Regulation of N6-Methyladenosine after Myocardial Infarction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture Experiments
2.2. Rat Experiments
2.3. Human Samples
2.4. Total RNA Extraction
2.5. RNA Preparation for m6A LC-MS Measurement
2.6. m6A RNA Methylation Quantification Assay (Colorimetric ELISA)
2.7. Reverse-Transcription and Quantitative Polymerase Chain Reaction (RT-qPCR)
2.8. FTO Protein Quantification by Western Blot
2.9. Statistical Analysis
3. Results
3.1. Validation of the Measurement of m6A by LC-MS
3.2. Regulation of m6A Levels and FTO Expression after Coronary Ligation in Rats
3.3. Association between m6A Levels in Blood of Patients after MI and Cardiac Dysfunction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Timmis, A.; Townsend, N.; Gale, C.P.; Torbica, A.; Lettino, M.; Petersen, S.E.; Mossialos, E.A.; Maggioni, A.P.; Kazakiewicz, D.; May, H.T.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2019. Eur. Heart J. 2020, 41, 12–85. [Google Scholar] [CrossRef] [PubMed]
- Jenca, D.; Melenovsky, V.; Stehlik, J.; Stanek, V.; Kettner, J.; Kautzner, J.; Adamkova, V.; Wohlfahrt, P. Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 2021, 8, 222–237. [Google Scholar] [CrossRef] [PubMed]
- Goretti, E.; Wagner, D.R.; Devaux, Y. miRNAs as biomarkers of myocardial infarction: A step forward towards personalized medicine? Trends Mol. Med. 2014, 20, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Talwar, S.; Squire, I.B.; Downie, P.F.; McCullough, A.M.; Campton, M.C.; Davies, J.E.; Barnett, D.B.; Ng, L.L. Profile of plasma N-terminal proBNP following acute myocardial infarction; correlation with left ventricular systolic dysfunction. Eur. Heart J. 2000, 21, 1514–1521. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Dominissini, D.; Rechavi, G.; He, C. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat. Rev. Genet. 2014, 15, 293–306. [Google Scholar] [CrossRef]
- Frye, M.; Harada, B.T.; Behm, M.; He, C. RNA modifications modulate gene expression during development. Science 2018, 361, 1346–1349. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Li, M.; Yu, T.; Liu, G.; Wang, J. Reversible N6-methyladenosine of RNA: The regulatory mechanisms on gene expression and implications in physiology and pathology. Genes Dis. 2020, 7, 585–597. [Google Scholar] [CrossRef]
- van der Kwast, R.; Quax, P.H.A.; Nossent, A.Y. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells 2019, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Su, R.; Weng, H.; Huang, H.; Li, Z.; Chen, J. RNA N(6)-methyladenosine modification in cancers: Current status and perspectives. Cell Res. 2018, 28, 507–517. [Google Scholar] [CrossRef]
- Lan, Q.; Liu, P.Y.; Haase, J.; Bell, J.L.; Huttelmaier, S.; Liu, T. The Critical Role of RNA m(6)A Methylation in Cancer. Cancer Res. 2019, 79, 1285–1292. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yu, C.; Guo, M.; Zheng, X.; Ali, S.; Huang, H.; Zhang, L.; Wang, S.; Huang, Y.; Qie, S.; et al. Down-regulation of m6A mRNA methylation is involved in dopaminergic neuronal death. ACS Chem. Neurosci. 2019, 10, 2355–2363. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Liu, Z.; Xu, Y.; Liu, X.; Wang, D.; Li, F.; Wang, Y.; Bi, J. Abnormality of m6A mRNA Methylation Is Involved in Alzheimer’s Disease. Front. Neurosci. 2020, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Wang, C.; Chang, J.; Huang, Y.; Xue, Q.; Miao, C.; Wu, P. RNA Methylations in Cardiovascular Diseases, Molecular Structure, Biological Functions and Regulatory Roles in Cardiovascular Diseases. Front. Pharmacol. 2021, 12, 722728. [Google Scholar] [CrossRef]
