Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions
Abstract
:1. Introduction
The Immune System in Neuroendocrine-Immune Crosstalk: Early Evidence
2. Background on Liver Transplantation
3. Current Ideas of Liver Tolerance Mechanisms after Transplantation
4. Immune Cells and Liver Transplant Immune Tolerance
4.1. Natural Killer T Cells
4.2. Natural Killer Cells
4.3. Dendritic Cells
4.4. Regulatory T Cells
5. The Hepatic Tolerogenic Microenvironment and the Interplay with the Nervous System
5.1. Kupffer Cells
5.2. Hepatic Dendritic Cells
5.3. Hepatic Stellate Cells
6. The Autonomic Nervous System in the Liver
7. Neuroendocrine-Immune Modulation: A Complex Process toward Tolerance
8. The Neuroendocrine-Immune Crosstalk in the Liver May Possibly Influence Tolerance after LT
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matzinger, P. The Danger Model: A Renewed Sense of Self. Science 2002, 296, 301–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesh, H.S.; Morishita, W.; Geraghty, A.C.; Silverbush, D.; Gillespie, S.M.; Arzt, M.; Tam, L.T.; Espenel, C.; Ponnuswami, A.; Ni, L.; et al. Electrical and Synaptic Integration of Glioma into Neural Circuits. Nature 2019, 573, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H.E. Immunology’s Coming of Age. Front. Immunol. 2019, 10, 684. [Google Scholar] [CrossRef]
- Westerhof, N. A Short History of Physiology. Acta Physiol. 2011, 202, 601–603. [Google Scholar] [CrossRef] [Green Version]
- Hadden, J.W.; Hadden, E.M.; Middleton, E. Lymphocyte Blast Transformation: I. Demonstration of Adrenergic Receptors in Human Peripheral Lymphocytes. Cell. Immunol. 1970, 1, 583–595. [Google Scholar] [CrossRef]
- Besedovsky, H.O.; Rey, A.D. Physiology of Psychoneuroimmunology: A Personal View. Brain. Behav. Immun. 2007, 21, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Besedovsky, H.; del Rey, A.; Sorkin, E.; Dinarello, C.A. Immunoregulatory Feedback between Interleukin-1 and Glucocorticoid Hormones. Science 1986, 233, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Ader, R. Developmental Psychoneuroimmunology. Dev. Psychobiol. 1983, 16, 251–267. [Google Scholar] [CrossRef] [PubMed]
- Elenkov, I.J.; Wilder, R.L.; Chrousos, G.P.; Vizi, E.S. The Sympathetic Nerve—An Integrative Interface between Two Supersystems: The Brain and the Immune System. Pharmacol. Rev. 2000, 52, 595–638. [Google Scholar] [PubMed]
- Sanders, V.M. The Role of Adrenoceptor-Mediated Signals in the Modulation of Lymphocyte Function. Adv. Neuroimmunol. 1995, 5, 283–298. [Google Scholar] [CrossRef]
- Starzl, T.E.; Klintmalm, G.B.G.; Porter, K.A.; Iwatsuki, S.; Schröter, G.P.J. Liver Transplantation with Use of Cyclosporin a and Prednisone. N. Engl. J. Med. 1981, 305, 266–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaked, A.; Ghobrial, R.M.; Merion, R.M.; Shearon, T.H.; Emond, J.C.; Fair, J.H.; Fisher, R.A.; Kulik, L.M.; Pruett, T.L.; Terrault, N.A. Incidence and Severity of Acute Cellular Rejection in Recipients Undergoing Adult Living Donor or Deceased Donor Liver Transplantation. Am. J. Transplant. 2009, 9, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubín, A.; Sánchez-Montes, C.; Aguilera, V.; Juan, F.S.; Ferrer, I.; Moya, A.; Montalva, E.; Pareja, E.; López-Andujar, R.; Prieto, M.; et al. Long-Term Outcome of “Long-Term Liver Transplant Survivors”. Transpl. Int. Off. J. Eur. Soc. Organ. Transpl. 2013, 26, 740–750. [Google Scholar] [CrossRef]
- Levitsky, J.; Goldberg, D.; Smith, A.R.; Mansfield, S.A.; Gillespie, B.W.; Merion, R.M.; Lok, A.S.F.; Levy, G.; Kulik, L.; Abecassis, M.; et al. Acute Rejection Increases Risk of Graft Failure and Death in Recent Liver Transplant Recipients. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2017, 15, 584–593.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behnam Sani, K.; Sawitzki, B. Immune Monitoring as Prerequisite for Transplantation Tolerance Trials. Clin. Exp. Immunol. 2017, 189, 158–170. [Google Scholar] [CrossRef] [Green Version]
- Vanrenterghem, Y.; Hooff, J.P.V.; Squifflet, J.-P.; Salmela, K.; Rigotti, P.; Jindal, R.M.; Pascual, J.; Ekberg, H.; Sicilia, L.S.; Boletis, J.N.; et al. Minimization of Immunosuppressive Therapy After Renal Transplantation: Results of a Randomized Controlled Trial. Am. J. Transpl. 2005, 5, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Brouard, S.; Budde, K. Current Status of Immunosuppressive Minimization and Tolerance Strategies. Transpl. Int. 2015, 28, 889–890. [Google Scholar] [CrossRef]
- Wang, P.; Jiang, Z.; Wang, C.; Liu, X.; Li, H.; Xu, D.; Zhong, L. Immune Tolerance Induction Using Cell-Based Strategies in Liver Transplantation: Clinical Perspectives. Front. Immunol. 2020, 11, 1723. [Google Scholar] [CrossRef]
- Port, F.K.; Dykstra, D.M.; Merion, R.M.; Wolfe, R.A. Organ Donation and Transplantation Trends in the USA, 2003. Am. J. Transpl. 2004, 4 (Suppl. 9), 7–12. [Google Scholar] [CrossRef]
- Dhanasekaran, R. Management of Immunosuppression in Liver Transplantation. Clin. Liver Dis. 2017, 21, 337–353. [Google Scholar] [CrossRef]
- Meirelles, R.F., Jr.; Salvalaggio, P.; de Rezende, M.B.; Evangelista, A.S.; Guardia, B.D.; Matielo, C.E.L.; Neves, D.B.; Pandullo, F.L.; Felga, G.E.G.; Alves, J.A.d.S.; et al. Liver Transplantation: History, Outcomes and Perspectives. Einstein 2015, 13, 149–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugioka, A.; Morita, M.; Fujita, J.; Hasumi, A.; Shiroishi, T. Graft Acceptance and Tolerance Induction in Mouse Liver Transplantation Using Wild Mice. Transpl. Proc. 2001, 33, 137–139. [Google Scholar] [CrossRef]
- Houssin, D.; Gigou, M.; Franco, D.; Bismuth, H.; Charpentier, B.; Lang, P.; Martin, E. Specific Transplantation Tolerance Induced by Spontaneously Tolerated Liver Allograft in Inbred Strains of Rats. Transplantation 1980, 29, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Brons, G.; Davies, H.S. Fully Allogeneic Liver Grafting in Rats Induces a State of Systemic Nonreactivity to Donor Transplantation Antigens. Transplantation 1980, 29, 429–431. [Google Scholar] [CrossRef]
