The Role of Cardiac Resynchronization Therapy for the Management of Functional Mitral Regurgitation
Abstract
:1. Introduction
2. The Complex Nature of Functional Mitral Regurgitation
2.1. Imbalance between Tethering and Closing Forces
2.2. The Dynamic Nature of Functional Mitral Regurgitation
2.3. Other Factors That Contribute to Functional Mitral Regurgitation
3. Mechanical Dyssynchrony
4. The Rationale of CRT
5. Effects of CRT on Clinical Outcomes
First Author, Year [Ref] | Type of Study | Number of Patients | Method of FMR Quantification | Severe FMR (%) | Prevalent Degree in Study Population (% of Study Population) | Reduction of FMR Degree (% of Study Population) | No Change FMR Degree (% of Study Population) | Worsening FMR Degree (% of Study Population) | Main Results |
---|---|---|---|---|---|---|---|---|---|
Cabrera Bueno et al., 2009 [48] | Observational | 76 | EROA | 42 | Non severe 58 | 35 | 66 | 0 | Higher rate of clinical events and major arrhythmic events, in severe group |
Solomon et al., 2010 [47] | Randomized controlled | 749 (CRT-D arm) | MR Jet area | 2 | Mild 83 | 15.3 | 81.9 | 2.8 | CRT stabilizes and does not worsen FMR |
Van Bommel et al., 2012 [53] | Prospective | 98 | VC, EROA | 2 | Moderate-severe 63 | 49 | 51 | 0 | MR improvers had better survival |
Di Biase et al., 2012 [54] | Multicentre Retrospective | 794 | MR Jet area, VC, EROA | 35 | Mild-moderate 51 | 45 | 43 | 12 | Basline MR, change in MR at 3-month follow-up strongly associated with CRT response. |
Verhaert et al., 2012 [50] | Retrospective observational | 266 | VC, EROA | 5 | Mild 31 Moderate 25 | 100 | 0 | 0 |
|
Cipriani et al., 2016 [55] | Prospective obervational | 916 | Multiparametric | 55 | Moderate or more 55 | 74 | 0 | 26 | Worse prognosis if MR persistance or worsening. |
6. What to Do in CRT Non-Responders with Significant Mitral Regurgitation?
7. Open Issues and Future Perspectives
7.1. Need to Standardization
7.2. Medical Therapy
7.3. Technical Issues
7.4. Defining the Right Time of Intervention
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Enriquez-Sarano, M.; Akins, C.W.; Vahanian, A. Mitral regurgitation. Lancet 2009, 373, 1382–1394. [Google Scholar] [CrossRef]
- Lamas, G.A.; Mitchell, G.F.; Flaker, G.C.; Smith, S.C., Jr.; Gersh, B.J.; Basta, L.; Moyé, L.; Braunwald, E.; Pfeffer, M.A. Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and Ventricular Enlargement Investigators. Circulation 1997, 96, 827–833. [Google Scholar] [CrossRef]
- Coats, A.J.S.; Anker, S.D.; Baumbach, A.; Alfieri, O.; von Bardeleben, R.S.; Bauersachs, J.; Bax, J.J.; Boveda, S.; Čelutkienė, J.; Cleland, J.G.; et al. The management of secondary mitral regurgitation in patients with heart failure: A joint position statement from the Heart Failure Association (HFA). European Association of Cardiovascular Imaging (EACVI), European Heart Rhythm Association (EHRA). And European Association of Percutaneous Cardiovascular Interventions (EAPCI) of the ESC. Eur. Heart J. 2021, 42, 1254–1269. [Google Scholar] [CrossRef]
- Bursi, F.; Enriquez-Sorano, M.; Nkomo, V.T.; Jacobsen, S.J.; Weston, S.A.; Meverden, R.A.; Roger, V.L. Heart failure and death after myocardial infarction in the community: The emerging role of mitral regurgitation. Circulation 2005, 111, 295–301. [Google Scholar]
- Grigioni, F.; Enriquez-Sarano, M.; Zehr, K.J.; Bailey, K.R.; Tajik, A.J. Ischemic mitral regurgitation: Long-term implications and prognostic implications with quantitative Doppler assessment. Circulation 2001, 103, 1759–1764. [Google Scholar]
