Hierarchical Clustering and Trajectory Analyses Reveal Viremia-Independent B-Cell Perturbations in HIV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Sample Collection, HIV Status, and CD4+ T-Cell Level Determinations
2.3. Plasma HIV-1 and HIV-2 Viral Load Determinations
2.4. Plasma IgG1 and IgG3 Quantification
2.5. Plasma Protein Quantification
2.6. Flow Cytometry
2.7. Data Processing and Statistical Analysis
3. Results
3.1. Study Participants
3.2. Both HIV-1 and HIV-2 Infection Induce an Expansion of T-Bet and CD95-Expressing B-Cells
3.3. Hierarchical Clustering Analysis Shows That HIV-1 and HIV-2 Infections Induce Phenotypic Perturbations in the B-Cell Compartment
3.4. T-Bet-Expressing Hyperactivated B-Cells, Identified by Hierarchical Clustering Analysis, Distinguish Aviremic HIV-2-Infected from Seronegative Individuals
3.5. Both HIV-1 and HIV-2 Infection Promotes B-Cell Differentiation Accompanied by T-Bet Expression
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanki, P.J.; Travers, K.U.; Mboup, S.; Hsieh, C.C.; Marlink, R.G.; Gueye, N.A.; Siby, T.; Thior, I.; Avila, M.H.; Sankale, J.L.; et al. Slower heterosexual spread of HIV-2 than HIV-1. Lancet 1994, 343, 943–946. [Google Scholar] [CrossRef]
- Esbjornsson, J.; Mansson, F.; Kvist, A.; da Silva, Z.J.; Andersson, S.; Fenyo, E.M.; Isberg, P.-E.; Biague, A.J.; Lindman, J.; Palm, A.A.; et al. Long-term follow-up of HIV-2-related AIDS and mortality in Guinea-Bissau: A prospective open cohort study. Lancet HIV 2018, 6, e25–e31. [Google Scholar] [CrossRef]
- Nyamweya, S.; Hegedus, A.; Jaye, A.; Rowland-Jones, S.; Flanagan, K.L.; Macallan, D.C. Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev. Med. Virol. 2013, 23, 221–240. [Google Scholar] [CrossRef]
- Marlink, R.; Kanki, P.; Thior, I.; Travers, K.; Eisen, G.; Siby, T.; Traore, I.; Hsieh, C.C.; Dia, M.C.; Gueye, E.H.; et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. Science 1994, 265, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- van der Loeff, M.F.; Larke, N.; Kaye, S.; Berry, N.; Ariyoshi, K.; Alabi, A.; Tienen, C.V.; Leligdowicz, A.; Sarge-Njie, R.; Siliva, Z.D.; et al. Undetectable plasma viral load predicts normal survival in HIV-2-infected people in a West African village. Retrovirology 2010, 7, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, N.; Jaffar, S.; Loeff, M.S.V.D.; Ariyoshi, K.; Harding, E.; N’Gom, P.T.; Dias, F.; Wilkins, A.; Ricard, D.; Aaby, P.; et al. Low level viremia and high CD4% predict normal survival in a cohort of HIV type-2-infected villagers. AIDS Res. Hum. Retrovir. 2002, 18, 1167–1173. [Google Scholar] [CrossRef]
- Duvall, M.G.; Precopio, M.L.; Ambrozak, D.A.; Jaye, A.; McMichael, A.J.; Whittle, H.C.; Roederer, M.; Rowland-Jones, S.L.; Koup, R.A. Polyfunctional T cell responses are a hallmark of HIV-2 infection. Eur. J. Immunol. 2008, 38, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Duvall, M.G.; Jaye, A.; Dong, T.; Brenchley, J.M.; Alabi, A.S.; Jeffries, D.J.; Sande, M.V.D.; Togun, T.O.; McConkey, S.J.; Douek, D.C.; et al. Maintenance of HIV-specific CD4+ T cell help distin-guishes HIV-2 from HIV-1 infection. J. Immunol. 2006, 176, 6973–6981. [Google Scholar] [CrossRef] [Green Version]