- Navarro, V.; Herrine, S.; Katopes, C.; Colombe, B.; Spain, C.V. The Effect of HLA Class I (A and B) and Class II (DR) Compatibility on Liver Transplantation Outcomes: An Analysis of the OPTN Database. Liver Transpl. 2006, 12, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, J. Operational Tolerance: Past Lessons and Future Prospects. Liver Transpl. 2011, 17, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Taner, T.; Gandhi, M.J.; Sanderson, S.O.; Poterucha, C.R.; Goey, S.R.D.; Stegall, M.D.; Heimbach, J.K. Prevalence, Course and Impact of HLA Donor-Specific Antibodies in Liver Transplantation in the First Year. Am. J. Transpl. 2012, 12, 1504–1510. [Google Scholar] [CrossRef]
- Nakamura, K.; Kageyama, S.; Kupiec-Weglinski, J.W. The Evolving Role of Neutrophils in Liver Transplant Ischemia-Reperfusion Injury. Curr. Transpl. Rep. 2019, 6, 78–89. [Google Scholar] [CrossRef]
- Hwang, W.; Lee, J. Pathophysiologic Implications of Cytokines Secretion during Liver Transplantation Surgery. Int. J. Med. Sci. 2018, 15, 1737–1745. [Google Scholar] [CrossRef] [Green Version]
- Perry, I.; Neuberger, J. Immunosuppression: Towards a Logical Approach in Liver Transplantation. Clin. Exp. Immunol. 2005, 139, 2–10. [Google Scholar] [CrossRef]
- Takatsuki, M.; Uemoto, S.; Inomata, Y.; Egawa, H.; Kiuchi, T.; Fujita, S.; Hayashi, M.; Kanematsu, T.; Tanaka, K. Weaning of Immunosuppression in Living Donor Liver Transplant Recipients. Transplantation 2001, 72, 449–454. [Google Scholar] [CrossRef]
- Tryphonopoulos, P.; Tzakis, A.G.; Weppler, D.; Garcia-Morales, R.; Kato, T.; Madariaga, J.R.; Levi, D.M.; Nishida, S.; Moon, J.; Selvaggi, G.; et al. The Role of Donor Bone Marrow Infusions in Withdrawal of Immunosuppression in Adult Liver Allotransplantation. Am. J. Transpl. 2005, 5, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Tisone, G.; Orlando, G.; Cardillo, A.; Palmieri, G.; Manzia, T.M.; Baiocchi, L.; Lionetti, R.; Anselmo, A.; Toti, L.; Angelico, M. Complete Weaning off Immunosuppression in HCV Liver Transplant Recipients Is Feasible and Favourably Impacts on the Progression of Disease Recurrence. J. Hepatol. 2006, 44, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Pons, J.A.; Revilla-Nuin, B.; Baroja-Mazo, A.; Ramírez, P.; Martínez-Alarcón, L.; Sánchez-Bueno, F.; Robles, R.; Rios, A.; Aparicio, P.; Parrilla, P. FoxP3 in Peripheral Blood Is Associated With Operational Tolerance in Liver Transplant Patients During Immunosuppression Withdrawal. Transplantation 2008, 86, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, S.-K.; Lee, H.J.; Seo, J.M.; Joh, J.W.; Kim, S.J.; Kwon, C.H.; Choe, Y.H. Withdrawal of Immunosuppression in Pediatric Liver Transplant Recipients in Korea. Yonsei Med. J. 2009, 50, 784–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Ekong, U.D.; Lobritto, S.J.; Demetris, A.J.; Roberts, J.P.; Rosenthal, P.; Alonso, E.M.; Philogene, M.C.; Ikle, D.; Poole, K.M.; et al. Complete Immunosuppression Withdrawal and Subsequent Allograft Function among Pediatric Recipients of Parental Living Donor Liver Transplants. JAMA 2012, 307, 283–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benítez, C.; Londoño, M.-C.; Miquel, R.; Manzia, T.-M.; Abraldes, J.G.; Lozano, J.-J.; Martínez-Llordella, M.; López, M.; Angelico, R.; Bohne, F.; et al. Prospective Multicenter Clinical Trial of Immunosuppressive Drug Withdrawal in Stable Adult Liver Transplant Recipients. Hepatology 2013, 58, 1824–1835. [Google Scholar] [CrossRef] [PubMed]
- Garza, R.G.; Sarobe, P.; Merino, J.; Lasarte, J.J.; D’Avola, D.; Belsue, V.; Delgado, J.A.; Silva, L.; Iñarrairaegui, M.; Sangro, B.; et al. Trial of Complete Weaning from Immunosuppression for Liver Transplant Recipients: Factors Predictive of Tolerance. Liver Transpl. 2013, 19, 937–944. [Google Scholar] [CrossRef]
- Bohne, F.; Londoño, M.-C.; Benítez, C.; Miquel, R.; Martínez-Llordella, M.; Russo, C.; Ortiz, C.; Bonaccorsi-Riani, E.; Brander, C.; Bauer, T.; et al. HCV-Induced Immune Responses Influence the Development of Operational Tolerance after Liver Transplantation in Humans. Sci. Transl. Med. 2014, 6, 242ra81. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, J.; Burrell, B.E.; Kanaparthi, S.; Turka, L.A.; Kurian, S.; Sanchez-Fueyo, A.; Lozano, J.J.; Demetris, A.; Lesniak, A.; Kirk, A.D.; et al. Immunosuppression Withdrawal in Liver Transplant Recipients on Sirolimus. Hepatology 2020, 72, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Takatsuki, M.; Eguchi, S. Clinical Liver Transplant Tolerance: Recent Topics. J. Hepato-Biliary-Pancreat. Sci. 2022, 29, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Todo, S.; Yamashita, K.; Goto, R.; Zaitsu, M.; Nagatsu, A.; Oura, T.; Watanabe, M.; Aoyagi, T.; Suzuki, T.; Shimamura, T.; et al. A Pilot Study of Operational Tolerance with a Regulatory T-Cell-Based Cell Therapy in Living Donor Liver Transplantation. Hepatology 2016, 64, 632–643. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Fueyo, A.; Whitehouse, G.; Grageda, N.; Cramp, M.E.; Lim, T.Y.; Romano, M.; Thirkell, S.; Lowe, K.; Fry, L.; Heward, J.; et al. Applicability, Safety, and Biological Activity of Regulatory T Cell Therapy in Liver Transplantation. Am. J. Transpl. 2020, 20, 1125–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Luan, X.; Li, J.; He, Y.; Li, M. The Role of Invariant NKT Cells in Liver Transplant Tolerance in Rats. Transpl. Proc. 2012, 44, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tay, S.S.; Tran, G.T.; Hodgkinson, S.J.; Allen, R.D.M.; Hall, B.M.; McCaughan, G.W.; Sharland, A.F.; Bishop, G.A. Donor IL-4-Treatment Induces Alternatively Activated Liver Macrophages and IDO-Expressing NK Cells and Promotes Rat Liver Allograft Acceptance. Transpl. Immunol. 2010, 22, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-D.; Long, T.-Z.; Li, G.-L.; Lv, L.-H.; Lin, H.-M.; Huang, Y.-H.; Chen, Y.-J.; Wan, Y.-L. Donor Liver Natural Killer Cells Alleviate Liver Allograft Acute Rejection in Rats. Hepatobiliary Pancreat. Dis. Int. 2011, 10, 386–392. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, L.; Zhu, Z.; He, W.; Gao, L.; Zhang, W.; Liu, J.; Huang, A. Effects of IL-10- and FasL-Overexpressing Dendritic Cells on Liver Transplantation Tolerance in a Heterotopic Liver Transplantation Rat Model. Immunol. Cell Biol. 2019, 97, 714–725. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, L.; He, W.; Qiu, M.; Gao, L.; Liu, J.; Huang, A. Cotransfection with IL-10 and TGF-Β1 into Immature Dendritic Cells Enhances Immune Tolerance in a Rat Liver Transplantation Model. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G575–G581. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, Q.; Liu, Y.; Sun, Y.; Ding, G.; Fu, Z.; Min, Z.; Zhu, Y.; Cao, X. Effective Induction of Immune Tolerance by Portal Venous Infusion with IL-10 Gene-Modified Immature Dendritic Cells Leading to Prolongation of Allograft Survival. J. Mol. Med. 2004, 82, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Macedo, C.; Tran, L.M.; Zahorchak, A.F.; Dai, H.; Gu, X.; Ravichandran, R.; Mohanakumar, T.; Elinoff, B.; Zeevi, A.; Styn, M.A.; et al. Donor-Derived Regulatory Dendritic Cell Infusion Results in Host Cell Cross-Dressing and T Cell Subset Changes in Prospective Living Donor Liver Transplant Recipients. Am. J. Transpl. 2021, 21, 2372–2386. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, F.; Pu, L.; Yao, A.; Yu, Y.; Sun, B.; Li, G.; Wang, X. Biological Features of Intrahepatic CD4+CD25+ T Cells in the Naturally Tolerance of Rat Liver Transplantation. Front. Med. China 2007, 1, 373–376. [Google Scholar] [CrossRef]
