Update on the Molecular Aspects and Methods Underlying the Complex Architecture of FSHD
Abstract
:1. Introduction
2. Genetic Aspects of FSHD
3. Epigenetic Features of FSHD
3.1. DNA Methylation Status of D4Z4 Array
3.2. Additional Factors Involved in the Epigenetic Changes at the D4Z4 Array
3.3. Altered miRNAs in FSHD
4. Transcriptome Profiling and Single-Cell Approaches in FSHD
4.1. DUX4 Signatures and Transcriptome Analyses
4.2. Single-Cell and Single-Nucleus Transcriptome Analyses
5. Machine-Learning Application to Support the Disease Characterization and Diagnosis
5.1. Artificial Intelligence (AI) and Machine Learning (ML) in Medicine
5.2. Existing Artificial Intelligence Applications to FSHD
5.3. Multi-Source Data Integration in AI for Medicine and FSHD Research
6. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schepelmann, K.; Winter, Y.; Spottke, A.E.; Claus, D.; Grothe, C.; Schröder, R.; Heuss, D.; Vielhaber, S.; Mylius, V.; Kiefer, R.; et al. Socioeconomic Burden of Amyotrophic Lateral Sclerosis, Myasthenia Gravis and Facioscapulohumeral Muscular Dystrophy. J. Neurol. 2010, 257, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; DeSimone, A.; Lek, M.; Lek, A. Therapeutic Approaches in Facioscapulohumeral Muscular Dystrophy. Trends Mol. Med. 2021, 27, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Goossens, R.; van Engelen, B.; van der Maarel, S.M. Consequences of Epigenetic Derepression in Facioscapulohumeral Muscular Dystrophy. Clin. Genet. 2020, 97, 799–814. [Google Scholar] [CrossRef]
- Bettio, C.; Salsi, V.; Orsini, M.; Calanchi, E.; Magnotta, L.; Gagliardelli, L.; Kinoshita, J.; Bergamaschi, S.; Tupler, R. The Italian National Registry for FSHD: An Enhanced Data Integration and an Analytics Framework towards Smart Health Care and Precision Medicine for a Rare Disease. Orphanet J. Rare Dis. 2021, 16, 470. [Google Scholar] [CrossRef]
- DeSimone, A.M.; Pakula, A.; Lek, A.; Emerson, C.P. Facioscapulohumeral Muscular Dystrophy. Compr. Physiol. 2017, 7, 1229–1279. [Google Scholar] [CrossRef] [PubMed]
- Lemmers, R.J.L.F.; Wohlgemuth, M.; van der Gaag, K.J.; van der Vliet, P.J.; van Teijlingen, C.M.M.; de Knijff, P.; Padberg, G.W.; Frants, R.R.; van der Maarel, S.M. Specific Sequence Variations within the 4q35 Region Are Associated with Facioscapulohumeral Muscular Dystrophy. Am. J. Hum. Genet. 2007, 81, 884–894. [Google Scholar] [CrossRef]
- Wallace, L.M.; Garwick, S.E.; Mei, W.; Belayew, A.; Coppee, F.; Ladner, K.J.; Guttridge, D.; Yang, J.; Harper, S.Q. DUX4, a Candidate Gene for Facioscapulohumeral Muscular Dystrophy, Causes P53-Dependent Myopathy in Vivo. Ann. Neurol. 2011, 69, 540–552. [Google Scholar] [CrossRef]
- Bosnakovski, D.; Gearhart, M.D.; Toso, E.A.; Recht, O.O.; Cucak, A.; Jain, A.K.; Barton, M.C.; Kyba, M. P53-Independent DUX4 Pathology in Cell and Animal Models of Facioscapulohumeral Muscular Dystrophy. Dis. Model. Mech. 2017, 10, 1211–1216. [Google Scholar] [CrossRef]
- Shadle, S.C.; Zhong, J.W.; Campbell, A.E.; Conerly, M.L.; Jagannathan, S.; Wong, C.-J.; Morello, T.D.; van der Maarel, S.M.; Tapscott, S.J. DUX4-Induced DsRNA and MYC MRNA Stabilization Activate Apoptotic Pathways in Human Cell Models of Facioscapulohumeral Dystrophy. PLoS Genet. 2017, 13, e1006658. [Google Scholar] [CrossRef]
- Zampatti, S.; Colantoni, L.; Strafella, C.; Galota, R.; Caputo, V.; Campoli, G.; Pagliaroli, G.; Carboni, S.; Mela, J.; Peconi, C.; et al. Facioscapulohumeral Muscular Dystrophy (FSHD) Molecular Diagnosis: From Traditional Technology to the NGS Era. Neurogenetics 2019, 20, 57–64. [Google Scholar] [CrossRef]
- Goecks, J.; Jalili, V.; Heiser, L.M.; Gray, J.W. How Machine Learning Will Transform Biomedicine. Cell 2020, 181, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Himeda, C.L.; Jones, P.L. The Genetics and Epigenetics of Facioscapulohumeral Muscular Dystrophy. Annu. Rev. Genom. Hum. Genet. 2019, 20, 265–291. [Google Scholar] [CrossRef] [PubMed]
- Lemmers, R.J.L.F.; van der Wielen, M.J.R.; Bakker, E.; Frants, R.R.; van der Maarel, S.M. Rapid and Accurate Diagnosis of Facioscapulohumeral Muscular Dystrophy. Neuromuscul. Disord. 2006, 16, 615–617. [Google Scholar] [CrossRef] [PubMed]
- de Greef, J.C.; Lemmers, R.J.L.F.; van Engelen, B.G.M.; Sacconi, S.; Venance, S.L.; Frants, R.R.; Tawil, R.; van der Maarel, S.M. Common Epigenetic Changes of D4Z4 in Contraction-Dependent and Contraction-Independent FSHD. Hum. Mutat. 2009, 30, 1449–1459. [Google Scholar] [CrossRef]
- Lemmers, R.J.F.L.; Wohlgemuth, M.; Frants, R.R.; Padberg, G.W.; Morava, E.; van der Maarel, S.M. Contractions of D4Z4 on 4qB Subtelomeres Do Not Cause Facioscapulohumeral Muscular Dystrophy. Am. J. Hum. Genet. 2004, 75, 1124–1130. [Google Scholar] [CrossRef]