- Leligdowicz, A.; Onyango, C.; Yindom, L.M.; Peng, Y.; Cotton, M.; Jaye, A.; McMichael, A.; Whittle, H.; Dong, T.; Rowland-Jones, S. Highly avid, oligoclonal, early-differentiated antigen-specific CD8+ T cells in chronic HIV-2 infection. Eur. J. Immunol. 2010, 40, 1963–1972. [Google Scholar] [CrossRef] [Green Version]
- de Silva, T.I.; Peng, Y.; Leligdowicz, A.; Zaidi, I.; Li, L.; Griffin, H.; Blais, M.-E.; Vincent, T.; Saraiva, M.; Yindom, L.-M.; et al. Correlates of T-cell-mediated viral control and phenotype of CD8(+) T cells in HIV-2, a naturally contained human retroviral infection. Blood 2013, 121, 4330–4339. [Google Scholar] [CrossRef]
- Sahin, G.O.; Holmgren, B.; Sheik-Khalil, E.; da Silva, Z.; Nielsen, J.; Nowroozalizadeh, S.; Mansson, F.; Norrgren, h.; Aaby, P.; Fenyo, E.M.; et al. Effect of complement on HIV-2 plasma antiviral activity is intratype specific and potent. J. Virol. 2013, 87, 273–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, G.O.; Mansson, F.; Palm, A.A.; Vincic, E.; da Silva, Z.; Medstrand, P.; Norrgren, H.; Fenyo, E.M.; Jansson, M. Frequent intratype neutralization by plasma immunoglobulin a identified in HIV type 2 infection. AIDS Res. Hum. Retrovir. 2013, 29, 470–478. [Google Scholar] [CrossRef]
- Karlsson, I.; Tingstedt, J.L.; Sahin, G.O.; Hansen, M.; Szojka, Z.; Buggert, M.; Biague, A.; Silva, Z.D.; Mansson, F.; Esbjornsson, J.; et al. Cross-Reactive Antibodies with the Capacity to Mediate HIV-1 Envelope Glycoprotein-Targeted Antibody-Dependent Cellular Cytotoxicity Identified in HIV-2-Infected Individuals. J. Infect. Dis. 2019, 219, 1749–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Silva, T.I.; Aasa-Chapman, M.; Cotton, M.; Hue, S.; Robinson, J.; Bibollet-Ruche, F.; Sarge-Njie, R.; Berry, N.; Jaye, A.; Aaby, P.; et al. Potent autologous and heterologous neutralizing antibody responses occur in HIV-2 infection across a broad range of infection outcomes. J. Virol. 2012, 86, 930–946. [Google Scholar] [CrossRef] [Green Version]
- Kong, R.; Li, H.; Bibollet-Ruche, F.; Decker, J.M.; Zheng, N.N.; Gottlieb, G.S.; Kiviat, N.B.; Sow, P.S.; Georgiev, I.; Hahn, B.H.; et al. Broad and potent neutralizing antibody responses elicited in natural HIV-2 infection. J. Virol. 2012, 86, 947–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, N.; Ariyoshi, K.; Jaffar, S.; Sabally, S.; Corrah, T.; Tedder, R.; Whittle, H. Low peripheral blood viral HIV-2 RNA in individuals with high CD4 percentage differentiates HIV-2 from HIV-1 infection. J. Hum. Virol. 1998, 1, 457–468. [Google Scholar]
- Popper, S.J.; Sarr, A.D.; Travers, K.U.; Gueye-Ndiaye, A.; Mboup, S.; Essex, M.E.; Kanki, P.J. Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. J. Infect. Dis. 1999, 180, 1116–1121. [Google Scholar] [CrossRef] [Green Version]
- Andersson, S.; Norrgren, H.; da Silva, Z.; Biague, A.; Bamba, S.; Kwok, S.; Christopherson, C.; Biberfeld, G.; Albert, J. Plasma viral load in HIV-1 and HIV-2 singly and dually infected individuals in Guinea-Bissau, West Africa: Significantly lower plasma virus set point in HIV-2 infection than in HIV-1 infection. Arch. Intern. Med. 2000, 160, 3286–3293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gueudin, M.; Damond, F.; Braun, J.; Taieb, A.; Lemee, V.; Plantier, J.C.; Chene, G.; Matheron, S.; Burn-Vezinet, F.; Simon, F. Differences