Sperm Numbers as a Paternity Guard in a Wild Bird
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Species, Population Monitoring, and Sample Collection
2.2. Sperm Morphology and Sperm Numbers
2.3. Genetic Paternity Analysis
2.4. Socio-Ecological Factors
2.5. Statistical Analyses
3. Results
3.1. Genetic Parentage
3.2. Sperm Morphology and Cloacal Protuberance Volume in the Red-Backed Fairy-Wren
3.3. Sperm Traits and Paternity Success
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parker, G.A. Sperm competition and its evolutionary consequences in the insects. Biol. Rev. 1970, 45, 525–567. [Google Scholar] [CrossRef]
- Parker, G.A. Conceptual Developments in Sperm Competition: A Very Brief Synopsis. Philos. Trans. R. Soc. B: Biol. Sci. 2020, 375, 20200061. [Google Scholar] [CrossRef] [PubMed]
- Eberhard, W.G. Female Control: Sexual Selection by Cryptic Female Choice; Monographs in Behavior and Ecology; Princeton University Press: Princeton, NJ, USA, 1996; ISBN 0-691-01084-6. [Google Scholar]
- Firman, R.C.; Gasparini, C.; Manier, M.K.; Pizzari, T. Postmating Female Control: 20 Years of Cryptic Female Choice. Trends Ecol. Evol. 2017, 32, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.P. Sperm Competition and Sexual Selection. In Sperm Competition and Sexual Selection; Birkhead, T.R., Møller, A.P., Eds.; Academic Press: Cambridge, MA, USA, 1998; pp. 55–90. [Google Scholar]
- Simmons, L.W. Sperm Competition and It’s Evolutionary Consequences in the Insects; Monographs in Behavior and Ecology; Princeton University Press: Princeton, NJ, USA, 2001. [Google Scholar]
- Møller, A.P. Testes Size, Ejaculate Quality and Sperm Competition in Birds. Biol. J. Linn. Soc. 1988, 33, 273–283. [Google Scholar] [CrossRef]
- Harcourt, A.H.; Purvis, A.; Liles, L. Sperm Competition: Mating System, Not Breeding Season, Affects Testes Size of Primates. Funct. Ecol. 1995, 9, 468–476. [Google Scholar] [CrossRef]
- Hosken, D.J. Sperm Competition in Bats. Proc. R. Soc. Lond. B 1997, 264, 385–392. [Google Scholar] [CrossRef]
- Stockley, P.; Gage, M.J.G.; Parker, G.A.; Møller, A.P. Sperm Competition in Fishes: The Evolution of Testis Size and Ejaculate Characteristics. Am Nat 1997, 149, 933–954. [Google Scholar] [CrossRef]
- Byrne, P.G.; Roberts, J.D.; Simmons, L.W. Sperm Competition Selects for Increased Testes Mass in Australian Frogs. J. Evol. Biol. 2002, 15, 347–355. [Google Scholar] [CrossRef]
- Lüpold, S.; de Boer, R.A.; Evans, J.P.; Tomkins, J.L.; Fitzpatrick, J.L. How Sperm Competition Shapes the Evolution of Testes and Sperm: A Meta-Analysis. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20200064. [Google Scholar] [CrossRef]
- Lüpold, S.; Linz, G.M.; Rivers, J.W.; Westneat, D.F.; Birkhead, T.R. Sperm Competition Selects beyond Relative Testes Size in Birds. Evolution 2009, 63, 391–402. [Google Scholar] [CrossRef]
- Rowe, M.; Pruett-Jones, S. Sperm Competition Selects for Sperm Quantity and Quality in the Australian Maluridae. PLoS ONE 2011, 6, e15720. [Google Scholar] [CrossRef]
- Ramm, S.A.; Stockley, P. Sperm Competition and Sperm Length Influence the Rate of Mammalian Spermatogenesis. Biol. Lett. 2010, 6, 219–221. [Google Scholar] [CrossRef]
- Lüpold, S.; Wistuba, J.; Damm, O.S.; Rivers, J.W.; Birkhead, T.R. Sperm Competition Leads to Functional Adaptations in Avian Testes to Maximize Sperm Quantity and Quality. Reproduction 2011, 141, 1–12. [Google Scholar] [CrossRef]