- Devaux, Y.; Nossent, A.Y.; EU-CardioRNA COST Action CA17129. A role for m6A RNA methylation in heart failure development? Eur. J. Heart Fail. 2020, 22, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Dorn, L.E.; Tual-Chalot, S.; Stellos, K.; Accornero, F. RNA epigenetics and cardiovascular diseases. J. Mol. Cell Cardiol. 2019, 129, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, R.; Friderici, K.; Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA 1974, 71, 3971–3975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweaad, W.K.; Stefanizzi, F.M.; Chamorro-Jorganes, A.; Devaux, Y.; Emanueli, C.; EU-CardioRNA COST Action CA17129. Relevance of N6-methyladenosine regulators for transcriptome: Implications for development and the cardiovascular system. J. Mol. Cell Cardiol. 2021, 160, 56–70. [Google Scholar] [CrossRef]
- Huang, H.; Weng, H.; Chen, J. m(6)A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell 2020, 37, 270–288. [Google Scholar] [CrossRef]
- Zhang, C.; Samanta, D.; Lu, H.; Bullen, J.W.; Zhang, H.; Chen, I.; He, X.; Semenza, G.L. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc. Natl. Acad. Sci. USA 2016, 113, E2047–E2056. [Google Scholar] [CrossRef] [Green Version]
- Mathlin, J.; Le Pera, L.; Colombo, T. A Census and Categorization Method of Epitranscriptomic Marks. Int. J. Mol. Sci. 2020, 21, 4684. [Google Scholar] [CrossRef]
- He, P.C.; He, C. m(6)A RNA methylation: From mechanisms to therapeutic potential. EMBO J. 2021, 40, e105977. [Google Scholar] [CrossRef] [PubMed]
- Berulava, T.; Buchholz, E.; Elerdashvili, V.; Pena, T.; Islam, M.R.; Lbik, D.; Mohamed, B.A.; Renner, A.; von Lewinski, D.; Sacherer, M.; et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail. 2020, 22, 54–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinger, S.A.; Wei, J.; Dorn, L.E.; Whitson, B.A.; Janssen, P.M.L.; He, C.; Accornero, F. Remodeling of the m(6)A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J. Mol. Cell Cardiol. 2021, 151, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Mathiyalagan, P.; Adamiak, M.; Mayourian, J.; Sassi, Y.; Liang, Y.; Agarwal, N.; Jha, D.; Zhang, S.; Kohlbrenner, E.; Chepurko, E.; et al. FTO-Dependent N(6)-Methyladenosine Regulates Cardiac Function During Remodeling and Repair. Circulation 2019, 139, 518–532. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Cao, Y.; Zhang, X.; Gu, C.; Liang, F.; Xue, J.; Ni, H.W.; Wang, Z.; Li, Y.; Wang, X.; et al. Comprehensive Analysis of N6-Methyladenosine RNA Methylation Regulators Expression Identify Distinct Molecular Subtypes of Myocardial Infarction. Front. Cell Dev. Biol. 2021, 9, 756483. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Y.; Cui, X.; Jiang, H.; Luo, W.; Weng, X.; Wang, Y.; Zhao, Y.; Sun, A.; Ge, J. Alteration of m6A RNA Methylation in Heart Failure with Preserved Ejection Fraction. Front. Cardiovasc. Med. 2021, 8, 647806. [Google Scholar] [CrossRef]