- Statland, J.M.; Tawil, R. Facioscapulohumeral Muscular Dystrophy. Continuum 2016, 22, 1916–1931. [Google Scholar] [CrossRef]
- Schätzl, T.; Kaiser, L.; Deigner, H.-P. Facioscapulohumeral Muscular Dystrophy: Genetics, Gene Activation and Downstream Signalling with Regard to Recent Therapeutic Approaches: An Update. Orphanet J. Rare Dis. 2021, 16, 129. [Google Scholar] [CrossRef]
- Lemmers, R.J.L.F. Analyzing Copy Number Variation Using Pulsed-Field Gel Electrophoresis: Providing a Genetic Diagnosis for FSHD1. In Genotyping; Methods in Molecular Biology; White, S.J., Cantsilieris, S., Eds.; Springer: New York, NY, USA, 2017; Volume 1492, pp. 107–125. ISBN 978-1-4939-6440-6. [Google Scholar]
- Nguyen, K.; Broucqsault, N.; Chaix, C.; Roche, S.; Robin, J.D.; Vovan, C.; Gerard, L.; Mégarbané, A.; Urtizberea, J.A.; Bellance, R.; et al. Deciphering the Complexity of the 4q and 10q Subtelomeres by Molecular Combing in Healthy Individuals and Patients with Facioscapulohumeral Dystrophy. J. Med. Genet. 2019, 56, 590–601. [Google Scholar] [CrossRef]
- Lebofsky, R.; Bensimon, A. Single DNA Molecule Analysis: Applications of Molecular Combing. Brief. Funct. Genom. Proteom. 2003, 1, 385–396. [Google Scholar] [CrossRef]
- Nguyen, K.; Puppo, F.; Roche, S.; Gaillard, M.-C.; Chaix, C.; Lagarde, A.; Pierret, M.; Vovan, C.; Olschwang, S.; Salort-Campana, E.; et al. Molecular Combing Reveals Complex 4q35 Rearrangements in Facioscapulohumeral Dystrophy. Hum. Mutat. 2017, 38, 1432–1441. [Google Scholar] [CrossRef]
- Vasale, J.; Boyar, F.; Jocson, M.; Sulcova, V.; Chan, P.; Liaquat, K.; Hoffman, C.; Meservey, M.; Chang, I.; Tsao, D.; et al. Molecular Combing Compared to Southern Blot for Measuring D4Z4 Contractions in FSHD. Neuromuscul. Disord. 2015, 25, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Lam, E.T.; Hastie, A.; Lin, C.; Ehrlich, D.; Das, S.K.; Austin, M.D.; Deshpande, P.; Cao, H.; Nagarajan, N.; Xiao, M.; et al. Genome Mapping on Nanochannel Arrays for Structural Variation Analysis and Sequence Assembly. Nat. Biotechnol. 2012, 30, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Li, P.; Wang, Z.; Liang, F.; Yang, F.; Fang, L.; Huang, Y.; Huang, S.; Zhou, J.; Wang, D.; et al. Single-Molecule Optical Mapping Enables Quantitative Measurement of D4Z4 Repeats in Facioscapulohumeral Muscular Dystrophy (FSHD). J. Med. Genet. 2020, 57, 109–120. [Google Scholar] [CrossRef] [PubMed]
- van den Boogaard, M.L.; Lemmers, R.J.L.F.; Balog, J.; Wohlgemuth, M.; Auranen, M.; Mitsuhashi, S.; van der Vliet, P.J.; Straasheijm, K.R.; van den Akker, R.F.P.; Kriek, M.; et al. Mutations in DNMT3B Modify Epigenetic Repression of the D4Z4 Repeat and the Penetrance of Facioscapulohumeral Dystrophy. Am. J. Hum. Genet. 2016, 98, 1020–1029. [Google Scholar] [CrossRef]
- Hamanaka, K.; Šikrová, D.; Mitsuhashi, S.; Masuda, H.; Sekiguchi, Y.; Sugiyama, A.; Shibuya, K.; Lemmers, R.J.L.F.; Goossens, R.; Ogawa, M.; et al. Homozygous Nonsense.e Variant in LRIF1 Associated with Facioscapulohumeral Muscular Dystrophy. Neurology 2020, 94, e2441–e2447. [Google Scholar] [CrossRef]
- Mitsuhashi, S.; Boyden, S.E.; Estrella, E.A.; Jones, T.I.; Rahimov, F.; Yu, T.W.; Darras, B.T.; Amato, A.A.; Folkerth, R.D.; Jones, P.L.; et al. Exome Sequencing Identifies a Novel SMCHD1 Mutation in Facioscapulohumeral Muscular Dystrophy 2. Neuromuscul. Disord. 2013, 23, 975–980. [Google Scholar] [CrossRef]
- Larsen, M.; Rost, S.; El Hajj, N.; Ferbert, A.; Deschauer, M.; Walter, M.C.; Schoser, B.; Tacik, P.; Kress, W.; Müller, C.R. Diagnostic Approach for FSHD Revisited: SMCHD1 Mutations Cause FSHD2 and Act as Modifiers of Disease Severity in FSHD1. Eur. J. Hum. Genet. 2015, 23, 808–816. [Google Scholar] [CrossRef]
- Lemmers, R.J.L.F.; Tawil, R.; Petek, L.M.; Balog, J.; Block, G.J.; Santen, G.W.E.; Amell, A.M.; van der Vliet, P.J.; Almomani, R.; Straasheijm, K.R.; et al. Digenic Inheritance of an SMCHD1 Mutation and an FSHD-Permissive D4Z4 Allele Causes Facioscapulohumeral Muscular Dystrophy Type 2. Nat. Genet. 2012, 44, 1370–1374. [Google Scholar] [CrossRef]
- Lemmers, R.J.L.F.; van der Vliet, P.J.; Vreijling, J.P.; Henderson, D.; van der Stoep, N.; Voermans, N.; van Engelen, B.; Baas, F.; Sacconi, S.; Tawil, R.; et al. Cis D4Z4 Repeat Duplications Associated with Facioscapulohumeral Muscular Dystrophy Type 2. Hum. Mol. Genet. 2018, 27, 3488–3497. [Google Scholar] [CrossRef]
- Sacconi, S.; Lemmers, R.J.L.F.; Balog, J.; van der Vliet, P.J.; Lahaut, P.; van Nieuwenhuizen, M.P.; Straasheijm, K.R.; Debipersad, R.D.; Vos-Versteeg, M.; Salviati, L.; et al. The FSHD2 Gene SMCHD1 Is a Modifier of Disease Severity in Families Affected by FSHD1. Am. J. Hum. Genet. 2013, 93, 744–751. [Google Scholar] [CrossRef] [Green Version]