- Agricola, E.; Stella, S.; Figini, F.; Piraino, D.; Oppizzi, M.; D’Amato, R.; Slavich, M.; Ancona, M.B.; Margonato, A. Non-ischemic dilated cardiopathy: Prognostic value of functional mitral regurgitation. Int. J. Cardiol. 2010, 146, 426–428. [Google Scholar]
- Rossi, A.; Dini, F.L.; Faggiano, P.; Agricola, E.; Cicoira, M.; Frattini, S.; Simioniuc, A.; Gullace, M.; Ghio, S.; Enriquez-Sarano, M.; et al. Independent prognostic value of functional mitral regurgitation in patients with heart failure. A quantitative analysis of 1256 patients with ischaemic and non-ischaemic dilated cardiomyopathy. Heart 2011, 97, 1675–1680. [Google Scholar]
- Enriquez-Sarano, M.; Basmadjian, A.J.; Rossi, A.; Bailey, K.R.; Seward, J.B.; Tajik, A.J. Progression of mitral regurgitation: A prospective Doppler echocardiographic study. J. Am. Coll. Cardiol. 1999, 34, 1137–1144. [Google Scholar]
- Junker, A.; Thayssen, P.; Nielsen, B.; Andersen, P.E. The hemodynamic and prognostic significance of echo-Doppler-proven mitral regurgitation in patients with dilated cardiomyopathy. Cardiology 1993, 83, 14–20. [Google Scholar]
- Rukosujew, A.; Klotz, S.; Welp, H.; Bruch, C.; Ghezelbash, F.; Schmidt, C.; Weber, R.; Hoffmeier, A.; Sindermann, J.; Scheld, H.H. Surgery of secondary mitral insufficiency in patients with impaired left ventricular function. J. Cardiothorac. Surg. 2009, 4, 36. [Google Scholar]
- Vinciguerra, M.; Grigioni, F.; Romiti, S.; Benfari, G.; Rose, D.; Spadaccio, C.; Cimino, S.; De Bellis, A.; Greco, E. Ischemic Mitral Regurgitation: A Multifaceted Syndrome with Evolving Therapies. Biomedicines 2021, 9, 447. [Google Scholar] [CrossRef]
- Cazeau, S.; Leclercq, C.; Lavergne, T.; Walker, S.; Varma, C.; Linde, C.; Garrigue, S.; Kappenberger, L.; Haywood, G.A.; Santini, M.; et al. Multisite Stimulation in Cardiomyopathies (MUSTIC) Study Investigators. Effect of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N. Engl. J. Med. 2001, 344, 873–880. [Google Scholar]
- Cleland, J.G.; Daubert, J.C.; Erdmann, E.; Freemantle, N.; Gras, D.; Kappenberger, L.; Tavazzi, L. Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 2005, 352, 1539–1549. [Google Scholar]
- You, S.F.; Enriquez-Sarano, M.; Tribouilloy, C.; Seward, J.B.; Tajik, A.J. Determinants of the degree of functional mitral re- gurgitation in patients with systolic left ventricular dys- function: A quantitative clinical study. Circulation 2000, 102, 1400–1406. [Google Scholar]
- Otsuji, Y.; Handschumacher, M.D.; Schwammenthal, E.; Jiang, L.; Song, J.K.; Guerrero, J.L.; Vlahakes, G.J.; Levine, R.A. Insights from three-dimensional echocardiography into the mechanism of functional mitral regurgitation: Direct in vivo demonstration of altered leaflet tethering geometry. Circulation 1997, 96, 1999–2008. [Google Scholar]
- Lancellotti, P.; Lebrun, F.; Pierard, L.A. Determinants of exercise-induced changes in mitral regurgitation in patients with coronary artery disease and left ventricular dysfunction. J. Am. Coll. Cardiol. 2003, 42, 1921–1928. [Google Scholar]
- Bertrand, P.B.; Schwammenthal, E.; Levine, R.A.; Vandervoort, P.M. Exercise Dynamics in Secondary Mitral Regurgitation: Pathophysiology and Therapeutic Implications. Circulation 2017, 135, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Lafitte, S.; Bordachar, P.; Lafitte, M.; Garrigue, S.; Reuter, S.; Reant, P.; Serri, K.; Lebouffos, V.; Berrhouet, M.; Jais, P.; et al. Dynamic ventricular dyssynchrony: An exercise-echocardiography study. J. Am. Coll. Cardiol. 2006, 47, 2253–2259. [Google Scholar] [CrossRef] [Green Version]
