors and is limited by Trex1. Genes Dev. 2017, 31, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Nader, G.P.D.F.; Agüera-Gonzalez, S.; Routet, F.; Gratia, M.; Maurin, M.; Cancila, V.; Cadart, C.; Palamidessi, A.; Ramos, R.N.; Roman, M.S.; et al. Compromised nuclear envelope integrity drives TREX1-dependent DNA damage and tumor cell invasion. Cell 2021, 184, 5230–5246.e22. [Google Scholar] [CrossRef]
- Garcia, F.A.d.O.; de Andrade, E.S.; Galvão, H.D.C.R.; Sábato, C.D.S.; Campacci, N.; de Paula, A.E.; Evangelista, A.F.; Santana, I.V.V.; Melendez, M.E.; Reis, R.M.; et al. New insights on familial colorectal cancer type X syndrome. Sci. Rep. 2022, 12, 2846. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Formenti, S.C.; DeMaria, S. TREX1 dictates the immune fate of irradiated cancer cells. OncoImmunology 2017, 6, e1339857. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Xiong, Q.; Xia, H.; Liu, W.; Dai, S.; Cai, S.; Yan, X. Carboplatin activates the cGAS-STING pathway by upregulating the TREX-1 (three prime repair exonuclease 1) expression in human melanoma. Bioengineered 2021, 12, 6448–6458. [Google Scholar] [CrossRef]
- Wang, C.-J.; Lam, W.; Bussom, S.; Chang, H.-M.; Cheng, Y.-C. TREX1 acts in degrading damaged DNA from drug-treated tumor cells. DNA Repair 2009, 8, 1179–1189. [Google Scholar] [CrossRef] [Green Version]
- Hemphill, W.O.; Simpson, S.R.; Liu, M.; Salsbury, F.R.J.; Hollis, T.; Grayson, J.M.; Perrino, F.W. TREX1 as a novel immunotherapeutic target. Front. Immunol. 2021, 12, 660184. [Google Scholar] [CrossRef] [PubMed]
- Mazur, D.J.; Perrino, F.W. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′-–>5′ exonucleases. J. Biol. Chem. 1999, 274, 19655–19660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parra, D.; Manils, J.; Castellana, B.; Viña-Vilaseca, A.; Morán-Salvador, E.; Vázquez-Villoldo, N.; Tarancón, G.; Borràs, M.; Sancho, S.; Benito, C.; et al. Increased susceptibility to skin carcinogenesis in TREX2 knockout mice. Cancer Res. 2009, 69, 6676–6684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrino, F.W.; Harvey, S.; McMillin, S.; Hollis, T. The human TREX2 3′–>5′-exonuclease structure suggests a mechanism for efficient nonprocessive DNA catalysis. J. Biol. Chem. 2005, 280, 15212–15218. [Google Scholar] [CrossRef] [Green Version]
- Manils, J.; Casas, E.; Viña-Vilaseca, A.; López-Cano, M.; Díez-Villanueva, A.; Gómez, D.; Marruecos, L.; Ferran, M.; Benito, C.; Perrino, F.W.; et al. The exonuclease Trex2 shapes psoriatic phenotype. J. Investig. Dermatol. 2016, 136, 2345–2355. [Google Scholar] [CrossRef] [Green Version]
- Manils, J.; Fischer, H.; Climent, J.; Casas, E.; García-Martínez, C.; Bas, J.; Sukseree, S.; Vavouri, T.; Ciruela, F.; de Anta, J.M.; et al. Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying keratinocytes without activating inflammatory responses. Sci. Rep. 2017, 7, 11902. [Google Scholar] [CrossRef] [Green Version]
- Weiss, T.; Wang, C.; Kang, X.; Zhao, H.; Gamo, M.E.; Starker, C.G.; Crisp, P.A.; Zhou, P.; Springer, N.M.; Voytas, D.F.; et al. Optimization of multiplexed CRISPR/Cas9 system for highly efficient genome editing in Setaria viridis. Plant J. 2020, 104, 828–838. [Google Scholar] [CrossRef]
- Chari, R.; Mali, P.; Moosburner, M.; Church, G.M. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods 2015, 12, 823–826. [Google Scholar] [CrossRef] [Green Version]
- Bothmer, A.; Phadke, T.; Barrera, L.A.; Margulies, C.M.; Lee, C.S.; Buquicchio, F.; Moss, S.; Abdulkerim, H.S.; Selleck, W.; Jayaram, H.; et al. Characterization of the interplay between DNA repair and CRISPR/Cas9-induced DNA lesions at an endogenous locus. Nat. Commun. 2017, 8, 13905. [Google Scholar] [CrossRef]
- Yin, J.; Lu, R.; Xin, C.; Wang, Y.; Ling, X.; Li, D.; Zhang, W.; Liu, M.; Xie, W.; Kong, L.; et al. Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nat. Commun. 2022, 13, 1204. [Google Scholar] [CrossRef]