in proviral DNA load between HIV-1- and HIV-2-infected patients. AIDS 2008, 22, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Buggert, M.; Frederiksen, J.; Lund, O.; Betts, M.R.; Biague, A.; Nielsen, M.; Tauriainen, J.; Norrgren, H.; Medstrand, P.; Karlsson, A.C.; et al. CD4+ T cells with an activated and exhausted phe-notype distinguish immunodeficiency during aviremic HIV-2 infection. AIDS 2016, 30, 2415–2426. [Google Scholar] [CrossRef] [Green Version]
- Honge, B.L.; Petersen, M.S.; Jespersen, S.; Medina, C.; Te, D.D.S.; Kjerulff, B.; Engell-Sorensen, T.; Madsen, T.; Laursen, A.L.; Wejse, C.; et al. T-cell and B-cell perturbations identify distinct differences in HIV-2 compared with HIV-1-induced immunodeficiency. AIDS 2019, 33, 1131–1141. [Google Scholar] [CrossRef] [PubMed]
- Ponnan, S.M.; Vidyavijayan, K.K.; Thiruvengadam, K.; Hilda, J.N.; Mathayan, M.; Murugavel, K.G.; Hanna, L.E. Role of Circulating T Fol-licular Helper Cells and Stem-Like Memory CD4(+) T Cells in the Pathogenesis of HIV-2 Infection and Disease Progression. Front. Immunol. 2021, 12, 666388. [Google Scholar] [CrossRef] [PubMed]
- Rocha, C.; Duarte, J.; Borrego, P.; Calado, R.; Marcelino, J.M.; Tendeiro, R.; Valadas, E.; Sousa, A.E.; Taveira, N. Potency of HIV-2-specific antibodies increase in direct association with loss of memory B cells. AIDS 2017, 31, 2431–2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scharf, L.; Pedersen, C.B.; Johansson, E.; Lindman, J.; Olsen, L.R.; Buggert, M.; Wilhelmson, S.; Mansson, F.; Esbjornsson, J.; Biague, A.; et al. Inverted CD8 T-Cell Exhaustion and Co-Stimulation Marker Balance Differentiate Aviremic HIV-2-Infected from Seronegative Individuals. Front. Immunol. 2021, 12, 744530. [Google Scholar] [CrossRef] [PubMed]
- Tendeiro, R.; Fernandes, S.; Foxall, R.B.; Marcelino, J.M.; Taveira, N.; Soares, R.S.; Baptista, A.P.; Cavaleiro, R.; Gomes, P.; Victorino, R.M.M.; et al. Memory B-cell depletion is a feature of HIV-2 infection even in the absence of detectable viremia. AIDS 2012, 26, 1607–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachle, S.M.; Malone, D.F.; Buggert, M.; Karlsson, A.C.; Isberg, P.E.; Biague, A.J.; Norrgren, H.; Medstrand, P.; Mool, M.; Sandberg, J.K.; et al. Elevated levels of invariant natural killer T-cell and natural killer cell activation correlate with disease progression in HIV-1 and HIV-2 infections. AIDS 2016, 30, 1713–1722. [Google Scholar] [CrossRef]
- Sousa, A.E.; Carneiro, J.; Meier-Schellersheim, M.; Grossman, Z.; Victorino, R.M. CD4 T cell depletion is linked directly to immune activation in the pathogenesis of HIV-1 and HIV-2 but only indirectly to the viral load. J. Immunol. 2002, 169, 3400–3406. [Google Scholar] [CrossRef] [Green Version]
- Knox, J.J.; Kaplan, D.E.; Betts, M.R. T-bet-expressing B cells during HIV and HCV infections. Cell Immunol. 2017, 321, 26–34. [Google Scholar] [CrossRef]
- Knox, J.J.; Buggert, M.; Kardava, L.; Seaton, K.E.; Eller, M.A.; Canaday, D.H.; Robb, M.L.; Ostrowski, M.A.; Deeks, S.G.; Slifka, M.K.; et al. T-bet+ B cells are induced by human viral infections and dominate the HIV gp140 response. JCI Insight 2017, 2, e92943. [Google Scholar] [CrossRef] [Green Version]