- Lancellotti, P.; Pierard, L.A. Chronic ischemic mitral regurgitation: Exercise testing reveals its dynamic component. Eur. Heart J. 2005, 26, 1816–1817. [Google Scholar]
- Gorman, J.H.; Jackson, B.M.; Enomoto, Y.; Gorman, R.C. The effect of regional ischemia on mitral valve annular saddle shape. Ann. Thorac. Surg. 2004, 77, 544–548. [Google Scholar]
- Watanabe, N.; Ogasawara, Y.; Yamaura, Y.; Kawamoto, T.; Toyota, E.; Akasaka, T.; Yoshida, K. Quantitation of mitral valve tenting in ischemic mitral regurgitation by transthoracic real-time three-dimensional echocardiography. J. Am. Coll. Cardiol. 2005, 45, 763–769. [Google Scholar]
- Otsuji, Y.; Kumanohoso, T.; Yoshifuku, S.; Matsukida, K.; Koriyama, C.; Kisanuki, A.; Minagoe, S.; Levine, R.A.; Tei, C. Isolated annular dilation does not usually cause important functional mitral regurgitation: Comparison between patients with lone atrial fibrillation and those with idiopathic or ischemic cardiomyopathy. J. Am. Coll. Cardiol. 2002, 39, 1651–1656. [Google Scholar]
- Timek, T.A.; Dagum, P.; Lai, D.T.; Liang, D.; Daughters, G.T.; Tibayan, F.; Ingels, N.B., Jr.; Miller, D.C. Tachycardia-induced cardiomyopathy in the ovine heart: Mitral annular dynamic three-dimensional geometry. J. Thorac. Cardiovasc. Surg. 2003, 125, 315–324. [Google Scholar]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.; Coats, A.J.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart. J. 2016, 37, 2129–2200. [Google Scholar]
- Silbiger, J.J. Does left atrial enlargement contribute to mitral leaflet tethering in patients with functional mitral regurgitation? Proposed role of atriogenic leaflet tethering. J. Heart Valve Dis. 2014, 23, 385–386. [Google Scholar]
- Grande-Allen, K.J.; Barber, J.E.; Klatka, K.M.; Houghtaling, P.L.; Vesely, I.; Moravec, C.S.; McCarthy, P.M. Mitral valve stiffening in end-stage heart failure: Evidence of an organic contribution to functional mitral regurgitation. J. Thorac. Cardiovasc. Surg. 2005, 130, 783–790. [Google Scholar]
- Grande-Allen, K.J.; Borowski, A.G.; Troughton, R.W.; Houghtaling, P.L.; Dipaola, N.R.; Moravec, C.S.; Vesely, I.; Griffin, B.P. Apparently normal mitral valves in patients with heart failure demonstrate biochemical and structural derangements: An extracellular matrix and echocardiographic study. J. Am. Coll. Cardiol. 2005, 45, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Willems, I.E.; Havenith, M.G.; Smits, J.F.; Daemen, M.J. Structural alterations in heart valves during left ventricular pressure overload in the rat. Lab. Investig. A J. Tech. Methods Pathol. 1994, 71, 127–133. [Google Scholar]
- Kunzelman, K.S.; Cochran, R.P.; Chuong, C.; Ring, W.S.; Verrier, E.D.; Eberhart, R.D. Finite element analysis of the mitral valve. J. Heart Valve Dis. 1993, 2, 326–340. [Google Scholar]
- Hsu, C.D.; Hutcheson, J.D.; Ramaswamy, S. Oscillatory fluid-induced mechanobiology in heart valves with parallels to the vasculature. Vasc. Biol. 2020, 2, R59–R71. [Google Scholar] [CrossRef] [Green Version]
- Stephens, E.H.; Timek, T.A.; Daughters, G.T.; Kuo, J.J.; Patton, A.M.; Baggett, L.S.; Ingels, N.B.; Miller, D.C.; Grande-Allen, K.J. Significant changes in mitral valve leaflet matrix composition and turnover with tachycardia-induced cardiomyopathy. Circulation 2009, 120, S112–S119. [Google Scholar] [CrossRef] [Green Version]