- Sacconi, S.; Briand-Suleau, A.; Gros, M.; Baudoin, C.; Lemmers, R.J.L.F.; Rondeau, S.; Lagha, N.; Nigumann, P.; Cambieri, C.; Puma, A.; et al. FSHD1 and FSHD2 Form a Disease Continuum. Neurology 2019, 92, e2273–e2285. [Google Scholar] [CrossRef] [PubMed]
- Lemmers, R.J.L.F.; Goeman, J.J.; van der Vliet, P.J.; van Nieuwenhuizen, M.P.; Balog, J.; Vos-Versteeg, M.; Camano, P.; Ramos Arroyo, M.A.; Jerico, I.; Rogers, M.T.; et al. Inter-Individual Differences in CpG Methylation at D4Z4 Correlate with Clinical Variability in FSHD1 and FSHD2. Hum. Mol. Genet. 2015, 24, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Huichalaf, C.; Micheloni, S.; Ferri, G.; Caccia, R.; Gabellini, D. DNA Methylation Analysis of the Macrosatellite Repeat Associated with FSHD Muscular Dystrophy at Single Nucleotide Level. PLoS ONE 2014, 9, e115278. [Google Scholar] [CrossRef] [PubMed]
- Jones, T.I.; King, O.D.; Himeda, C.L.; Homma, S.; Chen, J.C.J.; Beermann, M.L.; Yan, C.; Emerson, C.P.; Miller, J.B.; Wagner, K.R.; et al. Individual Epigenetic Status of the Pathogenic D4Z4 Macrosatellite Correlates with Disease in Facioscapulohumeral Muscular Dystrophy. Clin. Epigenetics 2015, 7, 37. [Google Scholar] [CrossRef]
- Hartweck, L.M.; Anderson, L.J.; Lemmers, R.J.; Dandapat, A.; Toso, E.A.; Dalton, J.C.; Tawil, R.; Day, J.W.; van der Maarel, S.M.; Kyba, M. A Focal Domain of Extreme Demethylation within D4Z4 in FSHD2. Neurology 2013, 80, 392–399. [Google Scholar] [CrossRef]
- Gould, T.; Jones, T.I.; Jones, P.L. Precise Epigenetic Analysis Using Targeted Bisulfite Genomic Sequencing Distinguishes FSHD1, FSHD2, and Healthy Subjects. Diagnostics 2021, 11, 1469. [Google Scholar] [CrossRef]
- Nikolic, A.; Jones, T.I.; Govi, M.; Mele, F.; Maranda, L.; Sera, F.; Ricci, G.; Ruggiero, L.; Vercelli, L.; Portaro, S.; et al. Interpretation of the Epigenetic Signature of Facioscapulohumeral Muscular Dystrophy in Light of Genotype-Phenotype Studies. Int. J. Mol. Sci. 2020, 21, 2635. [Google Scholar] [CrossRef]
- Calandra, P.; Cascino, I.; Lemmers, R.J.L.F.; Galluzzi, G.; Teveroni, E.; Monforte, M.; Tasca, G.; Ricci, E.; Moretti, F.; van der Maarel, S.M.; et al. Allele-Specific DNA Hypomethylation Characterises FSHD1 and FSHD2. J. Med. Genet. 2016, 53, 348–355. [Google Scholar] [CrossRef]
- de Greef, J.C.; Wohlgemuth, M.; Chan, O.A.; Hansson, K.B.; Smeets, D.; Frants, R.R.; Weemaes, C.M.; Padberg, G.W.; van der Maarel, S.M. Hypomethylation Is Restricted to the D4Z4 Repeat Array in Phenotypic FSHD. Neurology 2007, 69, 1018–1026. [Google Scholar] [CrossRef]
- van Overveld, P.G.M.; Lemmers, R.J.F.L.; Sandkuijl, L.A.; Enthoven, L.; Winokur, S.T.; Bakels, F.; Padberg, G.W.; van Ommen, G.-J.B.; Frants, R.R.; van der Maarel, S.M. Hypomethylation of D4Z4 in 4q-Linked and Non-4q-Linked Facioscapulohumeral Muscular Dystrophy. Nat. Genet. 2003, 35, 315–317. [Google Scholar] [CrossRef]
- Gaillard, M.-C.; Roche, S.; Dion, C.; Tasmadjian, A.; Bouget, G.; Salort-Campana, E.; Vovan, C.; Chaix, C.; Broucqsault, N.; Morere, J.; et al. Differential DNA Methylation of the D4Z4 Repeat in Patients with FSHD and Asymptomatic Carriers. Neurology 2014, 83, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Salsi, V.; Magdinier, F.; Tupler, R. Does DNA Methylation Matter in FSHD? Genes 2020, 11, 258. [Google Scholar] [CrossRef] [PubMed]
- Roche, S.; Dion, C.; Broucqsault, N.; Laberthonnière, C.; Gaillard, M.-C.; Robin, J.D.; Lagarde, A.; Puppo, F.; Vovan, C.; Chaix, C.; et al. Methylation Hotspots Evidenced by Deep Sequencing in Patients with Facioscapulohumeral Dystrophy and Mosaicism. Neurol. Genet. 2019, 5, e372. [Google Scholar] [CrossRef] [PubMed]
- Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; Skinner, M.K. Genome-Wide Mapping of DNA Methylation 5mC by Methylated DNA Immunoprecipitation (MeDIP)-Sequencing. Methods Mol. Biol. 2021, 2198, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Vizoso, M.; Esteller, M. The Activatory Long Non-Coding RNA DBE-T Reveals the Epigenetic Etiology of Facioscapulohumeral Muscular Dystrophy. Cell Res. 2012, 22, 1413–1415. [Google Scholar] [CrossRef]
- Cabianca, D.S.; Casa, V.; Bodega, B.; Xynos, A.; Ginelli, E.; Tanaka, Y.; Gabellini, D. A Long NcRNA Links Copy Number Variation to a Polycomb/Trithorax Epigenetic Switch in FSHD Muscular Dystrophy. Cell 2012, 149, 819–831. [Google Scholar] [CrossRef]
- Balog, J.; Thijssen, P.E.; de Greef, J.C.; Shah, B.; van Engelen, B.G.M.; Yokomori, K.; Tapscott, S.J.; Tawil, R.; van der Maarel, S.M. Correlation Analysis of Clinical Parameters with Epigenetic Modifications in the DUX4 Promoter in FSHD. Epigenetics 2012, 7, 579–584. [Google Scholar] [CrossRef]