- Navarro, F.; Portalès, P.; Pageaux, J.P.; Perrigault, P.F.; Fabre, J.M.F.; Domergue, J.; Clot, J. Activated Sub-Populations of Lymphocytes and Natural Killer Cells in Normal Liver and Liver Grafts before Transplantation. Liver 1998, 18, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Ono, Y.; Perez-Gutierrez, A.; Nakao, T.; Dai, H.; Camirand, G.; Yoshida, O.; Yokota, S.; Stolz, D.B.; Ross, M.A.; Morelli, A.E.; et al. Graft-Infiltrating PD-L1hi Cross-Dressed Dendritic Cells Regulate Antidonor T Cell Responses in Mouse Liver Transplant Tolerance. Hepatology 2018, 67, 1499–1515. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.-K.; Zheng, S.-S.; Li, Q.-Y.; Zhang, A.-B. Immunotolerance of Liver Allotransplantation Induced by Intrathymic Inoculation of Donor Soluble Liver Specific Antigen. World J. Gastroenterol. WJG 2003, 9, 759–764. [Google Scholar] [CrossRef]
- Li, W.; Carper, K.; Liang, Y.; Zheng, X.X.; Kuhr, C.S.; Reyes, J.D.; Perkins, D.L.; Thomson, A.W.; Perkins, J.D. Anti-CD25 MAb Administration Prevents Spontaneous Liver Transplant Tolerance. Transpl. Proc. 2006, 38, 3207–3208. [Google Scholar] [CrossRef]
- Taubert, R.; Danger, R.; Londoño, M.-C.; Christakoudi, S.; Martinez-Picola, M.; Rimola, A.; Manns, M.P.; Sánchez-Fueyo, A.; Jaeckel, E. Hepatic Infiltrates in Operational Tolerant Patients After Liver Transplantation Show Enrichment of Regulatory T Cells Before Proinflammatory Genes Are Downregulated. Am. J. Transpl. 2016, 16, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonuleit, H.; Schmitt, E.; Stassen, M.; Tuettenberg, A.; Knop, J.; Enk, A.H. Identification and Functional Characterization of Human CD4(+)CD25(+) T Cells with Regulatory Properties Isolated from Peripheral Blood. J. Exp. Med. 2001, 193, 1285–1294. [Google Scholar] [CrossRef] [Green Version]
- Teratani, T.; Mikami, Y.; Nakamoto, N.; Suzuki, T.; Harada, Y.; Okabayashi, K.; Hagihara, Y.; Taniki, N.; Kohno, K.; Shibata, S.; et al. The Liver–Brain–Gut Neural Arc Maintains the T Reg Cell Niche in the Gut. Nature 2020, 585, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Willemze, R.A.; Brinkman, D.J.; Welting, O.; van Hamersveld, P.H.P.; Verseijden, C.; Luyer, M.D.; Wildenberg, M.E.; Seppen, J.; de Jonge, W.J. Acetylcholine-Producing T Cells Augment Innate Immune-Driven Colitis but Are Redundant in T Cell-Driven Colitis. Am. J. Physiol.-Gastrointest. Liver Physiol. 2019, 317, G557–G568. [Google Scholar] [CrossRef]
- Willemze, R.A.; Bakker, T.; Pippias, M.; Ponsioen, C.Y.; de Jonge, W.J. β-Blocker Use Is Associated with a Higher Relapse Risk of Inflammatory Bowel Disease: A Dutch Retrospective Case–Control Study. Eur. J. Gastroenterol. Hepatol. 2018, 30, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Shaked, I.; Hanna, R.N.; Shaked, H.; Chodaczek, G.; Nowyhed, H.N.; Tweet, G.; Tacke, R.; Basat, A.B.; Mikulski, Z.; Togher, S.; et al. Transcription Factor Nr4a1 Couples Sympathetic and Inflammatory Cues in CNS-Recruited Macrophages to Limit Neuroinflammation. Nat. Immunol. 2015, 16, 1228–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, A.W.; Humar, A.; Lakkis, F.G.; Metes, D.M. Regulatory Dendritic Cells for Promotion of Liver Transplant Operational Tolerance: Rationale for a Clinical Trial and Accompanying Mechanistic Studies. Hum. Immunol. 2018, 79, 314–321. [Google Scholar] [CrossRef]
- Jenne, C.N.; Kubes, P. Immune Surveillance by the Liver. Nat. Immunol. 2013, 14, 996–1006. [Google Scholar] [CrossRef] [PubMed]
- Mikulak, J.; Bruni, E.; Oriolo, F.; Di Vito, C.; Mavilio, D. Hepatic Natural Killer Cells: Organ-Specific Sentinels of Liver Immune Homeostasis and Physiopathology. Front. Immunol. 2019, 10, 946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vacani-Martins, N.; Meuser-Batista, M.; dos Santos, C.d.L.P.; Hasslocher-Moreno, A.M.; Henriques-Pons, A. The Liver and the Hepatic Immune Response in Trypanosoma Cruzi Infection, a Historical and Updated View. Pathogens 2021, 10, 1074. [Google Scholar] [CrossRef] [PubMed]
- Calne, R.Y. Immunological Tolerance—The Liver Effect. Immunol. Rev. 2000, 174, 280–282. [Google Scholar] [CrossRef]
- Tiegs, G.; Lohse, A.W. Immune Tolerance: What Is Unique about the Liver. J. Autoimmun. 2010, 34, 1–6. [Google Scholar] [CrossRef]
- Crispe, I.N. Hepatic T Cells and Liver Tolerance. Nat. Rev. Immunol. 2003, 3, 51–62. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, Y.; Feng, X.; Jiang, J.; Chen, T.; Xie, H.; Zhou, L.; Zheng, S. Hepatic Stellate Cells Promote Immunotolerance Following Orthotopic Liver Transplantation in Rats via Induction of T Cell Apoptosis and Regulation of Th2/Th3-like Cell Cytokine Production. Exp. Ther. Med. 2013, 5, 165–169. [Google Scholar] [CrossRef]
- Meuser-Batista, M.; Vacani-Martins, N.; Cascabulho, C.M.; Beghini, D.G.; Henriques-Pons, A. In the Presence of Trypanosoma Cruzi Antigens, Activated Peripheral T Lymphocytes Retained in the Liver Induce a Proinflammatory Phenotypic and Functional Shift in Intrahepatic T Lymphocyte. J. Leukoc. Biol. 2020, 107, 695–706. [Google Scholar] [CrossRef] [Green Version]