- Paterek, A.; Kepska, M.; Kolodziejczyk, J.; Leszek, P.; Mackiewicz, U.; Maczewski, M. Acute Heart Rate-Dependent Hemodynamic Function of the Heart in the Post-Myocardial Infarction Rat Model: Change Over Time. Can. J. Cardiol. 2018, 34, 1341–1349. [Google Scholar] [CrossRef]
- Paterek, A.; Kepska, M.; Sochanowicz, B.; Chajduk, E.; Kolodziejczyk, J.; Polkowska-Motrenko, H.; Kruszewski, M.; Leszek, P.; Mackiewicz, U.; Maczewski, M. Beneficial effects of intravenous iron therapy in a rat model of heart failure with preserved systemic iron status but depleted intracellular cardiac stores. Sci. Rep. 2018, 8, 15758. [Google Scholar] [CrossRef]
- Wagner, D.R.; Devaux, Y.; Collignon, O. Door-to-Balloon Time and Mortality. N. Engl. J. Med. 2014, 370, 178–182. [Google Scholar] [CrossRef]
- Uchida, S.; Hara, K.; Kobayashi, A.; Funato, H.; Hobara, T.; Otsuki, K.; Yamagata, H.; McEwen, B.S.; Watanabe, Y. Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J. Neurosci. 2010, 30, 15007–15018. [Google Scholar] [CrossRef]
- Paramasivam, A.; Priyadharsini, J.V. m6A RNA methylation in heart development, regeneration and disease. Hypertens. Res. 2021, 44, 1236–1237. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P.K.; Patil, M.; Singh, S.; Dubey, S.; Ahuja, P.; Verma, S.K.; Krishnamurthy, P. Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol. Cell Biochem. 2021, 477, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Ju, W.; Liu, K.; Ouyang, S.; Liu, Z.; He, F.; Wu, J. Changes in N6-Methyladenosine Modification Modulate Diabetic Cardiomyopathy by Reducing Myocardial Fibrosis and Myocyte Hypertrophy. Front. Cell Dev. Biol. 2021, 9, 702579. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Li, H.; Su, H.; Chen, K.; Yan, J. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol. Cell Biochem. 2021, 476, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Wiener, D.; Schwartz, S. The epitranscriptome beyond m(6)A. Nat. Rev. Genet. 2021, 22, 119–131. [Google Scholar] [CrossRef]
- Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Pan, T.; Yang, Y.G.; et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 2011, 7, 885–887. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X.; Huang, M.; Liu, J.; Gu, Y.; Ma, L.; Zhou, Q.; Cao, X. Mettl3-mediated mRNA m(6)A methylation promotes dendritic cell activation. Nat. Commun. 2019, 10, 1898. [Google Scholar] [CrossRef] [Green Version]
- Alarcon, C.R.; Lee, H.; Goodarzi, H.; Halberg, N.; Tavazoie, S.F. N6-methyladenosine marks primary microRNAs for processing. Nature 2015, 519, 482–485. [Google Scholar] [CrossRef]
- van den Homberg, D.A.L.; van der Kwast, R.; Quax, P.H.A.; Nossent, A.Y. N-6-Methyladenosine in Vasoactive microRNAs during Hypoxia; A Novel Role for METTL4. Int. J. Mol. Sci. 2022, 23, 1057. [Google Scholar] [CrossRef]
- Ge, L.; Zhang, N.; Chen, Z.; Song, J.; Wu, Y.; Li, Z.; Chen, F.; Wu, J.; Li, D.; Li, J.; et al. Level of N6-Methyladenosine in Peripheral Blood RNA: A Novel Predictive Biomarker for Gastric Cancer. Clin. Chem. 2020, 66, 342–351. [Google Scholar] [CrossRef]
- Xie, J.; Huang, Z.; Jiang, P.; Wu, R.; Jiang, H.; Luo, C.; Hong, H.; Yin, H. Elevated N6-Methyladenosine RNA Levels in Peripheral Blood Immune Cells: A Novel Predictive Biomarker and Therapeutic Target for Colorectal Cancer. Front. Immunol. 2021, 12, 760747. [Google Scholar] [CrossRef] [PubMed]