- Knox, J.J.; Myles, A.; Cancro, M.P. T-bet(+) memory B cells: Generation, function, and fate. Immunol. Rev. 2019, 288, 149–160. [Google Scholar] [CrossRef]
- Mansson, F.; Biague, A.; da Silva, Z.J.; Dias, F.; Nilsson, L.A.; Andersson, S.; Fenyo, E.M.; Norrgren, H. Prevalence and incidence of HIV-1 and HIV-2 before, during and after a civil war in an occupational cohort in Guinea-Bissau, West Africa. AIDS 2009, 23, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Norrgren, H.; Andersson, S.; Naucler, A.; Dias, F.; Johansson, I.; Biberfeld, G. HIV-1, HIV-2, HTLV-I/II and Treponema pallidum infections: Incidence, prevalence, and HIV-2-associated mortality in an occupational cohort in Guinea-Bissau. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1995, 9, 422–428. [Google Scholar] [CrossRef] [PubMed]
- WHO Guidelines Approved by the Guidelines Review Committee. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach, 2nd ed.; World Health Organization: Geneva, Switzerland, 2016.
- Ng, A.A.; Lee, B.T.; Teo, T.S.; Poidinger, M.; Connolly, J.E. Optimal cellular preservation for high dimensional flow cytometric analysis of multicentre trials. J. Immunol. Methods 2012, 385, 79–89. [Google Scholar] [CrossRef]
- Anglaret, X.; Diagbouga, S.; Mortier, E.; Meda, N.; Verge-Valette, V.; Sylla-Koko, F.; Cousens, S.; Laruche, G.; Ledru, E.; Bonard, D.; et al. CD4+ T-lymphocyte counts in HIV infection: Are European standards applicable to African patients? J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1997, 14, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Esbjornsson, J.; Mansson, F.; Kvist, A.; Isberg, P.E.; Biague, A.J.; da Silva, Z.J.; Marianne, J.; Maria, F.E.; Hans, N.; Patrik, M. Increased survival among HIV-1 and HIV-2 du-al-infected individuals compared to HIV-1 single-infected individuals. AIDS 2014, 28, 949–957. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Steele, E.; Awasana, A.A.; Corrah, T.; Sabally, S.; van der Sande, M.; Jaye, A.; Togun, T.; Sarge-Njie, R.; McConkey, S.J.; Whittle, H.; et al. Is HIV-2- induced AIDS different from HIV-1-associated AIDS? Data from a West African clinic. AIDS 2007, 21, 317–324. [Google Scholar] [CrossRef]
- Esbjornsson, J.; Mansson, F.; Kvist, A.; Isberg, P.E.; Nowroozalizadeh, S.; Biague, A.J.; Silva, Z.J.D.; Jansson, M.; Fenyo, E.M.; Norrgren, H.; et al. Inhibition of HIV-1 disease progression by contemporaneous HIV-2 infection. N. Engl. J. Med. 2012, 367, 224–232. [Google Scholar] [CrossRef]
- Buggert, M.; Frederiksen, J.; Noyan, K.; Svard, J.; Barqasho, B.; Sonnerborg, A.; Lund, O.; Nowak, P.; Karlsson, A.C. Multiparametric bioinformatics distinguish the CD4/CD8 ratio as a suitable laboratory predictor of combined T cell pathogenesis in HIV infection. J. Immunol. 2014, 192, 2099–2108. [Google Scholar] [CrossRef] [Green Version]
- Norrgren, H.; da Silva, Z.; Biague, A.; Andersson, S.; Biberfeld, G. Clinical progression in early and late stages of disease in a cohort of individuals infected with human immunodeficiency virus-2 in Guinea-Bissau. Scand. J. Infect Dis. 2003, 35, 265–272. [Google Scholar] [CrossRef]
- Saeys Lab GitHub Website. Available online: https://github.com/saeyslab/FlowSOM (accessed on 27 April 2022).