- Zeng, W.; de Greef, J.C.; Chen, Y.-Y.; Chien, R.; Kong, X.; Gregson, H.C.; Winokur, S.T.; Pyle, A.; Robertson, K.D.; Schmiesing, J.A.; et al. Specific Loss of Histone H3 Lysine 9 Trimethylation and HP1gamma/Cohesin Binding at D4Z4 Repeats Is Associated with Facioscapulohumeral Dystrophy (FSHD). PLoS Genet. 2009, 5, e1000559. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, Y.-Y.; Newkirk, D.A.; Wu, B.; Balog, J.; Kong, X.; Ball, A.R.; Zanotti, S.; Tawil, R.; Hashimoto, N.; et al. Genetic and Epigenetic Characteristics of FSHD-Associated 4q and 10q D4Z4 That Are Distinct from Non-4q/10q D4Z4 Homologs. Hum. Mutat. 2014, 35, 998–1010. [Google Scholar] [CrossRef]
- Bannister, A.J.; Zegerman, P.; Partridge, J.F.; Miska, E.A.; Thomas, J.O.; Allshire, R.C.; Kouzarides, T. Selective Recognition of Methylated Lysine 9 on Histone H3 by the HP1 Chromo Domain. Nature 2001, 410, 120–124. [Google Scholar] [CrossRef]
- Lachner, M.; O’Carroll, D.; Rea, S.; Mechtler, K.; Jenuwein, T. Methylation of Histone H3 Lysine 9 Creates a Binding Site for HP1 Proteins. Nature 2001, 410, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, A.; Pesant, M.; Sinha, S.; Marasca, F.; Sala, E.; Gregoretti, F.; Antonelli, L.; Oliva, G.; Chiereghin, C.; Soldà, G.; et al. 4q-D4Z4 Chromatin Architecture Regulates the Transcription of Muscle Atrophic Genes in Facioscapulohumeral Muscular Dystrophy. Genome Res. 2019, 29, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.S. CTCF as a Boundary Factor for Cohesin-Mediated Loop Extrusion: Evidence for a Multi-Step Mechanism. Nucleus 2020, 11, 132–148. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, A.; Rival-Gervier, S.; Boussouar, A.; Foerster, A.M.; Rondier, D.; Sacconi, S.; Desnuelle, C.; Gilson, E.; Magdinier, F. The D4Z4 Macrosatellite Repeat Acts as a CTCF and A-Type Lamins-Dependent Insulator in Facio-Scapulo-Humeral Dystrophy. PLoS Genet. 2009, 5, e1000394. [Google Scholar] [CrossRef] [PubMed]
- Haynes, P.; Bomsztyk, K.; Miller, D.G. Sporadic DUX4 Expression in FSHD Myocytes Is Associated with Incomplete Repression by the PRC2 Complex and Gain of H3K9 Acetylation on the Contracted D4Z4 Allele. Epigenetics Chromatin 2018, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.E.; Shadle, S.C.; Jagannathan, S.; Lim, J.-W.; Resnick, R.; Tawil, R.; van der Maarel, S.M.; Tapscott, S.J. NuRD and CAF-1-Mediated Silencing of the D4Z4 Array Is Modulated by DUX4-Induced MBD3L Proteins. Elife 2018, 7, e31023. [Google Scholar] [CrossRef] [PubMed]
- Goossens, R.; Tihaya, M.S.; van den Heuvel, A.; Tabot-Ndip, K.; Willemsen, I.M.; Tapscott, S.J.; González-Prieto, R.; Chang, J.-G.; Vertegaal, A.C.O.; Balog, J.; et al. A Proteomics Study Identifying Interactors of the FSHD2 Gene Product SMCHD1 Reveals RUVBL1-Dependent DUX4 Repression. Sci. Rep. 2021, 11, 23642. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.E.; Oliva, J.; Yates, M.P.; Zhong, J.W.; Shadle, S.C.; Snider, L.; Singh, N.; Tai, S.; Hiramuki, Y.; Tawil, R.; et al. BET Bromodomain Inhibitors and Agonists of the Beta-2 Adrenergic Receptor Identified in Screens for Compounds That Inhibit DUX4 Expression in FSHD Muscle Cells. Skelet. Muscle 2017, 7, 16. [Google Scholar] [CrossRef]
- Nunes, A.M.; Ramirez, M.; Jones, T.I.; Jones, P.L. Identification of Candidate MiRNA Biomarkers for Facioscapulohumeral Muscular Dystrophy Using DUX4-Based Mouse Models. Dis. Model. Mech. 2021, 14, dmm049016. [Google Scholar] [CrossRef]
- Harafuji, N.; Schneiderat, P.; Walter, M.C.; Chen, Y.-W. MiR-411 Is up-Regulated in FSHD Myoblasts and Suppresses Myogenic Factors. Orphanet J. Rare Dis. 2013, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, P.; Stankevicins, L.; Ansseau, E.; Petrov, A.; Barat, A.; Dessen, P.; Robert, T.; Turki, A.; Lazar, V.; Labourer, E.; et al. Defective Regulation of MicroRNA Target Genes in Myoblasts from Facioscapulohumeral Dystrophy Patients. J. Biol. Chem. 2013, 288, 34989–35002. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, V.; François, S.; Soldà, G.; Picco, R.; Roma, F.; Ginelli, E.; Meneveri, R. Next-Generation Sequencing Analysis of MiRNA Expression in Control and FSHD Myogenesis. PLoS ONE 2014, 9, e108411. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.Y.; Al-Kharsan, M.; Garwick-Coppens, S.E.; Chermahini, G.A.; Harper, M.A.; Palo, A.; Boudreau, R.L.; Harper, S.Q. Human MiRNA MiR-675 Inhibits DUX4 Expression and May Be Exploited as a Potential Treatment for Facioscapulohumeral Muscular Dystrophy. Nat. Commun. 2021, 12, 7128. [Google Scholar] [CrossRef] [PubMed]
- Dixit, M.; Ansseau, E.; Tassin, A.; Winokur, S.; Shi, R.; Qian, H.; Sauvage, S.; Mattéotti, C.; van Acker, A.M.; Leo, O.; et al. DUX4, a Candidate Gene of Facioscapulohumeral Muscular Dystrophy, Encodes a Transcriptional Activator of PITX1. Proc. Natl. Acad. Sci. USA 2007, 104, 18157–18162. [Google Scholar] [CrossRef]