- Kunzelman, K.S.; Quick, D.W.; Cochran, R.P. Altered collagen concentration in mitral valve leaflets: Biochemical and finite element analysis. Ann. Thorac. Surg. 1998, 66, S198–S205. [Google Scholar] [CrossRef]
- He, S.; Fontaine, A.A.; Schwammenthal, E.; Yoganathan, A.P.; Levine, R.A. Integrated mechanism for functional mitral regurgitation: Leaflet restriction versus coapting force: In vitro studies. Circulation 1997, 96, 1826–1834. [Google Scholar]
- Appleton, C.P.; Basnight, M.A.; Gonzalez, M.S. Diastolic mitral regurgitation with atrioventricular conduction abnormalities: Relation of mitral flow velocity to transmitral pressure gradients in conscious dogs. J. Am. Coll. Cardiol. 1991, 18, 843–849. [Google Scholar]
- Spartera, M.; Galderisi, M.; Mele, D.; Cameli, M.; D’Andrea, A.; Rossi, A.; Mondillo, S.; Novo, G.; Esposito, R.; D’Ascenzi, F.; et al. Echocardiographic Study Group of the Italian Society of Cardiology (SIC). Role of cardiac dyssynchrony and resynchronization therapy in functional mitral regurgitation. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 471–480. [Google Scholar]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; de Bonis, M.; De Paulis , R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 14, 561–632. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2012, 42, 3599–3726. [Google Scholar] [CrossRef]
- Breithardt, O.A.; Sinha, A.M.; Schwammenthal, E.; Bidaoui, N.; Markus, K.U.; Franke, A.; Stellbrink, C. Acute effects of cardiac resynchronization therapy on functional mitral regurgitation in advanced systolic heart failure. J. Am. Coll. Cardiol. 2003, 41, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Porciani, M.C.; Macioce, R.; Demarchi, G.; Chiostri, M.; Musilli, N.; Cappelli, F.; Lilli, A.; Ricciardi, G.; Padeletti, L. Effects of cardiac resynchronization therapy on the mechanisms underlying functional mitral regurgitation in congestive heart failure. Eur. J. Echocardiogr. 2006, 7, 31–39. [Google Scholar]
- Valzania, C.; Eriksson, M.J.; Biffi, M.; Boriani, G.; Gadler, F. Acute changes in electromechanical parameters during different pacing configurations using a quadripolar left ventricular lead. J. Interv. Card. Electrophysiol. 2013, 38, 61–69. [Google Scholar] [CrossRef]
- Bencardino, G.; Di Monaco, A.; Russo, E.; Colizzi, C.; Perna, F.; Pelargonio, G.; Narducci, M.L.; Gabrielli, F.A.; Lanza, G.A.; Rebuzzi, A.G.; et al. Outcome of Patients Treated by Cardiac Resynchronization Therapy Using a Quadripolar Left Ventricular Lead. Circ. J. 2016, 80, 613–618. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.; Zwicker, C.; Kaminski, M.; Napp, A.; Altiok, E.; Ocklenburg, C.; Friedman, Z.; Adam, D.; Schauerte, P.; Marx, N.; et al. Dependency of cardiac resynchronization therapy on myocardial viability at the LV lead position. JACC Cardiovasc. Imaging 2011, 4, 366–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karvounis, H.I.; Dalamaga, E.G.; Papadopoulos, C.E.; Karamitsos, T.D.; Vassilikos, V.; Paraskevaidis, S.; Styliadis, I.H.; Parharidis, G.E.; Louridas, G.E. Improved papillary muscle function attenuates functional mitral regurgitation in patients with dilated cardiomyopathy after cardiac resynchronization therapy. J. Am. Soc. Echocardiogr. 2006, 19, 1150–1157. [Google Scholar] [CrossRef]