- Quintelier, K.; Couckuyt, A.; Emmaneel, A.; Aerts, J.; Saeys, Y.; Gassen, S.V. Analyzing high-dimensional cytometry data using FlowSOM. Nat. Protoc. 2021, 16, 3775–3801. [Google Scholar] [CrossRef]
- Gassen, S.V.; Callebaut, B.; Helden, M.J.V.; Lambrecht, B.N.; Demeester, P.; Dhaene, T.; Saeys, Y. FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data. Cytometry A 2015, 87, 636–645. [Google Scholar] [CrossRef]
- Ellis, B.; Haal, P.; Hahne, F.; Meur, N.L.; Gopalakrishnan, N.; Spidlen, J.; Jiang, M.; Finak, G. FlowCore: Basic Structures for Flow Cytometry Data. R Package Version 2.4.0. 2021. Available online: http://URL (accessed on 3 April 2022).
- Emmaneel, A. PeacoQC: Peak-Based Selection of High Quality Cytometry Data. R Package. Version 1.3.3. 2021. Available online: http://github.com/saeyslab/PeacoQC (accessed on 3 April 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 3 April 2022).
- Melville, J. uwot: The Uniform Manifold Approximation and Projection (UMAP) Method for Dimensionality Reduction. R Package Version 0.1.11. Available online: https://CRAN.R-project.org/package=uwot2021 (accessed on 3 April 2022).
- Street, K.; Risso, D.; Fletcher, R.B.; Das, D.; Ngai, J.; Yosef, N.; Purdom, E.; Dudoit, S. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 2018, 19, 477. [Google Scholar] [CrossRef] [Green Version]
- Melsen, J.E.; Dam, M.M.V.O.-T.; Lankester, A.C.; Schilham, M.W.; van den Akker, E.B. A Comprehensive Workflow for Applying Single-Cell Clustering and Pseudotime Analysis to Flow Cytometry Data. J. Immunol. 2020, 205, 864–871. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Glass, D.R.; Tsai, A.G.; Oliveria, J.P.; Hartmann, F.J.; Kimmey, S.C.; Calderon, A.A.; Borges, L.; Glass, M.C.; Wagar, L.E.; Davis, M.M.; et al. An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity. Immunity 2020, 53, 217–232.e5. [Google Scholar] [CrossRef] [PubMed]
- Sanz, I.; Wei, C.; Jenks, S.A.; Cashman, K.S.; Tipton, C.; Woodruff, M.C.; Kom, J.; Lee, F.E.-H. Challenges and Opportunities for Consistent Classi-fication of Human B Cell and Plasma Cell Populations. Front. Immunol. 2019, 10, 2458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinohara, M.L.; Jansson, M.; Hwang, E.S.; Werneck, M.B.; Glimcher, L.H.; Cantor, H. T-bet-dependent expression of osteopontin contributes to T cell polarization. Proc. Natl. Acad. Sci. USA 2005, 102, 17101–17106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louis, K.; Bailly, E.; Macedo, C.; Lau, L.; Ramaswami, B.; Chang, A.; Chandran, U.; Landsittel, D.; Gu, X.; Chalasani, G.; et al. T-bet+CD27+CD21- B cells poised for plasma cell differ-entiation during antibody-mediated rejection of kidney transplants. JCI Insight 2021, 6, e148881. [Google Scholar] [CrossRef] [PubMed]