- Said, E.A.; Al-Reesi, I.; Al-Riyami, M.; Al-Naamani, K.; Al-Sinawi, S.; Al-Balushi, M.S.; Koh, C.Y.; Al-Busaidi, J.Z.; Idris, M.A.; Al-Jabri, A.A. Increased CD86 but Not CD80 and PD-L1 Expression on Liver CD68+ Cells during Chronic HBV Infection. PLoS ONE 2016, 11, e0158265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krenkel, O.; Tacke, F. Liver Macrophages in Tissue Homeostasis and Disease. Nat. Rev. Immunol. 2017, 17, 306–321. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Gilbert, G.E.; Kokubo, Y.; Ohashi, T. Role of the Liver in Regulating Numbers of Circulating Neutrophils. Blood 2001, 98, 1226–1230. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Kokubo, Y.; Wake, K. Expression of P-Selectin on Hepatic Endothelia and Platelets Promoting Neutrophil Removal by Liver Macrophages. Blood 1998, 92, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Horst, A.K.; Tiegs, G.; Diehl, L. Contribution of Macrophage Efferocytosis to Liver Homeostasis and Disease. Front. Immunol. 2019, 10, 2670. [Google Scholar] [CrossRef]
- Huan, H.; Wen, X.; Chen, X.; Wu, L.; Wu, L.; Zhang, L.; Yang, D.; Zhang, X.; Bie, P.; Qian, C.; et al. Sympathetic Nervous System Promotes Hepatocarcinogenesis by Modulating Inflammation through Activation of Alpha1-Adrenergic Receptors of Kupffer Cells. Brain. Behav. Immun. 2017, 59, 118–134. [Google Scholar] [CrossRef]
- Farooq, A.; Hoque, R.; Ouyang, X.; Farooq, A.; Ghani, A.; Ahsan, K.; Guerra, M.; Mehal, W.Z. Activation of N-Methyl-d-Aspartate Receptor Downregulates Inflammasome Activity and Liver Inflammation via a β-Arrestin-2 Pathway. Am. J. Physiol.-Gastrointest. Liver Physiol. 2014, 307, G732–G740. [Google Scholar] [CrossRef] [Green Version]
- Soysa, R.; Wu, X.; Crispe, I.N. Dendritic Cells in Hepatitis and Liver Transplantation. Liver Transpl. 2017, 23, 1433–1439. [Google Scholar] [CrossRef] [Green Version]
- Cabillic, F.; Rougier, N.; Basset, C.; Lecouillard, I.; Quelvennec, E.; Toujas, L.; Guguen-Guillouzo, C.; Corlu, A. Hepatic Environment Elicits Monocyte Differentiation into a Dendritic Cell Subset Directing Th2 Response. J. Hepatol. 2006, 44, 552–559. [Google Scholar] [CrossRef]
- Thomson, A.W.; Knolle, P.A. Antigen-Presenting Cell Function in the Tolerogenic Liver Environment. Nat. Rev. Immunol. 2010, 10, 753–766. [Google Scholar] [CrossRef]
- Collin, M.; Bigley, V. Human Dendritic Cell Subsets: An Update. Immunology 2018, 154, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Horst, A.K.; Neumann, K.; Diehl, L.; Tiegs, G. Modulation of Liver Tolerance by Conventional and Nonconventional Antigen-Presenting Cells and Regulatory Immune Cells. Cell. Mol. Immunol. 2016, 13, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Castellaneta, A.; Sumpter, T.L.; Chen, L.; Tokita, D.; Thomson, A.W. NOD2 Ligation Subverts IFN-α Production by Liver Plasmacytoid Dendritic Cells and Inhibits Their T Cell Allostimulatory Activity via B7-H1 Up-Regulation. J. Immunol. 2009, 183, 6922–6932. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.H.; Aloman, C. Dendritic Cells and Liver Fibrosis. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2013, 1832, 998–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dou, L.; Ono, Y.; Chen, Y.; Thomson, A.W.; Chen, X. Hepatic Dendritic Cells, the Tolerogenic Liver Environment, and Liver Disease. Semin. Liver Dis. 2018, 38, 170–180. [Google Scholar] [CrossRef]
- Lukacs-Kornek, V.; Schuppan, D. Dendritic Cells in Liver Injury and Fibrosis: Shortcomings and Promises. J. Hepatol. 2013, 59, 1124–1126. [Google Scholar] [CrossRef] [Green Version]
- Qiu, M.; Chen, Y.; Chen, L.; Zeng, J.; Liu, J. Transforming Growth Factor Β1 and Fas Ligand Synergistically Enhance Immune Tolerance in Dendritic Cells in Liver Transplantation. J. Surg. Res. 2017, 218, 180–193. [Google Scholar] [CrossRef] [Green Version]
- Markus, A.M.; Köckerling, F.; Neuhuber, W.L. Close Anatomical Relationships between Nerve Fibers and MHC Class II-Expressing Dendritic Cells in the Rat Liver and Extrahepatic Bile Duct. Histochem. Cell Biol. 1998, 109, 409–415. [Google Scholar] [CrossRef]
- Shajib, M.S.; Baranov, A.; Khan, W.I. Diverse Effects of Gut-Derived Serotonin in Intestinal Inflammation. ACS Chem. Neurosci. 2017, 8, 920–931. [Google Scholar] [CrossRef]
- Yang, X.; Lou, J.; Shan, W.; Ding, J.; Jin, Z.; Hu, Y.; Du, Q.; Liao, Q.; Xie, R.; Xu, J. Pathophysiologic Role of Neurotransmitters in Digestive Diseases. Front. Physiol. 2021, 12, 786. [Google Scholar] [CrossRef]
- Guseva, D.; Holst, K.; Kaune, B.; Meier, M.; Keubler, L.; Glage, S.; Buettner, M.; Bleich, A.; Pabst, O.; Bachmann, O.; et al. Serotonin 5-HT7 Receptor Is Critically Involved in Acute and Chronic Inflammation of the Gastrointestinal Tract. Inflamm. Bowel Dis. 2014, 20, 1516–1529. [Google Scholar] [CrossRef] [PubMed]
- Senoo, H.; Mezaki, Y.; Fujiwara, M. The Stellate Cell System (Vitamin A-Storing Cell System). Anat. Sci. Int. 2017, 92, 387–455. [Google Scholar] [CrossRef] [PubMed]
- Viñas, O.; Bataller, R.; Sancho-Bru, P.; Ginès, P.; Berenguer, C.; Enrich, C.; Nicolás, J.M.; Ercilla, G.; Gallart, T.; Vives, J.; et al. Human Hepatic Stellate Cells Show Features of Antigen-Presenting Cells and Stimulate Lymphocyte Proliferation. Hepatology 2003, 38, 919–929. [Google Scholar] [CrossRef] [PubMed]
- Winau, F.; Hegasy, G.; Weiskirchen, R.; Weber, S.; Cassan, C.; Sieling, P.A.; Modlin, R.L.; Liblau, R.S.; Gressner, A.M.; Kaufmann, S.H.E. Ito Cells Are Liver-Resident Antigen-Presenting Cells for Activating T Cell Responses. Immunity 2007, 26, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Dunham, R.M.; Thapa, M.; Velazquez, V.M.; Elrod, E.J.; Denning, T.L.; Pulendran, B.; Grakoui, A. Hepatic Stellate Cells Preferentially Induce Foxp3+ Regulatory T Cells by Production of Retinoic Acid. J. Immunol. 2013, 190, 2009–2016. [Google Scholar] [CrossRef] [Green Version]
- Mederacke, I.; Hsu, C.C.; Troeger, J.S.; Huebener, P.; Mu, X.; Dapito, D.H.; Pradere, J.-P.; Schwabe, R.F. Fate Tracing Reveals Hepatic Stellate Cells as Dominant Contributors to Liver Fibrosis Independent of Its Aetiology. Nat. Commun. 2013, 4, 2823. [Google Scholar] [CrossRef] [Green Version]
- Roskams, T.; Cassiman, D.; De Vos, R.; Libbrecht, L. Neuroregulation of the Neuroendocrine Compartment of the Liver. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2004, 280, 910–923. [Google Scholar] [CrossRef]
- Ruddell, R.G.; Oakley, F.; Hussain, Z.; Yeung, I.; Bryan-Lluka, L.J.; Ramm, G.A.; Mann, D.A. A Role for Serotonin (5-HT) in Hepatic Stellate Cell Function and Liver Fibrosis. Am. J. Pathol. 2006, 169, 861–876. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.C.; Jun, D.W.; Kwon, Y.I.; Lee, K.N.; Lee, H.L.; Lee, O.Y.; Yoon, B.C.; Choi, H.S.; Kim, E.K. 5-HT2A Receptor Antagonists Inhibit Hepatic Stellate Cell Activation and Facilitate Apoptosis. Liver Int. 2013, 33, 535–543. [Google Scholar] [CrossRef]