- Rickard, A.M.; Petek, L.M.; Miller, D.G. Endogenous DUX4 Expression in FSHD Myotubes Is Sufficient to Cause Cell Death and Disrupts RNA Splicing and Cell Migration Pathways. Hum. Mol. Genet. 2015, 24, 5901–5914. [Google Scholar] [CrossRef]
- Geng, L.N.; Yao, Z.; Snider, L.; Fong, A.P.; Cech, J.N.; Young, J.M.; van der Maarel, S.M.; Ruzzo, W.L.; Gentleman, R.C.; Tawil, R.; et al. DUX4 Activates Germline Genes, Retroelements, and Immune Mediators: Implications for Facioscapulohumeral Dystrophy. Dev. Cell 2012, 22, 38–51. [Google Scholar] [CrossRef]
- Banerji, C.R.S.; Zammit, P.S. Pathomechanisms and Biomarkers in Facioscapulohumeral Muscular Dystrophy: Roles of DUX4 and PAX7. EMBO Mol. Med. 2021, 13, e13695. [Google Scholar] [CrossRef]
- Snider, L.; Geng, L.N.; Lemmers, R.J.L.F.; Kyba, M.; Ware, C.B.; Nelson, A.M.; Tawil, R.; Filippova, G.N.; van der Maarel, S.M.; Tapscott, S.J.; et al. Facioscapulohumeral Dystrophy: Incomplete Suppression of a Retrotransposed Gene. PLoS Genet. 2010, 6, e1001181. [Google Scholar] [CrossRef]
- Feng, Q.; Snider, L.; Jagannathan, S.; Tawil, R.; van der Maarel, S.M.; Tapscott, S.J.; Bradley, R.K. A Feedback Loop between Nonsense-Mediated Decay and the Retrogene DUX4 in Facioscapulohumeral Muscular Dystrophy. Elife 2015, 4, e04996. [Google Scholar] [CrossRef]
- Bosnakovski, D.; Chan, S.S.K.; Recht, O.O.; Hartweck, L.M.; Gustafson, C.J.; Athman, L.L.; Lowe, D.A.; Kyba, M. Muscle Pathology from Stochastic Low Level DUX4 Expression in an FSHD Mouse Model. Nat. Commun. 2017, 8, 550. [Google Scholar] [CrossRef] [Green Version]
- Young, J.M.; Whiddon, J.L.; Yao, Z.; Kasinathan, B.; Snider, L.; Geng, L.N.; Balog, J.; Tawil, R.; van der Maarel, S.M.; Tapscott, S.J. DUX4 Binding to Retroelements Creates Promoters That Are Active in FSHD Muscle and Testis. PLoS Genet. 2013, 9, e1003947. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Snider, L.; Balog, J.; Lemmers, R.J.L.F.; Van Der Maarel, S.M.; Tawil, R.; Tapscott, S.J. DUX4-Induced Gene Expression Is the Major Molecular Signature in FSHD Skeletal Muscle. Hum. Mol. Genet. 2014, 23, 5342–5352. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Gearhart, M.D.; Cui, Z.; Bosnakovski, D.; Kim, M.; Schennum, N.; Kyba, M. DUX4 Recruits P300/CBP through Its C-Terminus and Induces Global H3K27 Acetylation Changes. Nucleic Acids Res. 2016, 44, 5161–5173. [Google Scholar] [CrossRef] [PubMed]
- Whiddon, J.L.; Langford, A.T.; Wong, C.-J.; Zhong, J.W.; Tapscott, S.J. Conservation and Innovation in the DUX4-Family Gene Network. Nat. Genet. 2017, 49, 935–940. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.E.; Belleville, A.E.; Resnick, R.; Shadle, S.C.; Tapscott, S.J. Facioscapulohumeral Dystrophy: Activating an Early Embryonic Transcriptional Program in Human Skeletal Muscle. Hum. Mol. Genet. 2018, 27, R153–R162. [Google Scholar] [CrossRef] [PubMed]
- van der Maarel, S.M.; Miller, D.G.; Tawil, R.; Filippova, G.N.; Tapscott, S.J. Facioscapulohumeral Muscular Dystrophy: Consequences of Chromatin Relaxation. Curr. Opin. Neurol. 2012, 25, 614–620. [Google Scholar] [CrossRef]
- Banerji, C.R.S.; Panamarova, M.; Hebaishi, H.; White, R.B.; Relaix, F.; Severini, S.; Zammit, P.S. PAX7 Target Genes Are Globally Repressed in Facioscapulohumeral Muscular Dystrophy Skeletal Muscle. Nat. Commun. 2017, 8, 2152. [Google Scholar] [CrossRef]
- van den Heuvel, A.; Mahfouz, A.; Kloet, S.L.; Balog, J.; van Engelen, B.G.M.; Tawil, R.; Tapscott, S.J.; van der Maarel, S.M. Single-Cell RNA Sequencing in Facioscapulohumeral Muscular Dystrophy Disease Etiology and Development. Hum. Mol. Genet. 2019, 28, 1064–1075. [Google Scholar] [CrossRef]
- Banerji, C.R.S.; Zammit, P.S. PAX7 Target Gene Repression Is a Superior FSHD Biomarker than DUX4 Target Gene Activation, Associating with Pathological Severity and Identifying FSHD at the Single-Cell Level. Hum. Mol. Genet. 2019, 28, 2224–2236. [Google Scholar] [CrossRef]
- Rahimov, F.; King, O.D.; Leung, D.G.; Bibat, G.M.; Emerson, C.P.; Kunkel, L.M.; Wagner, K.R. Transcriptional Profiling in Facioscapulohumeral Muscular Dystrophy to Identify Candidate Biomarkers. Proc. Natl. Acad. Sci. USA 2012, 109, 16234–16239. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.H.; Friedman, S.D.; Shaw, D.; Snider, L.; Wong, C.-J.; Budech, C.B.; Poliachik, S.L.; Gove, N.E.; Lewis, L.M.; Campbell, A.E.; et al. MRI-Informed Muscle Biopsies Correlate MRI with Pathology and DUX4 Target Gene Expression in FSHD. Hum. Mol. Genet. 2019, 28, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.-J.; Wang, L.H.; Friedman, S.D.; Shaw, D.; Campbell, A.E.; Budech, C.B.; Lewis, L.M.; Lemmers, R.J.F.L.; Statland, J.M.; van der Maarel, S.M.; et al. Longitudinal Measures of RNA Expression and Disease Activity in FSHD Muscle Biopsies. Hum. Mol. Genet. 2020, 29, 1030–1043. [Google Scholar] [CrossRef] [PubMed]