- Fitzpatrick, J.L.; Montgomerie, R.; Desjardins, J.K.; Stiver, K.A.; Kolm, N.; Balshine, S. Female Promiscuity Promotes the Evolution of Faster Sperm in Cichlid Fishes. Proc. Natl. Acad. Sci. USA 2009, 106, 1128–1132. [Google Scholar] [CrossRef]
- Kleven, O.; Fossøy, F.; Laskemoen, T.; Robertson, R.J.; Rudolfsen, G.; Lifjeld, J.T. Comparative Evidence for the Evolution of Sperm Swimming Speed by Sperm Competition and Female Sperm Storage Duration in Passerine Birds. Evolution 2009, 63, 2466–2473. [Google Scholar] [CrossRef]
- Hunter, F.M.; Birkhead, T.R. Sperm Viability and Sperm Competition in Insects. Curr. Biol. 2002, 12, 121–123. [Google Scholar] [CrossRef]
- Gómez Montoto, L.; Magaña, C.; Tourmente, M.; Martín-Coello, J.; Crespo, C.; Luque-Larena, J.J.; Gomendio, M.; Roldan, E.R.S. Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents. PLoS ONE 2011, 6, e18173. [Google Scholar] [CrossRef]
- Lüpold, S. Ejaculate Quality and Constraints in Relation to Sperm Competition Levels Among Eutherian Mammals. Evolution 2013, 67, 3052–3060. [Google Scholar] [CrossRef]
- Tourmente, M.; Rowe, M.; González-Barroso, M.M.; Rial, E.; Gomendio, M.; Roldan, E.R.S. Postcopulatory Sexual Selection Increases ATP Content in Rodent Spermatozoa. Evolution 2013, 67, 1838–1846. [Google Scholar] [CrossRef]
- Rowe, M.; Laskemoen, T.; Johnsen, A.; Lifjeld, J.T. Evolution of Sperm Structure and Energetics in Passerine Birds. Proc. Biol. Sci. 2013, 280, 20122616. [Google Scholar] [CrossRef]
- Rowe, M.; Albrecht, T.; Cramer, E.R.A.; Johnsen, A.; Laskemoen, T.; Weir, J.T.; Lifjeld, J.T. Postcopulatory Sexual Selection Is Associated with Accelerated Evolution of Sperm Morphology. Evolution 2015, 69, 1044–1052. [Google Scholar] [CrossRef]
- Simmons, L.W.; Fitzpatrick, J.L. Sperm Wars and the Evolution of Male Fertility. Reproduction 2012, 144, 519–534. [Google Scholar] [CrossRef]
- Birkhead, T.R.; Hunter, F.M.; Pellatt, J.E. Sperm Competition in the Zebra FinchTaeniopygia Guttata. Anim. Behav. 1989, 38, 935–950. [Google Scholar] [CrossRef]
- Birkhead, T.R.; Møller, A.P. Sperm Competition in Birds: Evolutionary Causes and Consequences; Academic Press: London, UK, 1992. [Google Scholar]
- Birkhead, T.R. Sperm Competition in Birds. Rev. Reprod. 1998, 3, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Birkhead, T.R.; Montgomerie, R. Three Decades of Sperm Competition in Birds. Philos. Trans. R. Soc. B: Biol. Sci. 2020, 375, 20200208. [Google Scholar] [CrossRef] [PubMed]
- Carleial, R.; McDonald, G.C.; Spurgin, L.G.; Fairfield, E.A.; Wang, Y.; Richardson, D.S.; Pizzari, T. Temporal Dynamics of Competitive Fertilization in Social Groups of Red Junglefowl (Gallus Gallus) Shed New Light on Avian Sperm Competition. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20200081. [Google Scholar] [CrossRef] [PubMed]
- Burke, T.; Bruford, M.W. DNA Fingerprinting in Birds. Nature 1987, 327, 149–152. [Google Scholar] [CrossRef]
- Compton, M.M.; Van Krey, H.P.; Siegel, P.B. The Filling and Emptying of the Sperm-Host Glands in the Domestic Hen. Poult Sci 1978, 57, 1696–1700. [Google Scholar] [CrossRef]
- Lessells, C.M.; Birkhead, T.R. Mechanisms of Sperm Competition in Birds: Mathematical Models. Behav Ecol Sociobiol 1990, 27, 325–338. [Google Scholar] [CrossRef]
- Birkhead, T.R.; Wishart, G.J.; Biggins, J.D. Sperm Precedence in the Domestic Fowl. Proc. R. Soc. B 1995, 261, 285–292. [Google Scholar]
- Birkhead, T.R.; Biggins, J.D. Sperm Competition Mechanisms in Birds: Models and Data. Behav. Ecol. 1998, 9, 253–260. [Google Scholar] [CrossRef]