- Sancho-Bru, P.; Bataller, R.; Colmenero, J.; Gasull, X.; Moreno, M.; Arroyo, V.; Brenner, D.A.; Ginès, P. Norepinephrine Induces Calcium Spikes and Proinflammatory Actions in Human Hepatic Stellate Cells. Am. J. Physiol.-Gastrointest. Liver Physiol. 2006, 291, G877–G884. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Ding, T.; Ma, Y.; Wei, W. Selective A1B- and A1D-Adrenoceptor Antagonists Suppress Noradrenaline-Induced Activation, Proliferation and ECM Secretion of Rat Hepatic Stellate Cells in Vitro. Acta Pharmacol. Sin. 2014, 35, 1385–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jinushi, M.; Takehara, T.; Tatsumi, T.; Yamaguchi, S.; Sakamori, R.; Hiramatsu, N.; Kanto, T.; Ohkawa, K.; Hayashi, N. Natural Killer Cell and Hepatic Cell Interaction via NKG2A Leads to Dendritic Cell-Mediated Induction of CD4 CD25 T Cells with PD-1-Dependent Regulatory Activities. Immunology 2007, 120, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, K.; Marrero, I.; Kumar, V. NKT Cell Subsets as Key Participants in Liver Physiology and Pathology. Cell. Mol. Immunol. 2016, 13, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Yang, J.; Liu, W.; Tang, X.; Chen, J.; Zhao, D.; Wang, M.; Xu, F.; Lu, Y.; Liu, B.; et al. Liver Sinusoidal Endothelial Cell Lectin, LSECtin, Negatively Regulates Hepatic T-Cell Immune Response. Gastroenterology 2009, 137, 1498–1508.e5. [Google Scholar] [CrossRef]
- Berg, M.; Wingender, G.; Djandji, D.; Hegenbarth, S.; Momburg, F.; Hämmerling, G.; Limmer, A.; Knolle, P. Cross-Presentation of Antigens from Apoptotic Tumor Cells by Liver Sinusoidal Endothelial Cells Leads to Tumor-Specific CD8+ T Cell Tolerance. Eur. J. Immunol. 2006, 36, 2960–2970. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Carper, K.; Zheng, X.X.; Kuhr, C.S.; Reyes, J.D.; Liang, Y.; Perkins, D.L.; Thomson, A.W.; Perkins, J.D. The Role of Foxp3+ Regulatory T Cells in Liver Transplant Tolerance. Transpl. Proc. 2006, 38, 3205–3206. [Google Scholar] [CrossRef]
- Jiang, X.; Morita, M.; Sugioka, A.; Harada, M.; Kojo, S.; Wakao, H.; Watarai, H.; Ohkohchi, N.; Taniguchi, M.; Seino, K. The Importance of CD25+CD4+ Regulatory T Cells in Mouse Hepatic Allograft Tolerance. Liver Transpl. 2006, 12, 1112–1118. [Google Scholar] [CrossRef]
- Kandilis, A.N.; Papadopoulou, I.P.; Koskinas, J.; Sotiropoulos, G.; Tiniakos, D.G. Liver Innervation and Hepatic Function: New Insights. J. Surg. Res. 2015, 194, 511–519. [Google Scholar] [CrossRef]
- Yi, C.-X.; la Fleur, S.E.; Fliers, E.; Kalsbeek, A. The Role of the Autonomic Nervous Liver Innervation in the Control of Energy Metabolism. Biochim. Biophys. Acta BBA-Mol. Basis Dis. 2010, 1802, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Niijima, A. Afferent Impulse Discharges from Glucoreceptors in the Liver of the Guinea Pig. Ann. N. Y. Acad. Sci. 1969, 157, 690–700. [Google Scholar] [CrossRef]
- Horn, C.C.; Friedman, M.I. Separation of Hepatic and Gastrointestinal Signals from the Common “Hepatic” Branch of the Vagus. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2004, 287, R120–R126. [Google Scholar] [CrossRef] [Green Version]
- McCausland, C.; Sajjad, H. Anatomy, Back, Splanchnic Nerve. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Parent, R.; Gidron, Y.; Lebossé, F.; Decaens, T.; Zoulim, F. The Potential Implication of the Autonomic Nervous System in Hepatocellular Carcinoma. Cell. Mol. Gastroenterol. Hepatol. 2019, 8, 145–148. [Google Scholar] [CrossRef]
- Jensen, K.J.; Alpini, G.; Glaser, S. Hepatic Nervous System and Neurobiology of the Liver. Compr. Physiol. 2013, 3, 655–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueno, T.; Bioulac-Sage, P.; Balabaud, C.; Rosenbaum, J. Innervation of the sinusoidal wall: Regulation of the sinusoidal diameter. Anat. Rec. A. Discov. Mol. Cell. Evol. Biol. 2004, 280A, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Shimazu, T. Effect of Autonomic Denervation on DNA Synthesis during Liver Regeneration after Partial Hepatectomy. Eur. J. Biochem. 1983, 134, 473–478. [Google Scholar] [CrossRef]
- Cruise, J.L.; Knechtle, S.J.; Bollinger, R.R.; Kuhn, C.; Michalopoulos, G. A1-Adrenergic Effects and Liver Regeneration. Hepatology 1987, 7, 1189–1194. [Google Scholar] [CrossRef]
- Houck, K.A.; Cruise, J.L.; Michalopoulos, G. Norepinephrine Modulates the Growth-Inhibitory Effect of Transforming Growth Factor-Beta in Primary Rat Hepatocyte Cultures. J. Cell. Physiol. 1988, 135, 551–555. [Google Scholar] [CrossRef]
- Tanaka, K.; Ohkawa, S.; Nishino, T.; Niijima, A.; Inoue, S. Role of the Hepatic Branch of the Vagus Nerve in Liver Regeneration in Rats. Am. J. Physiol. 1987, 253, G439–G444. [Google Scholar] [CrossRef]
- Weigent, D.A.; Blalock, J.E. Interactions between the Neuroendocrine and Immune Systems: Common Hormones and Receptors. Immunol. Rev. 1987, 100, 79–108. [Google Scholar] [CrossRef] [PubMed]
- Guereschi, M.G.; Araujo, L.P.; Maricato, J.T.; Takenaka, M.C.; Nascimento, V.M.; Vivanco, B.C.; Reis, V.O.; Keller, A.C.; Brum, P.C.; Basso, A.S. Beta2-Adrenergic Receptor Signaling in CD4+ Foxp3+ Regulatory T Cells Enhances Their Suppressive Function in a PKA-Dependent Manner. Eur. J. Immunol. 2013, 43, 1001–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laukova, M.; Vargovic, P.; Csaderova, L.; Chovanova, L.; Vlcek, M.; Imrich, R.; Krizanova, O.; Kvetnansky, R. Acute Stress Differently Modulates Beta 1, Beta 2 and Beta 3 Adrenoceptors in T Cells, but Not in B Cells, from the Rat Spleen. Neuroimmunomodulation 2012, 19, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Belay, T.; Martin, E.; Brown, G.; Crenshaw, R.; Street, J.; Freeman, A.; Musick, S.; Kinder, T.J. Modulation of T Helper 1 and T Helper 2 Immune Balance in a Murine Stress Model during Chlamydia Muridarum Genital Infection. PLoS ONE 2020, 15, e0226539. [Google Scholar] [CrossRef]
- Sanders, V.M.; Baker, R.A.; Ramer-Quinn, D.S.; Kasprowicz, D.J.; Fuchs, B.A.; Street, N.E. Differential Expression of the Beta2-Adrenergic Receptor by Th1 and Th2 Clones: Implications for Cytokine Production and B Cell Help. J. Immunol. 1997, 158, 4200–4210. [Google Scholar]
- Swanson, M.A.; Lee, W.T.; Sanders, V.M. IFN-Gamma Production by Th1 Cells Generated from Naive CD4+ T Cells Exposed to Norepinephrine. J. Immunol. 2001, 166, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, K.M.; Singh, N.J. Mouse T Cells Express a Neurotransmitter-Receptor Signature That Is Quantitatively Modulated in a Subset- and Activation-Dependent Manner. Brain Behav. Immun. 2019, 80, 275–285. [Google Scholar] [CrossRef]