- Dumitrache, L.C.; Hu, L.; Hasty, P. TREX2 exonuclease defective cells exhibit double-strand breaks and chromosomal fragments but not Robertsonian translocations. Mutat. Res. Mol. Mech. Mutagen. 2009, 662, 84–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.-J.; Dumitrache, L.C.; Wangsa, D.; Ma, S.-M.; Padilla-Nash, H.; Ried, T.; Hasty, P. Cisplatin depletes TREX2 and causes Robertsonian translocations as seen in TREX2 knockout cells. Cancer Res. 2007, 67, 9077–9083. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.H.; Son, M.Y.; Zhou, Q.; Molnarova, L.; Song, L.; Mlcouskova, J.; Jekabsons, A.; Montagna, C.; Krejci, L.; Hasty, P. TREX2 Exonuclease causes spontaneous mutations and stress-induced replication fork defects in cells expressing RAD51K133A. Cell Rep. 2020, 33, 108543. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Kim, T.M.; Son, M.Y.; Kim, S.-A.; Holland, C.L.; Tateishi, S.; Kim, N.H.; Yew, P.R.; Montagna, C.; Dumitrache, L.C.; et al. Two replication fork maintenance pathways fuse inverted repeats to rearrange chromosomes. Nature 2013, 501, 569–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigel, C.; Chaisaingmongkol, J.; Assenov, Y.; Kuhmann, C.; Winkler, V.; Santi, I.; Bogatyrova, O.; Kaucher, S.; Bermejo, J.L.; Leung, S.Y.; et al. DNA methylation at an enhancer of the three prime repair exonuclease 2 gene (TREX2) is linked to gene expression and survival in laryngeal cancer. Clin. Epigenetics 2019, 11, 67. [Google Scholar] [CrossRef]
- Song, D.; Zhang, D.; Chen, S.; Wu, J.; Hao, Q.; Zhao, L.; Ren, H.; Du, N. Identification and validation of prognosis-associated DNA repair gene signatures in colorectal cancer. Sci. Rep. 2022, 12, 6946. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Sinha, D.; Bhattacharya, S.; Srinivasan, K.; Abdisalaam, S.; Asaithamby, A. Werner syndrome protein and DNA replication. Int. J. Mol. Sci. 2018, 19, 3442. [Google Scholar] [CrossRef] [Green Version]
- Savva, C.; Sadiq, M.; Sheikh, O.; Karim, S.; Trivedi, S.; Green, A.R.; Rakha, E.A.; Madhusudan, S.; Arora, A. Werner syndrome protein expression in breast cancer. Clin. Breast Cancer 2020, 21, 57–73.e7. [Google Scholar] [CrossRef]
- Agrelo, R.; Cheng, W.-H.; Setien, F.; Ropero, S.; Espada, J.; Fraga, M.F.; Herranz, M.; Paz, M.F.; Sanchez-Cespedes, M.; Artiga, M.J.; et al. Epigenetic inactivation of the premature aging Werner syndrome gene in human cancer. Proc. Natl. Acad. Sci. USA 2006, 103, 8822–8827. [Google Scholar] [CrossRef] [Green Version]
- Chughtai, S.A.; Crundwell, M.C.; Cruickshank, N.R.; Affie, E.; Armstrong, S.; Knowles, M.A.; Takle, L.A.; Kuo, M.; Khan, N.; Phillips, S.M.; et al. Two novel regions of interstitial deletion on chromosome 8p in colorectal cancer. Oncogene 1999, 18, 657–665. [Google Scholar] [CrossRef] [Green Version]
- Armes, J.E.; Hammet, F.; de Silva, M.; Ciciulla, J.; Ramus, S.J.; Soo, W.-K.; Mahoney, A.; Yarovaya, N.; Henderson, M.A.; Gish, K.; et al. Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers. Oncogene 2004, 23, 5697–5702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prorok, P.; Grin, I.; Matkarimov, B.; Ishchenko, A.; Laval, J.; Zharkov, D.; Saparbaev, M. Evolutionary origins of dna repair pathways: Role of oxygen catastrophe in the emergence of DNA glycosylases. Cells 2021, 10, 1591. [Google Scholar] [CrossRef] [PubMed]
- Friedberg, E.C.; McDaniel, L.D.; Schultz, R.A. The role of endogenous and exogenous DNA damage and mutagenesis. Curr. Opin. Genet. Dev. 2004, 14, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Guzmán, L. Pan-cancer analysis of non-oncogene addiction to DNA repair. Sci. Rep. 2021, 11, 23264. [Google Scholar] [CrossRef] [PubMed]
- Balian, A.; Hernandez, F.J. Nucleases as molecular targets for cancer diagnosis. Biomark. Res. 2021, 9, 86. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manils, J.; Marruecos, L.; Soler, C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells 2022, 11, 2157. https://doi.org/10.3390/cells11142157
Manils J, Marruecos L, Soler C. Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells. 2022; 11(14):2157. https://doi.org/10.3390/cells11142157
Chicago/Turabian StyleManils, Joan, Laura Marruecos, and Concepció Soler. 2022. "Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer" Cells 11, no. 14: 2157. https://doi.org/10.3390/cells11142157
APA StyleManils, J., Marruecos, L., & Soler, C. (2022). Exonucleases: Degrading DNA to Deal with Genome Damage, Cell Death, Inflammation and Cancer. Cells, 11(14), 2157. https://doi.org/10.3390/cells11142157