- Martin, P.A.; Reimers, T.J.; Lodge, J.R.; Dziuk, P.J. The Effect of Ratios and Numbers of Spermatozoa Mixed from Two Males on Proportions of Offspring. J. Reprod. Fertil. 1974, 39, 251–258. [Google Scholar] [CrossRef]
- Bennison, C.; Hemmings, N.; Slate, J.; Birkhead, T. Long Sperm Fertilize More Eggs in a Bird. Proc. R. Soc. B Biol. Sci. 2015, 282, 20141897. [Google Scholar] [CrossRef]
- Birkhead, T.R.; Martinez, J.G.; Burke, T.; Froman, D.P. Sperm Mobility Determines the Outcome of Sperm Competition in the Domestic Fowl. Proc. R. Soc. B 1999, 266, 1759–1764. [Google Scholar] [CrossRef]
- Donoghue, A.; Sonstegard, T.; King, L.; Smith, E.; Burt, D. Turkey Sperm Mobility Influences Paternity in the Context of Competitive Fertilization. Biol. Reprod. 1999, 61, 422–427. [Google Scholar] [CrossRef]
- Froman, D.P.; Pizzari, T.; Feltman, A.J.; Castillo-Juarez, H.; Birkhead, T.R. Sperm Mobility: Mechanisms of Fertilizing Efficiency, Genetic Variation and Phenotypic Relationship with Male Status in the Domestic Fowl, Gallus Gallus Domesticus. Proc. R. Soc. Lond. B 2002, 269, 607–612. [Google Scholar] [CrossRef]
- Denk, A.G.; Holzmann, A.; Peters, A.; Vermeirssen, E.L.M.; Kempenaers, B. Paternity in Mallards: Effects of Sperm Quality and Female Sperm Selection for Inbreeding Avoidance. Behav. Ecol. 2005, 16, 825–833. [Google Scholar] [CrossRef]
- Pizzari, T.; Worley, K.; Burke, T.; Froman, D.P. Sperm Competition Dynamics: Ejaculate Fertilising Efficiency Changes Differentially with Time. BMC Evol. Biol. 2008, 8, 332–338. [Google Scholar] [CrossRef]
- Laskemoen, T.; Kleven, O.; Fossøy, F.; Robertson, R.J.; Rudolfsen, G.; Lifjeld, J.T. Sperm Quantity and Quality Effects on Fertilization Success in a Highly Promiscuous Passerine, the Tree Swallow Tachycineta Bicolor. Behav Ecol Sociobiol 2010, 64, 1473–1483. [Google Scholar] [CrossRef]
- Calhim, S.; Double, M.C.; Margraf, N.; Birkhead, T.R.; Cockburn, A. Maintenance of Sperm Variation in a Highly Promiscuous Wild Bird. PLoS ONE 2011, 6, e28809. [Google Scholar] [CrossRef]
- Cramer, E.R.A.; Laskemoen, T.; Kleven, O.; LaBarbera, K.; Lovette, I.J.; Lifjeld, J.T. No Evidence That Sperm Morphology Predicts Paternity Success in Wild House Wrens. Behav Ecol Sociobiol 2013, 67, 1845–1853. [Google Scholar] [CrossRef]
- Edme, A.; Zobač, P.; Opatová, P.; Šplíchalová, P.; Munclinger, P.; Albrecht, T.; Krist, M. Do Ornaments, Arrival Date, and Sperm Size Influence Mating and Paternity Success in the Collared Flycatcher? Behav Ecol Sociobiol 2016, 71, 1–11. [Google Scholar] [CrossRef]
- Sætre, C.L.C.; Johnsen, A.; Stensrud, E.; Cramer, E.R.A. Sperm Morphology, Sperm Motility and Paternity Success in the Bluethroat (Luscinia Svecica). PLoS ONE 2018, 13, e0192644-18. [Google Scholar] [CrossRef] [PubMed]
- Lara, C.E.; Taylor, H.R.; Holtmann, B.; Johnson, S.L.; Santos, E.S.A.; Gemmell, N.J.; Nakagawa, S. Dunnock Social Status Correlates with Sperm Speed, but Fast Sperm Does Not Always Equal High Fitness. J. Evol. Biol. 2020, 33, 1139–1148. [Google Scholar] [CrossRef]
- Cramer, E.R.A. Measuring Pre- and Post-Copulatory Sexual Selection and Their Interaction in Socially Monogamous Species with Extra-Pair Paternity. Cells 2021, 10, 620. [Google Scholar] [CrossRef]
- Westneat, D.F.; Sherman, P.W. Density and Extra-Pair Fertilizations in Birds: A Comparative Analysis. Behav Ecol Sociobiol 1997, 41, 205–215. [Google Scholar] [CrossRef]
- Kingma, S.A.; Hall, M.L.; Peters, A. Breeding Synchronization Facilitates Extrapair Mating for Inbreeding Avoidance. Behav. Ecol. 2013, 24, 1390–1397. [Google Scholar] [CrossRef]