- Daher, C.; Vimeux, L.; Stoeva, R.; Peranzoni, E.; Bismuth, G.; Wieduwild, E.; Lucas, B.; Donnadieu, E.; Bercovici, N.; Trautmann, A.; et al. Blockade of β-Adrenergic Receptors Improves CD8+ T-Cell Priming and Cancer Vaccine Efficacy. Cancer Immunol. Res. 2019, 7, 1849–1863. [Google Scholar] [CrossRef] [PubMed]
- Borger, P.; Hoekstra, Y.; Esselink, M.T.; Postma, D.S.; Zaagsma, J.; Vellenga, E.; Kauffman, H.F. Beta-Adrenoceptor-Mediated Inhibition of IFN-Gamma, IL-3, and GM-CSF MRNA Accumulation in Activated Human T Lymphocytes Is Solely Mediated by the Beta2-Adrenoceptor Subtype. Am. J. Respir. Cell Mol. Biol. 1998, 19, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Fujino, H.; Kitamura, Y.; Yada, T.; Uehara, T.; Nomura, Y. Stimulatory Roles of Muscarinic Acetylcholine Receptors on T Cell Antigen Receptor/CD3 Complex-Mediated Interleukin-2 Production in Human Peripheral Blood Lymphocytes. Mol. Pharmacol. 1997, 51, 1007–1014. [Google Scholar] [CrossRef]
- Qian, J.; Galitovskiy, V.; Chernyavsky, A.I.; Marchenko, S.; Grando, S.A. Plasticity of the Murine Spleen T-Cell Cholinergic Receptors and Their Role in in Vitro Differentiation of Naïve CD4 T Cells toward the Th1, Th2 and Th17 Lineages. Genes Immun. 2011, 12, 222–230. [Google Scholar] [CrossRef] [Green Version]
- Hellström-Lindahl, E.; Nordberg, A. Muscarinic Receptor Subtypes in Subpopulations of Human Blood Mononuclear Cells as Analyzed by RT-PCR Technique. J. Neuroimmunol. 1996, 68, 139–144. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, R.; Yao, Y.; Zhu, X.; Yin, Y.; Zhao, G.; Dong, N.; Sheng, Z. Stimulation of A7 Nicotinic Acetylcholine Receptor by Nicotine Increases Suppressive Capacity of Naturally Occurring CD4+CD25+ Regulatory T Cells in Mice in Vitro. J. Pharmacol. Exp. Ther. 2010, 335, 553–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikami, Y.; Tsunoda, J.; Kiyohara, H.; Taniki, N.; Teratani, T.; Kanai, T. Vagus Nerve-Mediated Intestinal Immune Regulation: Therapeutic Implications for Inflammatory Bowel Diseases. Int. Immunol. 2022, 34, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Vagus Nerve Stimulation at the Interface of Brain-Gut Interactions. Cold Spring Harb. Perspect. Med. 2019, 9, a034199. [Google Scholar] [CrossRef] [Green Version]
- Mullish, B.H.; Kabir, M.S.; Thursz, M.R.; Dhar, A. Review Article: Depression and the Use of Antidepressants in Patients with Chronic Liver Disease or Liver Transplantation. Aliment. Pharmacol. Ther. 2014, 40, 880–892. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, J.D.; Zhao, D.; Ghosh, S.S.; Wang, Y.; Tai, Y.; Gonzalez-Maeso, J.; Sikaroodi, M.; Gillevet, P.M.; Lippman, H.R.; et al. Hepatic Branch Vagotomy Modulates the Gut-Liver-Brain Axis in Murine Cirrhosis. Front. Physiol. 2021, 12, 958. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, C.; van der Kleij, H.; Bienenstock, J.; Shanahan, F.; O’Mahony, L. Loss of Vagal Anti-Inflammatory Effect: In Vivo Visualization and Adoptive Transfer. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2009, 297, R1118–R1126. [Google Scholar] [CrossRef] [Green Version]
- Wirth, T.; Westendorf, A.M.; Bloemker, D.; Wildmann, J.; Engler, H.; Mollerus, S.; Wadwa, M.; Schäfer, M.K.-H.; Schedlowski, M.; del Rey, A. The Sympathetic Nervous System Modulates CD4(+)Foxp3(+) Regulatory T Cells via Noradrenaline-Dependent Apoptosis in a Murine Model of Lymphoproliferative Disease. Brain. Behav. Immun. 2014, 38, 100–110. [Google Scholar] [CrossRef]
- Levine, Y.A.; Koopman, F.A.; Faltys, M.; Caravaca, A.; Bendele, A.; Zitnik, R.; Vervoordeldonk, M.J.; Tak, P.P. Neurostimulation of the Cholinergic Anti-Inflammatory Pathway Ameliorates Disease in Rat Collagen-Induced Arthritis. PLoS ONE 2014, 9, e104530. [Google Scholar] [CrossRef] [Green Version]
- Morishita, K.; Coimbra, R.; Langness, S.; Eliceiri, B.P.; Costantini, T.W. Neuroenteric Axis Modulates the Balance of Regulatory T Cells and T-Helper 17 Cells in the Mesenteric Lymph Node Following Trauma/Hemorrhagic Shock. Am. J. Physiol.-Gastrointest. Liver Physiol. 2015, 309, G202–G208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrish, W.R.; Rosas-Ballina, M.; Gallowitsch-Puerta, M.; Ochani, M.; Ochani, K.; Yang, L.-H.; Hudson, L.; Lin, X.; Patel, N.; Johnson, S.M.; et al. Modulation of TNF Release by Choline Requires A7 Subunit Nicotinic Acetylcholine Receptor-Mediated Signaling. Mol. Med. 2008, 14, 567–574. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Hoffmann, D.; Clarençon, D.; Mathieu, N.; Dantzer, C.; Vercueil, L.; Picq, C.; Trocmé, C.; Faure, P.; et al. Chronic Vagus Nerve Stimulation in Crohn’s Disease: A 6-Month Follow-up Pilot Study. Neurogastroenterol. Motil. 2016, 28, 948–953. [Google Scholar] [CrossRef]
- Orrego, F. Criteria for the Identification of Central Neurotransmitters, and Their Application to Studies with Some Nerve Tissue Preparations in Vitro. Neuroscience 1979, 4, 1037–1057. [Google Scholar] [CrossRef]
- Xue, R.; Zhang, H.; Pan, J.; Du, Z.; Zhou, W.; Zhang, Z.; Tian, Z.; Zhou, R.; Bai, L. Peripheral Dopamine Controlled by Gut Microbes Inhibits Invariant Natural Killer T Cell-Mediated Hepatitis. Front. Immunol. 2018, 9, 2398. [Google Scholar] [CrossRef] [Green Version]
- Kerage, D.; Sloan, E.K.; Mattarollo, S.R.; McCombe, P.A. Interaction of Neurotransmitters and Neurochemicals with Lymphocytes. J. Neuroimmunol. 2019, 332, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Levite, M. Neurotransmitters Activate T-Cells and Elicit Crucial Functions via Neurotransmitter Receptors. Curr. Opin. Pharmacol. 2008, 8, 460–471. [Google Scholar] [CrossRef]
- Hajiasgharzadeh, K.; Baradaran, B. Cholinergic Anti-Inflammatory Pathway and the Liver. Adv. Pharm. Bull. 2017, 7, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, V.A.; Tracey, K.J. Neural Regulation of Immunity: Molecular Mechanisms and Clinical Translation. Nat. Neurosci. 2017, 20, 156–166. [Google Scholar] [CrossRef]
- Li, F.; Chen, Z.; Pan, Q.; Fu, S.; Lin, F.; Ren, H.; Han, H.; Billiar, T.R.; Sun, F.; Li, Q. The Protective Effect of PNU-282987, a Selective A7 Nicotinic Acetylcholine Receptor Agonist, on the Hepatic Ischemia-Reperfusion Injury Is Associated With the Inhibition of High-Mobility Group Box 1 Protein Expression and Nuclear Factor ΚB Activation in Mice. Shock 2013, 39, 197–203. [Google Scholar] [CrossRef]