- Banerji, C.R.S. PAX7 Target Gene Repression Associates with FSHD Progression and Pathology over 1 Year. Hum. Mol. Genet. 2020, 29, 2124–2133. [Google Scholar] [CrossRef]
- Gawad, C.; Koh, W.; Quake, S.R. Single-Cell Genome Sequencing: Current State of the Science. Nat. Rev. Genet. 2016, 17, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Williams, K.; Kong, X.; Zeng, W.; Nguyen, N.V.; Ma, X.; Tawil, R.; Yokomori, K.; Mortazavi, A. Single-Nucleus RNA-Seq Identifies Divergent Populations of FSHD2 Myotube Nuclei. PLoS Genet. 2020, 16, e1008754. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. MRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nat. Methods 2009, 6, 377–382. [Google Scholar] [CrossRef]
- Yuan, G.-C.; Cai, L.; Elowitz, M.; Enver, T.; Fan, G.; Guo, G.; Irizarry, R.; Kharchenko, P.; Kim, J.; Orkin, S.; et al. Challenges and Emerging Directions in Single-Cell Analysis. Genome Biol. 2017, 18, 84. [Google Scholar] [CrossRef]
- Hedlund, E.; Deng, Q. Single-Cell RNA Sequencing: Technical Advancements and Biological Applications. Mol. Asp. Med. 2018, 59, 36–46. [Google Scholar] [CrossRef]
- Hwang, B.; Lee, J.H.; Bang, D. Single-Cell RNA Sequencing Technologies and Bioinformatics Pipelines. Exp. Mol. Med. 2018, 50, 1–14. [Google Scholar] [CrossRef]
- Eberwine, J.; Sul, J.-Y.; Bartfai, T.; Kim, J. The Promise of Single-Cell Sequencing. Nat. Methods 2014, 11, 25–27. [Google Scholar] [CrossRef]
- Blainey, P.C.; Quake, S.R. Dissecting Genomic Diversity, One Cell at a Time. Nat. Methods 2014, 11, 19–21. [Google Scholar] [CrossRef] [PubMed]
- Sandberg, R. Entering the Era of Single-Cell Transcriptomics in Biology and Medicine. Nat. Methods 2014, 11, 22–24. [Google Scholar] [CrossRef]
- Spitzer, M.H.; Nolan, G.P. Mass Cytometry: Single Cells, Many Features. Cell 2016, 165, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Zenobi, R. Single-Cell Metabolomics: Analytical and Biological Perspectives. Science 2013, 342, 1243259. [Google Scholar] [CrossRef]
- Wang, Y.; Navin, N.E. Advances and Applications of Single-Cell Sequencing Technologies. Mol. Cell 2015, 58, 598–609. [Google Scholar] [CrossRef]
- Gao, S. Data Analysis in Single-Cell Transcriptome Sequencing. Methods Mol. Biol. 2018, 1754, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Daman, K.; Chen, J.J.; Shi, M.-J.; Yan, J.; Matijasevic, Z.; Rickard, A.M.; Bennett, M.H.; Kiselyov, A.; Zhou, H.; et al. IMyoblasts for Ex Vivo and in Vivo Investigations of Human Myogenesis and Disease Modeling. Elife 2022, 11, e70341. [Google Scholar] [CrossRef]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The Dynamics and Regulators of Cell Fate Decisions Are Revealed by Pseudotemporal Ordering of Single Cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Saelens, W.; Cannoodt, R.; Todorov, H.; Saeys, Y. A Comparison of Single-Cell Trajectory Inference Methods. Nat. Biotechnol. 2019, 37, 547–554. [Google Scholar] [CrossRef]
- Slovin, S.; Carissimo, A.; Panariello, F.; Grimaldi, A.; Bouché, V.; Gambardella, G.; Cacchiarelli, D. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview. Methods Mol. Biol. 2021, 2284, 343–365. [Google Scholar] [CrossRef]
- Banerji, C.R.S.; Panamarova, M.; Zammit, P.S. DUX4 Expressing Immortalized FSHD Lymphoblastoid Cells Express Genes Elevated in FSHD Muscle Biopsies, Correlating with the Early Stages of Inflammation. Hum. Mol. Genet. 2020, 29, 2285–2299. [Google Scholar] [CrossRef] [PubMed]
- Signorelli, M.; Mason, A.G.; Mul, K.; Evangelista, T.; Mei, H.; Voermans, N.; Tapscott, S.J.; Tsonaka, R.; van Engelen, B.G.M.; van der Maarel, S.M.; et al. Evaluation of Blood Gene Expression Levels in Facioscapulohumeral Muscular Dystrophy Patients. Sci. Rep. 2020, 10, 17547. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Briganti, G.; Le Moine, O. Artificial Intelligence in Medicine: Today and Tomorrow. Front. Med. 2020, 7, 27. [Google Scholar] [CrossRef]
- Hao, X.; Luo, H.; Krawczyk, M.; Wei, W.; Wang, W.; Wang, J.; Flagg, K.; Hou, J.; Zhang, H.; Yi, S.; et al. DNA Methylation Markers for Diagnosis and Prognosis of Common Cancers. Proc. Natl. Acad. Sci. USA 2017, 114, 7414–7419. [Google Scholar] [CrossRef]
- Maros, M.E.; Capper, D.; Jones, D.T.W.; Hovestadt, V.; von Deimling, A.; Pfister, S.M.; Benner, A.; Zucknick, M.; Sill, M. Machine Learning Workflows to Estimate Class Probabilities for Precision Cancer Diagnostics on DNA Methylation Microarray Data. Nat. Protoc. 2020, 15, 479–512. [Google Scholar] [CrossRef]
- Crowgey, E.L.; Marsh, A.G.; Robinson, K.G.; Yeager, S.K.; Akins, R.E. Epigenetic Machine Learning: Utilizing DNA Methylation Patterns to Predict Spastic Cerebral Palsy. BMC Bioinform. 2018, 19, 225. [Google Scholar] [CrossRef]