- Naqvi, T.Z.; Rafique, A.M.; Swerdlow, C.; Verma, S.; Siegel, R.J.; Tolstrup, K.; Kerwin, W.; Goodman, J.; Gallik, D.; Gang, E.; et al. Predictors of reduction in mitral regurgitation in patients undergoing cardiac resynchronisation treatment. Heart 2008, 94, 1580–1588. [Google Scholar] [CrossRef]
- Solis, J.; McCarty, D.; Levine, R.A.; Handschumacher, M.D.; Fernandez-Friera, L.; Chen-Tournoux, A.; Mont, L.; Vidal, B.; Singh, J.P.; Brugada, J.; et al. Mechanism of decrease in mitral regurgitation after cardiac resynchronization therapy: Optimization of the force-balance relationship. Circ. Cardiovasc. Imaging 2009, 2, 444–450. [Google Scholar]
- Mihos, C.G.; Yucel, E.; Upadhyay, G.A.; Orencole, M.P.; Singh, J.P.; Picard, M.H. Left ventricle and mitral valve reverse remodeling in response to cardiac resynchronization therapy in nonischemic cardiomyopathy. Echocardiography 2020, 37, 1557–1565. [Google Scholar] [CrossRef]
- Lellouche, N.; De Diego, C.; Vaseghi, M.; Buch, E.; Cesario, D.A.; Mahajan, A.; Wiener, I.; Fonarow, G.C.; Boyle, N.G.; Shivkumar, K. Cardiac resynchronization therapy response is associated with shorter duration of atrial fibrillation. Pacing. Clin. Electrophysiol. 2007, 30, 1363–1368. [Google Scholar] [CrossRef]
- Kanzaki, H.; Bazaz, R.; Schwartzman, D.; Dohi, K.; Sade, L.E.; Gorcsan, J., III. A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy: Insights from mechanical activation strain mapping. J. Am. Coll. Cardiol. 2004, 44, 1619–1925. [Google Scholar] [CrossRef] [Green Version]
- St John Sutton, M.G.; Plappert, T.; Abraham, W.T.; Smith, A.L.; DeLurgio, D.B.; Leon, A.R.; Loh, E.; Kocovic, D.Z.; Fisher, W.G.; Ellestad, M.; et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 2003, 107, 1985–1990. [Google Scholar] [CrossRef] [Green Version]
- Linde, C.; Leclercq, C.; Rex, S.; Garrigue, S.; Lavergne, T.; Cazeau, S.; McKenna, W.; Fitzgerald, M.; Deharo, J.C.; Alonso, C.; et al. Long-term benefits of biventricular pacing in congestive heart failure: Results from the MUltisite STimulation in cardiomyopathy (MUSTIC) study. J. Am. Coll. Cardiol. 2002, 40, 111–118. [Google Scholar]
- van der Bijl, P.; Vo, N.M.; Leung, M.; Ajmone Marsan, N.; Delgado, V.; Stone, G.W.; Bax, J.J. Impact of atrial fibrillation on improvement of functional mitral regurgitation in cardiac resynchronization therapy. Heart Rhythm. 2018, 15, 1816–1822. [Google Scholar] [CrossRef]
- Cabrera-Bueno, F.; Molina-Mora, M.J.; Alzueta, J.; Pena-Hernandez, J.; Jimenez-Navarro, M.; Fernandez-Pastor, J.; Barrera, A.; de Teresa, E. Persistence of secondary mitral regurgitation and response to cardiac resynchronization therapy. Eur. J. Echocardiogr. 2010, 11, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Verhaert, D.; Popović, Z.B.; De, S.; Puntawangkoon, C.; Wolski, K.; Wilkoff, B.L.; Starling, R.C.; Tang, W.H.; Thomas, J.D.; Griffin, B.P.; et al. Impact of mitral regurgitation on reverse remodeling and outcome in patients undergoing cardiac resynchronization therapy. Circ. Cardiovasc. Imaging. 2012, 5, 21–26. [Google Scholar]
- van Bommel, R.J.; Marsan, N.A.; Delgado, V.; Borleffs, C.J.; van Rijnsoever, E.P.; Schalij, M.J.; Bax, J.J. Cardiac resynchronization therapy as a therapeutic option in patients with moderate-severe functional mitral regurgitation and high operative risk. Circulation 2011, 124, 912–919. [Google Scholar] [CrossRef] [Green Version]