- Trifonov, S.; Yamashita, Y.; Kase, M.; Maruyama, M.; Sugimoto, T. Glutamic Acid Decarboxylase 1 Alternative Splicing Isoforms: Characterization, Expression and Quantification in the Mouse Brain. BMC Neurosci. 2014, 15, 114. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Qin, X.; Du, H.; Li, N.; Ren, W.; Peng, Y. The Immunological Function of GABAergic System. Front. Biosci. Landmark Ed. 2017, 22, 1162–1172. [Google Scholar] [CrossRef] [Green Version]
- Erlitzki, R.; Gong, Y.; Zhang, M.; Minuk, G. Identification of γ-Aminobutyric Acid Receptor Subunit Types in Human and Rat Liver. Am. J. Physiol.-Gastrointest. Liver Physiol. 2000, 279, G733–G739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gong, Y.W.; Minuk, G.Y. The Effects of Ethanol and Gamma Aminobutyric Acid Alone and in Combination on Hepatic Regenerative Activity in the Rat. J. Hepatol. 1998, 29, 638–641. [Google Scholar] [CrossRef]
- Kaita, K.D.; Assy, N.; Gauthier, T.; Zhang, M.; Meyers, A.F.; Minuk, G.Y. The Beneficial Effects of Ciprofloxacin on Survival and Hepatic Regenerative Activity in a Rat Model of Fulminant Hepatic Failure. Hepatology 1998, 27, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Minuk, G.Y.; Gauthier, T. The Effect of Y-Aminobutyric Acid on Hepatic Regenerative Activity Following Partial Hepatectomy in Rats. Gastroenterology 1993, 104, 217–221. [Google Scholar] [CrossRef]
- Lang, P.A.; Contaldo, C.; Georgiev, P.; El-Badry, A.M.; Recher, M.; Kurrer, M.; Cervantes-Barragan, L.; Ludewig, B.; Calzascia, T.; Bolinger, B.; et al. Aggravation of Viral Hepatitis by Platelet-Derived Serotonin. Nat. Med. 2008, 14, 756–761. [Google Scholar] [CrossRef]
- Ko, M.; Kamimura, K.; Owaki, T.; Nagoya, T.; Sakai, N.; Nagayama, I.; Niwa, Y.; Shibata, O.; Oda, C.; Morita, S.; et al. Modulation of Serotonin in the Gut-Liver Neural Axis Ameliorates the Fatty and Fibrotic Changes in Non-Alcoholic Fatty Liver. Dis. Model. Mech. 2021, 14, dmm048922. [Google Scholar] [CrossRef]
- Joung, J.-Y.; Cho, J.-H.; Kim, Y.-H.; Choi, S.-H.; Son, C.-G. A Literature Review for the Mechanisms of Stress-Induced Liver Injury. Brain Behav. 2019, 9, e01235. [Google Scholar] [CrossRef]
- Bozward, A.G.; Wootton, G.E.; Podstawka, O.; Oo, Y.H. Autoimmune Hepatitis: Tolerogenic Immunological State During Pregnancy and Immune Escape in Post-Partum. Front. Immunol. 2020, 11, 2492. [Google Scholar] [CrossRef]
Number of Patients | Type of Graft | Immunosuppressive Therapy | Patient Selection | Time from Transplantation to Weaning | Complete IS Withdrawal | Mean Follow-Up Period after Withdrawal | Ref. |
---|---|---|---|---|---|---|---|
63 | Living donor | Tacrolimus | Patients who survived more than 2 years after transplantation, maintained good graft function, and had no rejection episodes in the preceding 12 months | 24 months | 38.1% | 23.5 months (range, 3–69 months) | [31] |
45 (adults) | Cadaveric donor | Tacrolimus: 93%, Cyclosporin: 7% | >3 years after liver transplantation, >12 months without rejection, no autoimmune disease | 43.2 months (mean; SD 0.96) | 22.2% (no difference with the control group) | 26 months (range 11–36) | [32] |
34 (adults) | Cadaveric donor | Ciclosporin | >1 year after liver transplantation, positive for hepatitis C virus RNA, absence of rejection or cirrhosis on biopsy | 63.5 months (mean; SD 20.1) | 23.4% | 45.5 months (mean; SD 5.8) | [33] |
12 (adults) | Cadaveric donor | Ciclosporin | ≥2 years after liver transplantation; ≥1 year with no rejection; no autoimmune disease, cancer, or viral disease | 57.5 months (mean; SD 33.5) | 38% | 10–30 months (mean) | [34] |
5 (children), median age: three years old (range, 8 months to 9 years) | Four parental living donors and one cadaveric donor | Tacrolimus | Patients who had a very low tacrolimus trough level (<1 ng/mL by liquid chromatography-mass spectrometry | 45 months (range, 14 months to 60 months) | 100% | 32 months (range, 14 months to 82 months) | [35] |
20 (children), <18 years old | Parental living donor | Tacrolimus: 65%, Ciclosporin: 35% | Allograft function while taking a single immunosuppressive drug, no evidence of acute or chronic rejection or significant fibrosis on liver biopsy | >48 months | 60% | 32.9 months (median; IQR 1.0–49.9) | [36] |
102 (adults) | Not specified | Tacrolimus: 38.8%, Ciclosporin: 26.5%, Mycophenolate mofetil: 17.3% | Comorbidities of immunosuppression, risk of neoplasm | 103 months (mean; SD 47) | 40.2% | 48.9 months (mean) | [37] |
24 (adults) | Cadaveric donor | Tacrolimus: 20.8%, Ciclosporin: 8.3%, Mycophenolate mofetil: 29.2%, Sirolimus: 8.3%, Monotherapy: 66.7% | >3 years after liver transplantation, no active hepatitis C virus infection, no autoimmune disease | 112 months (median; IQR 72–160) | 62.5% | 14 months (median) | [38] |
34 (adults) | Not mentioned | Tacrolimus: 53%, Ciclosporin: 26.5% | Positive for hepatitis C virus RNA, identified as highly specific for operational tolerance | 86 months (mean; SD 37) | 50% | 12 months (mean) | [39] |
15 (adults), ≥18 years old | Cadaveric or living donor | Calcineurin inhibitor to sirolimus (SRL) | Adult LTR ≥ 18 years of age, ≥3 months of sirolimus monotherapy with trough levels of 3–8 ng/mL, ≥3 years post-LT (primary living or deceased donor) | 6.7 ± 3 years | 53% | 12 months | [40] |
88 (children), median age: 11 years old | Not mentioned | Tacrolimus | Alanine aminotransferase or gamma glutamyl transferase level exceeding 100 U/L, liver transplant recipient at ≤6 years of age, ≥4 years after transplant, no acute or chronic rejection within 2 years | 36–48 weeks | 37.5% | 48 months | [36] |
Immune Cells | Type of Study (Pre-Clinical or Clinical) | Mechanism | Type of Approach | Outcome | Reference |
---|---|---|---|---|---|
NK cells | Experimental—rats | Immunomodulatory effect mediated by NK cell activation through a receptor | Activation of NK by αGalCer receptor after OLT | NK cell activation by the αGalCer receptor was capable of inducing an anti-inflammatory profile, increasing IL-10 and decreasing IFN-γ | [44] |
Experimental—rats | IDO expressed on the NK cell surface mediating an immunomodulatory response | Induction of NK in an immunomodulatory microenvironment by IL-14 after OLT | Donor IL-4 injection induced the expression of IDO in NK cells and alternatively activated macrophages to increase the tolerance response after LT | [45] | |