- Kan, L.; Grozhik, A.V.; Vedanayagam, J.; Patil, D.P.; Pang, N.; Lim, K.S.; Huang, Y.C.; Joseph, B.; Lin, C.J.; Despic, V.; et al. The m(6)A pathway facilitates sex determination in Drosophila. Nat. Commun. 2017, 8, 15737. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, Z.; Zou, C.; Liang, S.; Zou, Y.; Liu, Y.; You, F. Sex-Dependent RNA Editing and N6-adenosine RNA Methylation Profiling in the Gonads of a Fish, the Olive Flounder (Paralichthys olivaceus). Front. Cell Dev. Biol. 2020, 8, 751. [Google Scholar] [CrossRef] [PubMed]
- Bundy, J.L.; Vied, C.; Nowakowski, R.S. Sex differences in the molecular signature of the developing mouse hippocampus. BMC Genom. 2017, 18, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Heart Failure EF ≤ 40% n = 6 | Preserved EF > 50% n = 6 | p-Value | |||
---|---|---|---|---|---|
Age, median (range), y | 69 | (56–78) | 67 | (50–84) | 0.896 |
Body mass index, median (range) | 28 | (22–31) | 28 | (24–38) | 0.499 |
Gender, male, n (%) | 3 | (50) | 3 | (50) | 1.000 |
Blood cell counts at admission, median (range) | |||||
White blood cells, ×109/L | 10.18 | (3.66–19.91) | 9.22 | (3.10–12.98) | 0.423 |
Neutrophiles, ×109/L | 7.99 | (1.86–16.66) | 6.77 | (2.43–8.63) | 0.818 |
Lymphocytes, ×109/L | 1.42 | (0.71–2.65) | 1.78 | (0.44–4.36) | 0.727 |
Monocytes, ×109/L | 0.44 | (0.33–1.29) | 0.73 | (0.16–1.00) | 0.855 |
Platelets, ×109/L | 297 | (161–474) | 250 | (169–304) | 0.429 |
Biomarkers at admission, median (range) | |||||
MMP9, ng/mL | 472 | (209–1237) | 298 | (149–547) | 0.240 |
TIMP1, ng/mL | 174 | (116–363) | 102 | (79–147) | 0.065 |
NT–proBNP, pg/mL | 502 | (17–1092) | 1683 | (94–6906) | 0.082 |
Biomarkers, peak values, median (range) | |||||
CPK, median, range, U/L | 4555 | (201–5456) | 441.5 | (201–2697) | 0.009 |
cTnT, median, range, µg/L | 11.17 | (2.7–24.3) | 1 405 | (0.43–8.11) | 0.026 |
hsCRP, mg/L | 14.7 | (2.3–71) | 6.9 | (1.2–199) | 0.421 |
Medical history, n (%) | |||||
Prior MI | 1 | (17) | 1 | (17) | 1.000 |
Diabetes | 2 | (33) | 2 | (33) | 1.000 |
Hypertension | 5 | (83) | 4 | (67) | 1.000 |
Hypercholesterolemia | 3 | (50) | 3 | (50) | 1.000 |
Tobacco | 3 | (50) | 2 | (33) | 1.000 |
Follow-up EF, median (range), % | 36 | (25–40) | 66 | (55–75) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vausort, M.; Niedolistek, M.; Lumley, A.I.; Oknińska, M.; Paterek, A.; Mączewski, M.; Dong, X.; Jäger, C.; Linster, C.L.; Leszek, P.; et al. Regulation of N6-Methyladenosine after Myocardial Infarction. Cells 2022, 11, 2271. https://doi.org/10.3390/cells11152271
Vausort M, Niedolistek M, Lumley AI, Oknińska M, Paterek A, Mączewski M, Dong X, Jäger C, Linster CL, Leszek P, et al. Regulation of N6-Methyladenosine after Myocardial Infarction. Cells. 2022; 11(15):2271. https://doi.org/10.3390/cells11152271
Chicago/Turabian StyleVausort, Mélanie, Magdalena Niedolistek, Andrew I. Lumley, Marta Oknińska, Aleksandra Paterek, Michał Mączewski, Xiangyi Dong, Christian Jäger, Carole L. Linster, Przemyslaw Leszek, and et al. 2022. "Regulation of N6-Methyladenosine after Myocardial Infarction" Cells 11, no. 15: 2271. https://doi.org/10.3390/cells11152271
APA StyleVausort, M., Niedolistek, M., Lumley, A. I., Oknińska, M., Paterek, A., Mączewski, M., Dong, X., Jäger, C., Linster, C. L., Leszek, P., & Devaux, Y. (2022). Regulation of N6-Methyladenosine after Myocardial Infarction. Cells, 11(15), 2271. https://doi.org/10.3390/cells11152271