- Bonow, R.O.; Carabello, B.A.; Chatterjee, K.; de Leon, A.C., Jr.; Faxon, D.P.; Freed, M.D.; Gaasch, W.H.; Lytle, B.W.; Nishimura, R.A.; O’Gara, P.T.; et al. American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists.; Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll Cardiol. 2008, 52, e1–e142. [Google Scholar] [CrossRef] [Green Version]
- Di Biase, L.; Auricchio, A.; Mohanty, P.; Bai, R.; Kautzner, J.; Pieragnoli, P.; Regoli, F.; Sorgente, A.; Spinucci, G.; Ricciardi, G.; et al. Impact of cardiac resynchronization therapy on the severity of mitral regurgitation. Europace 2011, 13, 829–838. [Google Scholar] [CrossRef]
- Michalski, B.; Stankovic, I.; Pagourelias, E.; Ciarka, A.; Aarones, M.; Winter, S.; Faber, L.; Aakhus, S.; Fehske, W.; Cvijic, M.; et al. Relationship of Mechanical Dyssynchrony and LV Remodeling with Improvement of Mitral Regurgitation After CRT. JACC Cardiovasc. Imaging 2021, 15, 212–220. [Google Scholar] [CrossRef]
- Gavazzoni, M.; Taramasso, M.; Zuber, M.; Russo, G.; Pozzoli, A.; Miura, M.; Maisano, F. Conceiving Mitra Clip as a tool: Percutaneous edge-to-edge repair in complex mitral valve anatomies. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 1059–1067. [Google Scholar] [CrossRef]
- Obadia, J.F.; Messika-Zeitoun, D.; Leurent, G.; Iung, B.; Bonnet, G.; Piriou, N.; Lefèvre, T.; Piot, C.; Rouleau, F.; Carrié, D.; et al. MITRA-FR Investigators. Percutaneous Repair or Medical Treatment for Secondary Mitral Regurgitation. N. Engl. J. Med. 2018, 379, 2297–2306. [Google Scholar] [CrossRef]
- Stone, G.W.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Grayburn, P.A.; Rinaldi, M.; Kapadia, S.R.; et al. COAPT Investigators. Transcatheter Mitral-Valve Repair in Patients with Heart Failure. N. Engl. J. Med. 2018, 379, 2307–2318. [Google Scholar] [CrossRef]
- Solomon, S.D.; Foster, E.; Bourgoun, M.; Shah, A.; Viloria, E.; Brown, M.W.; Hall, W.J.; Pfeffer, M.A.; Moss, A.J. MADIT-CRT Investigators. Effect of cardiac resynchronization therapy on reverse remodeling and relation to outcome: Multicenter automatic defibrillator implantation trial: Cardiac resynchronization therapy. Circulation 2010, 122, 985–992. [Google Scholar]
- Cipriani, M.; Lunati, M.; Landolina, M.; Proclemer, A.; Boriani, G.; Ricci, R.P.; Rordorf, R.; Matassini, M.V.; Padeletti, L.; Iacopino, S.; et al. Italian ClinicalService Project Investigators. Prognostic implications of mitral regurgitation in patients after cardiac resynchronization therapy. Eur. J. Heart Fail. 2016, 18, 1060–1068. [Google Scholar]
- Karaca, O.; Cakal, B.; Omaygenc, M.O.; Gunes, H.M.; Cakal, S.D.; Kizilirmak, F.; Gokdeniz, T.; Barutcu, I.; Boztosun, B.; Kilicaslan, F. Native Electrocardiographic QRS Duration after Cardiac Resynchronization Therapy: The Impact on Clinical Outcomes and Prognosis. J. Card. Fail. 2016, 22, 772–780. [Google Scholar] [CrossRef]
- Sadeghian, H.; Lotfi-Tokaldany, M.; Montazeri, M.; Kazemi Saeed, A.; Sahebjam, M.; Sardari, A.; Ejmalian, G. Early Improvement in Mitral Regurgitation after Cardiac Resynchronization Therapy in Cardiomyopathy Patients. J. Heart Valve Dis. 2017, 26, 557–563. [Google Scholar]
- Goland, S.; Rafique, A.M.; Mirocha, J.; Siegel, R.J.; Naqvi, T.Z. Reduction in mitral regurgitation in patients undergoing cardiac resynchronization treatment: Assessment of predictors by two-dimensional radial strain echocardiography. Echocardiography 2009, 26, 420–430. [Google Scholar] [CrossRef]