- Eccles, J.D.; Turner, R.B.; Kirk, N.A.; Muehling, L.M.; Borish, L.; Steinke, J.W.; Payne, S.C.; Wright, P.W.; Thacker, D.; Lahtinen, S.J.; et al. T-bet+ Memory B Cells Link to Local Cross-Reactive IgG upon Human Rhinovirus Infection. Cell Rep. 2020, 30, 351–366.e7. [Google Scholar] [CrossRef] [Green Version]
- Moir, S.; Ho, J.; Malaspina, A.; Wang, W.; DiPoto, A.C.; O’Shea, M.A.; Roby, G.; Kottilil, S.; Arthos, J.; Proschan, M.A.; et al. Evidence for HIV-associated B cell exhaustion in a dys-functional memory B cell compartment in HIV-infected viremic individuals. J. Exp. Med. 2008, 205, 1797–1805. [Google Scholar] [CrossRef] [Green Version]
- Ellebedy, A.H.; Jackson, K.J.; Kissick, H.T.; Nakaya, H.I.; Davis, C.W.; Roskin, K.M.; McElroy, A.K.; Oshansky, C.M.; Elbein, r.; Thomas, S.; et al. Defining antigen-specific plasmablast and memory B cell subsets in human blood after viral infection or vaccination. Nat. Immunol. 2016, 17, 1226–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palm, A.A.; Veerla, S.; Lindman, J.; Isberg, P.-E.; Johansson, E.; Biague, A.; Mansson, F.; Norrgren, H.; Esbjornsson, J.; Medstrand, P.; et al. Interferon Alpha-Inducible Protein 27 Expression Is Linked to Disease Severity in Chronic Infection of Both HIV-1 and HIV-2. Front. Virol. 2022, 2, 49. [Google Scholar] [CrossRef]
- Liechti, T.; Kadelka, C.; Braun, D.L.; Kuster, H.; Boni, J.; Robbiani, M.; Gunthard, H.F.; Trkola, A. Widespread B cell perturbations in HIV-1 infection afflict naive and marginal zone B cells. J. Exp. Med. 2019, 216, 2071–2090. [Google Scholar] [CrossRef]
- Soares, R.S.; Tendeiro, R.; Foxall, R.B.; Baptista, A.P.; Cavaleiro, R.; Gomes, P.; Camacho, R.; Valadas, E.; Dorana, M.; Lucas, M.; et al. Cell-associated viral burden provides evidence of ongoing viral replication in aviremic HIV-2-infected patients. J. Virol. 2011, 85, 2429–2438. [Google Scholar] [CrossRef] [Green Version]
- MacNeil, A.; Sarr, A.D.; Sankale, J.L.; Meloni, S.T.; Mboup, S.; Kanki, P. Direct evidence of lower viral replication rates in vivo in human immunodeficiency virus type 2 (HIV-2) infection than in HIV-1 infection. J. Virol. 2007, 81, 5325–5330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, S.M.; Pires, A.R.; Matoso, P.; Ferreira, C.; Nunes-Cabaco, H.; Correia, L.; Valadas, E.; Pocas, J.; Pacheco, P.; Veiga-Fernandes, H.; et al. HIV-2 infection is associated with preserved GALT homeostasis and epithelial integrity despite ongoing mucosal viral replication. Mucosal Immunol. 2018, 11, 236–248. [Google Scholar] [CrossRef] [Green Version]
- Fumarola, B.; Calza, S.; Renzetti, S.; Hamad, I.E.; Pezzoli, M.C.; Izzo, I.; Antoni, M.D.; Chiesa, A.; Francesco, M.D.; Quiros-Roldan, E.; et al. Immunological Evolution of a Cohort of HIV-2 Infected Patients: Peculiarities of an Underestimated Infection. Mediterr. J. Hematol. Infect. Dis. 2022, 14, e2022016. [Google Scholar]