Experimental—rats | Enhancement of donor liver NK cells to prevent acute rejection | Donor NK liver cells infusion through portal vein (3 × 106 cells) of recipients | Infusion of donor liver NK cells could downregulate the acute rejection microenvironment, but no induced spontaneous tolerance was observed after OLT | [46] | |
imDCs | Experimental—rats | Overexpression of IL-10, FasL, or TGF-β on DCs ameliorated liver damage after HLT | i.p. or i.v. injection of imDCs overexpressing IL-10 or FasL (2 × 106) | Injection (i.p.) of imDCs overexpressing IL-10 or FasL prevented liver damage and probably induced Treg cells through the regulatory milieu | [47,48,49] |
DCs | Clinical trial—NCT03164265 | Infusion of DCs from a donor (phase I/II) | Donor DC cells were infused 7 days before the LT (2.5–10 × 106/kg) | The trial is ongoing. Donor DCs were able to maintain a regulatory profile and suppress alloreactive cells against the donor cells | [50] |
Clinical trial— NCT04208919 | Infusion of DCs from a donor (phase I/II) | Donor DC cells were infused 1 and 3 years after the LT (3.5–10 × 106/kg) | The results have not been published yet but seem highly promising | clinicaltrials.gov identifier number: NCT04208919 | |
Treg cells | Experimental—in vitro | Induction of Treg cells by exogenous IL-2 in the culture | IL-2 was added in culture of cells obtained from rats with tolerogenic, synergistic, and rejection groups after OLT | The addition of IL-2 in the culture was capable of inhibiting effector T cell differentiation and increasing the regulatory milieu in a dose-dependent manner | [51] |
Clinical trial—NCT02474199 | Infusion of DARTreg (phase I/II) | DARTreg infusion intravenous 300–500 × 106 cells/kg | The trial showed safety and the capacity to induce a tolerogenic profile | clinicaltrials.gov identifier number: NCT02474199 | |
Clinical trial— NCT03577431 | Infusion of arTreg (phase I/II) | arTreg-CSB intravenous infusion 1–2.5 × 106 cells/kg | The results have not been published yet but seem highly promising | clinicaltrials.gov identifier number: NCT03577431 | |
Clinical trial— NCT01624077 | Infusion of DARTreg (phase I) | DARTreg infusion 1 × 106 cells/kg | The trial showed safety and the capacity to induce a tolerogenic response | clinicaltrials.gov identifier number:NCT01624077 | |
Clinical trial— NCT02166177 | Infusion of an autologous Treg product—polyclonal treg (phase I/II) | 0.5–4.5 × 106 cells/kg | No result posted | clinicaltrials.gov identifier number:NCT02166177 |
Receptor | Cell Type | Form of Detection | Biological Effect | Reference | |
---|---|---|---|---|---|
Adrenergic Receptors | |||||
β1AR | Spleen LøT | qPCR IFI | ND | [122] | |
LøTCD4 | qPCR | Switching from a Th1 cytokine profile to a Th2 cytokine profile | [123] | ||
β2AR | Th1 Cells | IFI Terbutaline stimulation | Inhibition of IFN-γ production Inhibition of IgG1 production by B cells | [124] | |
Naïve LøTCD4 Th1 Cells | RT-PCR NE stimulation | Decrease in IL-2 production | [125] | ||
Spleen LøT | qPCR IFI | ND | [122] | ||
Naïve T Lø Treg Lø | WB WB, IFI | Increased suppression of naïve T Lø activation in vitro | [121] | ||
LøTCD4 | qPCR | Switching from a Th1 cytokine profile to a Th2 cytokine profile | [123] | ||
Treg Lø | In silico analyses nCounter RNA analyses WB | ND | [126] | ||
Naïve LøTCD8 Activated LøTCD8 | WB | Inhibition of naïve LøTCD8 activation | [127] | ||
β3AR | Con A-stimulated TLø | RT-PCR | Inhibition of cytokine mRNA accumulation | [128] | |
Spleen LøT | qPCR IFI | ND | [122] | ||
LøTCD4 | qPCR | Switching from a Th1 cytokine profile to a Th2 cytokine profile | [123] | ||
α2AAR | LøTCD4 LøTCD8 Treg Lø | In silico analyses nCounter RNA analysis WB | ND | [126] | |
Cholinergic Receptors | |||||
m1 | PBL (T/B cell enriched) | RT-PCR | Increased IL-2 production | [129] | |
Spleen LøTCD4 and LøTCD8 | qPCR | Th2 and Th17 responses | [130] | ||
m2 | PBL (T/B cell enriched) | RT-PCR | Increased IL-2 production | [129] | |
m3 | LøT LøTCD4 | RT-PCR | ND | [131] | |
Spleen LøTCD4 and LøTCD8 | qPCR | Th2 and Th17 responses | [130] | ||
LøTCD4 | In silico analyses nCounter RNA analyses WB | ND | [126] | ||
m4 | LøT LøTCD4 | RT-PCR | ND | [131] | |
Spleen LøTCD4 and LøTCD8 | qPCR | Th2 and Th17 responses | [130] | ||
Treg Lø 2 LøTCD4 2 LøTCD8 | In silico analyses nCounter RNA analyses WB | ND | [126] | ||
m5 | LøT LøTCD4 | RT-PCR | ND | [131] | |
Spleen LøTCD4 and LøTCD8 | qPCR | ND | [130] | ||
α | 2 | Spleen LøTCD8 | qPCR | ND | [130] |
4 | Activated LøTCD4 Activated LøTCD8 | qPCR | ND | [130] | |
5 | Spleen LøTCD4 and LøTCD8 | qPCR | Th1 polarization | [130] | |
7 | Treg Lø | RT-PCR FITC-labeled α-bungarotoxin | Increased CTLA-4 expression | [132] | |
Activated LøTCD4 Activated LøTCD8 | qPCR | ND | [130] | ||
9 | Spleen LøTCD4 and LøTCD8 | qPCR | Th1 polarization | [130] | |
10 | Spleen LøTCD4 and LøTCD8 | qPCR | Th1 polarization | [130] | |
β | 1 | Spleen LøTCD4 and LøTCD8 | qPCR | ND | [130] |
LøTCD8 | In silico analyses nCounter RNA analyses WB | ND | [126] | ||
2 | Spleen LøTCD4 and LøTCD8 | qPCR | Th1 polarization | [130] | |
Treg Lø LøTCD4 LøTCD8 | In silico analyses nCounter RNA analyses WB | ND | [126] | ||
4 | Spleen LøTCD4 and LøTCD8 | qPCR | Th1 polarization | [130] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gama, J.F.G.; Cardoso, L.M.d.F.; Bisaggio, R.d.C.; Lagrota-Candido, J.; Henriques-Pons, A.; Alves, L.A. Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions. Cells 2022, 11, 2327. https://doi.org/10.3390/cells11152327
Gama JFG, Cardoso LMdF, Bisaggio RdC, Lagrota-Candido J, Henriques-Pons A, Alves LA. Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions. Cells. 2022; 11(15):2327. https://doi.org/10.3390/cells11152327
Chicago/Turabian StyleGama, Jaciara Fernanda Gomes, Liana Monteiro da Fonseca Cardoso, Rodrigo da Cunha Bisaggio, Jussara Lagrota-Candido, Andrea Henriques-Pons, and Luiz A. Alves. 2022. "Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions" Cells 11, no. 15: 2327. https://doi.org/10.3390/cells11152327
APA StyleGama, J. F. G., Cardoso, L. M. d. F., Bisaggio, R. d. C., Lagrota-Candido, J., Henriques-Pons, A., & Alves, L. A. (2022). Immunological Tolerance in Liver Transplant Recipients: Putative Involvement of Neuroendocrine-Immune Interactions. Cells, 11(15), 2327. https://doi.org/10.3390/cells11152327