- Yu, C.M.; Fung, W.H.; Lin, H.; Zhang, Q.; Sanderson, J.E.; Lau, C.P. Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am. J. Cardiol. 2003, 91, 684–688. [Google Scholar] [CrossRef]
- Sénéchal, M.; Lancellotti, P.; Garceau, P.; Champagne, J.; Dubois, M.; Magne, J.; Blier, L.; Molin, F.; Philippon, F.; Dumesnil, J.G.; et al. Usefulness and limitation of dobutamine stress echocardiography to predict acute response to cardiac resynchronization therapy. Echocardiography 2010, 27, 50–57. [Google Scholar] [CrossRef]
- Onishi, T.; Onishi, T.; Marek, J.J.; Ahmed, M.; Haberman, S.C.; Oyenuga, O.; Adelstein, E.; Schwartzman, D.; Saba, S.; Gorcsan, J., III. Mechanistic features associated with improvement in mitral regurgitation after cardiac resynchronization therapy and their relation to long-term patient outcome. Circ. Heart Fail. 2013, 6, 685–693. [Google Scholar] [CrossRef] [Green Version]
Predictor Category | Predictors of MR Improvement | Reference |
---|---|---|
Clinical parameters | ΔQRS (at least 20 ms) after CRT | [61] |
QRS narrowing after CRT | [62] | |
Older age | [63] | |
Baseline longer QRS duration | [63] | |
Echo imaging | Combination of the presence of MR and viability in the region of the pacing | [39] |
baseline tenting area < 3.8 cm | [51] | |
MR at baseline | [54] | |
Change in MR at 3-month follow-up | [54] | |
Increase of %10 LVEF | [55] | |
Baseline tenting area | [62] | |
Septal-lateral delay by TDI | [63] | |
measurement of systolic dyssynchrony by TDI | [64] | |
Time to- peak 2-DRS between inferior and anterior LV segments of >110 ms | [65] | |
preserved radial strain in posterior segments assessed by 2-DRS | [65] | |
MR jet area/left atrium area ratio<40% | [65] | |
anteroseptal to posterior wall radial strain dyssynchrony >200 ms | [66] | |
lack of severe left ventricular dilatation (end-systolic dimension index <29 mm/m2 ) | [66] | |
lack of echocardiographic scar at papillary muscle insertion sites | [66] | |
Predictors of Lack of MR Improvement | ||
Clinical parameters | Chronic AF | [55] |
Echo/CT imaging | MR at baseline | [54] |
Change in MR at 3-month follow-up | [54] | |
Baseline moderate MR | [55] | |
≥25% of LVWT <6 mm inclusive of at least one papillary muscle insertion using CT | [67] | |
Biomarkers | Higher levels of galectin 3 | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, E.; Russo, G.; Cassese, M.; Braccio, M.; Carella, M.; Compagnucci, P.; Dello Russo, A.; Casella, M. The Role of Cardiac Resynchronization Therapy for the Management of Functional Mitral Regurgitation. Cells 2022, 11, 2407. https://doi.org/10.3390/cells11152407
Russo E, Russo G, Cassese M, Braccio M, Carella M, Compagnucci P, Dello Russo A, Casella M. The Role of Cardiac Resynchronization Therapy for the Management of Functional Mitral Regurgitation. Cells. 2022; 11(15):2407. https://doi.org/10.3390/cells11152407
Chicago/Turabian StyleRusso, Eleonora, Giulio Russo, Mauro Cassese, Maurizio Braccio, Massimo Carella, Paolo Compagnucci, Antonio Dello Russo, and Michela Casella. 2022. "The Role of Cardiac Resynchronization Therapy for the Management of Functional Mitral Regurgitation" Cells 11, no. 15: 2407. https://doi.org/10.3390/cells11152407
APA StyleRusso, E., Russo, G., Cassese, M., Braccio, M., Carella, M., Compagnucci, P., Dello Russo, A., & Casella, M. (2022). The Role of Cardiac Resynchronization Therapy for the Management of Functional Mitral Regurgitation. Cells, 11(15), 2407. https://doi.org/10.3390/cells11152407