- Zumaquero, E.; Stone, S.L.; Scharer, C.D.; Jenks, S.A.; Nellore, A.; Mousseau, B.; Rosal-Vela, A.; Botta, D.; Bradley, J.E.; Wojciechowski, W.; et al. IFNgamma induces epigenetic programming of human T-bet(hi) B cells and promotes TLR7/8 and IL-21 induced differentiation. eLife 2019, 8, e41641. [Google Scholar] [CrossRef]
- Saelens, W.; Cannoodt, R.; Todorov, H.; Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 2019, 37, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Xu, A.; Li, J.; Wu, L.; Yu, S.; Chen, J.; Zhao, W.; Sun, X.-J.; Huang, J. CytoTree: An R/Bioconductor package for analysis and visualization of flow and mass cytometry data. BMC Bioinform. 2021, 22, 138. [Google Scholar] [CrossRef]
Characteristic | Viremic HIV-1 b | ART HIV-1 c | Viremic HIV-2 d | Aviremic HIV-2 e | HIV Seronegative |
---|---|---|---|---|---|
Numbers (female/male) | 8 (3/5) | 7 (3/4) | 8 (0/8) | 12 (3/9) | 25 (9/16) |
Age in years f | 46 (42–50) | 45 (42–55) | 57 (55–60) | 58 (51–60) | 56 (51–61) |
% CD4+ T-cells of lymphocytes f | 10 (6–12) | 32 (18–36) | 14 (13–15) | 33 (25–36) | 39 (38–45) |
CD4+ T-cells (cells/µL) f | 239 (124–321) | 537 (322–767) | 267 (205–440) | 557 (416–957) | 924 (859–1204) |
Viral load (copies/mm3) f,g | 35,963 (24,652–50,144) | <75 (<75) | 2966 (1048–7857) | <75 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johansson, E.; Kerkman, P.F.; Scharf, L.; Lindman, J.; Szojka, Z.I.; Månsson, F.; Biague, A.; Medstrand, P.; Norrgren, H.; Buggert, M.; et al. Hierarchical Clustering and Trajectory Analyses Reveal Viremia-Independent B-Cell Perturbations in HIV-2 Infection. Cells 2022, 11, 3142. https://doi.org/10.3390/cells11193142
Johansson E, Kerkman PF, Scharf L, Lindman J, Szojka ZI, Månsson F, Biague A, Medstrand P, Norrgren H, Buggert M, et al. Hierarchical Clustering and Trajectory Analyses Reveal Viremia-Independent B-Cell Perturbations in HIV-2 Infection. Cells. 2022; 11(19):3142. https://doi.org/10.3390/cells11193142
Chicago/Turabian StyleJohansson, Emil, Priscilla F. Kerkman, Lydia Scharf, Jacob Lindman, Zsófia I. Szojka, Fredrik Månsson, Antonio Biague, Patrik Medstrand, Hans Norrgren, Marcus Buggert, and et al. 2022. "Hierarchical Clustering and Trajectory Analyses Reveal Viremia-Independent B-Cell Perturbations in HIV-2 Infection" Cells 11, no. 19: 3142. https://doi.org/10.3390/cells11193142
APA StyleJohansson, E., Kerkman, P. F., Scharf, L., Lindman, J., Szojka, Z. I., Månsson, F., Biague, A., Medstrand, P., Norrgren, H., Buggert, M., Karlsson, A. C., Forsell, M. N. E., Esbjörnsson, J., Jansson, M., & the SWEGUB CORE Group. (2022). Hierarchical Clustering and Trajectory Analyses Reveal Viremia-Independent B-Cell Perturbations in HIV-2 Infection. Cells, 11(19), 3142. https://doi.org/10.3390/cells11193142