- Schaefer, J.; Lehne, M.; Schepers, J.; Prasser, F.; Thun, S. The Use of Machine Learning in Rare Diseases: A Scoping Review. Orphanet J. Rare Dis. 2020, 15, 145. [Google Scholar] [CrossRef]
- Yin, B.; Balvert, M.; van der Spek, R.A.A.; Dutilh, B.E.; Bohté, S.; Veldink, J.; Schönhuth, A. Using the Structure of Genome Data in the Design of Deep Neural Networks for Predicting Amyotrophic Lateral Sclerosis from Genotype. Bioinformatics 2019, 35, i538–i547. [Google Scholar] [CrossRef]
- Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stumpf, S.; Yang, G.-Z. XAI-Explainable Artificial Intelligence. Sci. Robot. 2019, 4, eaay7120. [Google Scholar] [CrossRef] [Green Version]
- Termine, A.; Fabrizio, C.; Caltagirone, C.; Petrosini, L.; on behalf of the Frontotemporal Lobar Degeneration Neuroimaging Initiative. A Reproducible Deep-Learning-Based Computer-Aided Diagnosis Tool for Frontotemporal Dementia Using MONAI and Clinica Frameworks. Life 2022, 12, 947. [Google Scholar] [CrossRef] [PubMed]
- Monforte, M.; Bortolani, S.; Torchia, E.; Cristiano, L.; Laschena, F.; Tartaglione, T.; Ricci, E.; Tasca, G. Diagnostic Magnetic Resonance Imaging Biomarkers for Facioscapulohumeral Muscular Dystrophy Identified by Machine Learning. J. Neurol 2021, 269, 2055–2063. [Google Scholar] [CrossRef]
- Katz, N.K.; Hogan, J.; Delbango, R.; Cernik, C.; Tawil, R.; Statland, J.M. Predictors of Functional Outcomes in Patients with Facioscapulohumeral Muscular Dystrophy. Brain 2021, 144, 3451–3460. [Google Scholar] [CrossRef] [PubMed]
- Felisaz, P.F.; Colelli, G.; Ballante, E.; Solazzo, F.; Paoletti, M.; Germani, G.; Santini, F.; Deligianni, X.; Bergsland, N.; Monforte, M.; et al. Texture Analysis and Machine Learning to Predict Water T2 and Fat Fraction from Non-Quantitative MRI of Thigh Muscles in Facioscapulohumeral Muscular Dystrophy. Eur. J. Radiol. 2021, 134, 109460. [Google Scholar] [CrossRef]
- Sanson, B.; Stalens, C.; Guien, C.; Villa, L.; Eng, C.; Rabarimeriarijaona, S.; Bernard, R.; Cintas, P.; Solé, G.; Tiffreau, V.; et al. Convergence of Patient- and Physician-Reported Outcomes in the French National Registry of Facioscapulohumeral Dystrophy. Orphanet J. Rare Dis. 2022, 17, 96. [Google Scholar] [CrossRef] [PubMed]
- González-Navarro, F.F.; Belanche-Muñoz, L.A.; Silva-Colón, K.A. Effective Classification and Gene Expression Profiling for the Facioscapulohumeral Muscular Dystrophy. PLoS ONE 2013, 8, e82071. [Google Scholar] [CrossRef]
- González-Navarro, F.F.; Belanche-Muñoz, L.A.; Gámez-Moreno, M.G.; Flores-Ríos, B.L.; Ibarra-Esquer, J.E.; López-Morteo, G.A. Gene Discovery for Facioscapulohumeral Muscular Dystrophy by Machine Learning Techniques. Genes Genet. Syst. 2016, 90, 343–356. [Google Scholar] [CrossRef]
- Cai, Z.; Poulos, R.C.; Liu, J.; Zhong, Q. Machine Learning for Multi-Omics Data Integration in Cancer. iScience 2022, 25, 103798. [Google Scholar] [CrossRef]
- Termine, A.; Fabrizio, C.; Strafella, C.; Caputo, V.; Petrosini, L.; Caltagirone, C.; Giardina, E.; Cascella, R. Multi-Layer Picture of Neurodegenerative Diseases: Lessons from the Use of Big Data through Artificial Intelligence. J. Pers. Med. 2021, 11, 280. [Google Scholar] [CrossRef]
- Lin, W.; Gao, Q.; Yuan, J.; Chen, Z.; Feng, C.; Chen, W.; Du, M.; Tong, T. Predicting Alzheimer’s Disease Conversion From Mild Cognitive Impairment Using an Extreme Learning Machine-Based Grading Method with Multimodal Data. Front. Aging Neurosci. 2020, 12, 77. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Wu, P.; Chen, Y.; Meng, Q.; Dawood, H.; Dawood, H. A Hierarchical Integration Deep Flexible Neural Forest Framework for Cancer Subtype Classification by Integrating Multi-Omics Data. BMC Bioinform. 2019, 20, 527. [Google Scholar] [CrossRef] [PubMed]
- Fabrizio, C.; Termine, A.; Caltagirone, C.; Sancesario, G. Artificial Intelligence for Alzheimer’s Disease: Promise or Challenge? Diagnostics 2021, 11, 1473. [Google Scholar] [CrossRef] [PubMed]
- Scionti, I.; Greco, F.; Ricci, G.; Govi, M.; Arashiro, P.; Vercelli, L.; Berardinelli, A.; Angelini, C.; Antonini, G.; Cao, M.; et al. Large-Scale Population Analysis Challenges the Current Criteria for the Molecular Diagnosis of Fascioscapulohumeral Muscular Dystrophy. Am. J. Hum. Genet. 2012, 90, 628–635. [Google Scholar] [CrossRef]
- Cascella, R.; Strafella, C.; Caputo, V.; Galota, R.; Errichiello, V.; Scutifero, M.; Petillo, R.; Marella, G.; Arcangeli, M.; Colantoni, L.; et al. Digenic Inheritance of Shortened Repeat Units of the D4Z4 Region and a Loss-of-Function Variant in SMCHD1 in a Family with FSHD. Front. Neurol. 2018, 9, 1027. [Google Scholar] [CrossRef] [PubMed]