- Maldonado-Chaparro, A.A.; Montiglio, P.-O.; Forstmeier, W.; Kempenaers, B.; Farine, D.R. Linking the Fine-Scale Social Environment to Mating Decisions: A Future Direction for the Study of Extra-Pair Paternity. Biol. Rev. 2018, 93, 1558–1577. [Google Scholar] [CrossRef]
- Brouwer, L.; Griffith, S.C. Extra-pair Paternity in Birds. Mol. Ecol. 2019, 9, 855–919. [Google Scholar] [CrossRef]
- Cockburn, A.; Brouwer, L.; Double, M.C.; Margraf, N.; van de Pol, M. Evolutionary Origins and Persistence of Infidelity in Malurus: The Least Faithful Birds. EMU 2013, 113, 208–217. [Google Scholar] [CrossRef]
- Rowe, M.; Pruett-Jones, S. Extra-Pair Paternity, Sperm Competition and Their Evolutionary Consequences in the Maluridae. EMU 2013, 113, 218. [Google Scholar] [CrossRef]
- Brouwer, L.; van de Pol, M.; Aranzamendi, N.H.; Bain, G.; Baldassarre, D.T.; Brooker, L.C.; Brooker, M.G.; Colombelli-Négrel, D.; Enbody, E.; Gielow, K.; et al. Multiple Hypotheses Explain Variation in Extra-Pair Paternity at Different Levels in a Single Bird Family. Mol. Ecol. 2017, 26, 6717–6729. [Google Scholar] [CrossRef]
- Tuttle, E.M.; Pruett-Jones, S.G. Estimates of Extreme Sperm Production: Morphological and Experimental Evidence from Reproductively Promiscuous Fairy-Wrens (Malurus). Anim. Behav. 2004, 68, 541–550. [Google Scholar] [CrossRef]
- Dunn, P.O.; Cockburn, A. Extrapair Mate Choice and Honest Signaling in Cooperatively Breeding Superb Fairy-Wrens. Evolution 1999, 53, 938–946. [Google Scholar] [CrossRef]
- Karubian, J. Costs and Benefits of Variable Breeding Plumage in the Red-Backed Fairy-Wren. Evolution 2002, 56, 1673–1682. [Google Scholar] [CrossRef]
- Karubian, J.; Swaddle, J.P.; Varian-Ramos, C.W.; Webster, M.S. The Relative Importance of Male Tail Length and Nuptial Plumage on Social Dominance and Mate Choice in the Red-Backed Fairy-Wren Malurus Melanocephalus: Evidence for the Multiple Receiver Hypothesis. J. Avian Biol. 2009, 40, 559–568. [Google Scholar] [CrossRef]
- Brouwer, L.; Van De POL, M.; Atema, E.; Cockburn, A. Strategic Promiscuity Helps Avoid Inbreeding at Multiple Levels in a Cooperative Breeder Where Both Sexes Are Philopatric. Mol. Ecol. 2011, 20, 4796–4807. [Google Scholar] [CrossRef]
- Webster, M.S.; Varian, C.W.; Karubian, J. Plumage Color and Reproduction in the Red-Backed Fairy-Wren: Why Be a Dull Breeder? Behav. Ecol. 2008, 19, 517–524. [Google Scholar] [CrossRef]
- Dowling, J.; Webster, M.S. Working with What You’ve Got: Unattractive Males Show Greater Mate-Guarding Effort in a Duetting Songbird. Biol. Lett. 2017, 13, 20160682–20160685. [Google Scholar] [CrossRef]
- Varian-Ramos, C.W.; Webster, M.S. Extrapair Copulations Reduce Inbreeding for Female Red-Backed Fairy-Wrens, Malurus Melanocephalus. Anim. Behav. 2012, 83, 857–864. [Google Scholar] [CrossRef]
- Calhim, S.; Immler, S.; Birkhead, T.R. Postcopulatory Sexual Selection Is Associated with Reduced Variation in Sperm Morphology. PLoS ONE 2007, 2, e413. [Google Scholar] [CrossRef]
- Immler, S.; Calhim, S.; Birkhead, T.R. Increased Postcopulatory Sexual Selection Reduces the Intramale Variation in Sperm Design. Evolution 2008, 62, 1538–1543. [Google Scholar] [CrossRef]
- Kleven, O.; Laskemoen, T.; Fossøy, F.; Robertson, R.J.; Lifjeld, J.T. Intraspecific Variation in Sperm Length Is Negatively Related to Sperm Competition in Passerine Birds. Evolution 2008, 62, 494–499. [Google Scholar] [CrossRef]