- Tawil, R.; Storvick, D.; Feasby, T.E.; Weiffenbach, B.; Griggs, R.C. Extreme Variability of Expression in Monozygotic Twins with FSH Muscular Dystrophy. Neurology 1993, 43, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Barros-Silva, D.; Marques, C.J.; Henrique, R.; Jerónimo, C. Profiling DNA Methylation Based on Next-Generation Sequencing Approaches: New Insights and Clinical Applications. Genes 2018, 9, 429. [Google Scholar] [CrossRef]
- Giacomucci, G.; Monforte, M.; Diaz-Manera, J.; Mul, K.; Fernandez Torrón, R.; Maggi, L.; Marini Bettolo, C.; Dahlqvist, J.R.; Haberlova, J.; Camaño, P.; et al. Deep Phenotyping of Facioscapulohumeral Muscular Dystrophy Type 2 by Magnetic Resonance Imaging. Eur. J. Neurol. 2020, 27, 2604–2615. [Google Scholar] [CrossRef]
- Williams, K.; Yokomori, K.; Mortazavi, A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front. Genet. 2022, 13, 835099. [Google Scholar] [CrossRef]
Molecular Analysis | Molecular Signature | Methodology | References |
---|---|---|---|
D4Z4 sizing | DRA, 4q subtelomeric alleles and haplotypes | Southern blot + PFGE+ probes hybridization | Lemmers et al., 2007 [6], Lemmers et al., 2017 [18] |
DRA, 4q subtelomeric alleles and haplotypes, complex rearrangements | MC | Nguyen et al., 2019 [19], Nguyen et al., 2017 [21], Vasale et al., 2015 [22] | |
SMOM | Dai et al., 2020 [24] | ||
Detection of pathogenic variants within FSHD-associated genes | SMCHD1 | WES | Mitsuhashi et al., 2016 [27], Lemmers et al., 2012 [29] |
LRIF1 | Direct resequencing + WES | Hamanaka et al., 2020 [26] | |
DNMT3B | WES | van den Boogaard et al., 2016 [25] | |
DNA methylation | 5′ DUX4-ORF | BSS | Jones et al., 2015 [35], Gould et al., 2021 [37], Calandra et al., 2017 [39], Gaillard et al., 2014 [42], Roche et al., 2019 [44] |
MSRE | Lemmers et al., 2015 [33], Nikolic et al., 2020 [38] | ||
MeDIP | Gaillard et al., 2014 [42] | ||
D4Z4 RU | BSS | Jones et al., 2015 [35], Gould et al., 2021 [37], Calandra et al., 2017 [39], Gaillard et al., 2014 [42], Roche et al., 2019 [44] | |
DUX4 promoter | MeDIP | Gaillard et al., 2014 [42] | |
Distal D4Z4 region | BSS | Jones et al., 2015 [35], Gould et al., 2021 [37], Calandra et al., 2017 [39], Gaillard et al., 2014 [42], Roche et al., 2019 [44] | |
MeDIP | Gaillard et al., 2014 [42] | ||
Non-coding RNAs | lncRNA DBE-T | qRT-PCR | Cabianca et al., 2021 [47] |
Differentially expressed miRNAs | qRT-PCR | Nunes et al., 2021 [60], Harafuji et al., 2013 [61], Dmitriev et al., 2013 [62] | |
Small RNA seq | Colangelo et al., 2014 [63] | ||
Histone modifications | H3K9me3:H3K4me2 ratio | ChIP | Balog et al., 2012 [48] |
H3K9me3 | ChIP | Zeng et al., 2009 [49], Zeng et al., 2014 [50] | |
Epigenetic regulators of the D4Z4 locus | D4Z4-associated proteins | enChIP + MS | Campbell et al., 2018 [57] |
Novel SMCHD1 interacting proteins | SILAC + MS | Goossens et al., 2021 [58] | |
Spatial genome organization | D4Z4 3D organization and spatial contacts | 4C-seq | Cortesi et al., 2019 [53] |
Transcriptome | DUX4 mRNA | qRT-PCR | Dixit et al., 2007 [65], Snider et al., 2010 [69] |
DUX4 target genes | Microarray | Geng et al., 2012 [67] | |
RNA-seq | Young et al., 2013 [72], Yao et al., 2014 [73], Choi et al., 2016 [74], Banerji et al., 2017 [78], Signorelli et al., 2020 [103], Wang et al., 2019 [82] Wong et al., 2020 [83] | ||
ScRNA-seq | van den Heuvel et al., 2019 [79], Guo et al., 2022 [98] | ||
SnRNA-seq | Jiang et al., 2020 [86] | ||
PAX7 target genes | RNA-seq | Banerji et al., 2017 [78], Signorelli et al., 2020 [103], Banerji et al., 2020 [84] | |
ScRNA-seq | Banerji et al., 2019 [80] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caputo, V.; Megalizzi, D.; Fabrizio, C.; Termine, A.; Colantoni, L.; Caltagirone, C.; Giardina, E.; Cascella, R.; Strafella, C. Update on the Molecular Aspects and Methods Underlying the Complex Architecture of FSHD. Cells 2022, 11, 2687. https://doi.org/10.3390/cells11172687
Caputo V, Megalizzi D, Fabrizio C, Termine A, Colantoni L, Caltagirone C, Giardina E, Cascella R, Strafella C. Update on the Molecular Aspects and Methods Underlying the Complex Architecture of FSHD. Cells. 2022; 11(17):2687. https://doi.org/10.3390/cells11172687
Chicago/Turabian StyleCaputo, Valerio, Domenica Megalizzi, Carlo Fabrizio, Andrea Termine, Luca Colantoni, Carlo Caltagirone, Emiliano Giardina, Raffaella Cascella, and Claudia Strafella. 2022. "Update on the Molecular Aspects and Methods Underlying the Complex Architecture of FSHD" Cells 11, no. 17: 2687. https://doi.org/10.3390/cells11172687
APA StyleCaputo, V., Megalizzi, D., Fabrizio, C., Termine, A., Colantoni, L., Caltagirone, C., Giardina, E., Cascella, R., & Strafella, C. (2022). Update on the Molecular Aspects and Methods Underlying the Complex Architecture of FSHD. Cells, 11(17), 2687. https://doi.org/10.3390/cells11172687