- Baldassarre, D.T.; Webster, M.S. Experimental Evidence That Extra-Pair Mating Drives Asymmetrical Introgression of a Sexual Trait. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132175. [Google Scholar] [CrossRef]
- Tuttle, E.M.; Pruett-Jones, S.; Webster, M.S. Cloacal Protuberances and Extreme Sperm Production in Australian Fairy-Wrens. Proc. R. Soc. B 1996, 263, 1359–1364. [Google Scholar]
- Karubian, J.; Sillett, T.S.; Webster, M.S. The Effects of Delayed Plumage Maturation on Aggression and Survival in Male Red-Backed Fairy-Wrens. Behav. Ecol. 2008, 19, 508–516. [Google Scholar] [CrossRef]
- Welklin, J.F.; Lantz, S.M.; Khalil, S.; Moody, N.M.; Karubian, J.; Webster, M.S. Social and Abiotic Factors Differentially Affect Plumage Ornamentation of Young and Old Males in an Australian Songbird. Anim. Behav. 2021, 182, 173–188. [Google Scholar] [CrossRef]
- Rowe, M.; Swaddle, J.P.; Pruett-Jones, S.; Webster, M.S. Plumage Coloration, Ejaculate Quality and Reproductive Phenotype in the Red-Backed Fairy-Wren. Anim. Behav. 2010, 79, 1239–1246. [Google Scholar] [CrossRef]
- Kucera, A.C.; Heidinger, B.J. Avian Semen Collection by Cloacal Massage and Isolation of DNA from Sperm. JoVE (J. Vis. Exp.) 2018, 132, e55324. [Google Scholar] [CrossRef] [PubMed]
- McDiarmid, C.S.; Li, R.; Kahrl, A.F.; Rowe, M.; Griffith, S.C. Sperm Sizer: A Program to Semi-Automate the Measurement of Sperm Length. Behav. Ecol. Sociobiol. 2021, 75, 84. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H. Repeatability for Gaussian and Non-Gaussian Data: A Practical Guide for Biologists. Biol. Rev. 2010, 85, 935–956. [Google Scholar] [CrossRef] [PubMed]
- Sokal, R.R.; Rohlf, F.J. Biometry; W.H. Freeman and Company: San Francisco, CA, USA, 1981. [Google Scholar]
- Birkhead, T.R.; Briskie, J.V.; Møller, A.P. Male Sperm Reserves and Copulation Frequency in Birds. Behav Ecol Sociobiol 1993, 32, 85–93. [Google Scholar] [CrossRef]
- Peer, K.; Robertson, R.J.; Kempenaers, B. Reproductive Anatomy and Indices of Quality in Male Tree Swallows: The Potential Reproductive Role of Floaters. The Auk 2000, 117, 74–81. [Google Scholar] [CrossRef]
- Laskemoen, T.; Fossøy, F.; Rudolfsen, G.; Lifjeld, J.T. Age-Related Variation in Primary Sexual Characters in a Passerine with Male Age-Related Fertilization Success, the Bluethroat Luscinia Svecica. J. Avian Biol. 2008, 39, 322–328. [Google Scholar] [CrossRef]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising How the Computer Program Cervus Accommodates Genotyping Error Increases Success in Paternity Assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Prodöhl, P.A.; Loughry, W.J.; McDonough, C.M.; Nelson, W.S.; Thompson, E.A.; Avise, J.C. Genetic Maternity and Paternity in a Local Population of Armadillos Assessed by Microsatellite DNA Markers and Field Data. Am. Nat. 1998, 151, 7–19. [Google Scholar] [CrossRef]
- Wang, J. An Estimator for Pairwise Relatedness Using Molecular Markers. Genetics 2002, 160, 1203–1215. [Google Scholar] [CrossRef]
- Wang, J. Coancestry: A Program for Simulating, Estimating and Analysing Relatedness and Inbreeding Coefficients. Mol. Ecol. Resour. 2011, 11, 141–145. [Google Scholar] [CrossRef]
- Powell, M.J.D. The BOBYQA Algorithm for Bound Constrained Optimization without Derivatives. Tech. Rep. 2009, 39, 26–46. [Google Scholar]
- Akaike, H. (Ed.) Information Theory and an Extension of the Maximum Likelihood Principle; Akadémiai Kiadó: Budapest, Hungary, 1973. [Google Scholar]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference; Springer: New York, NY, USA, 2002; Volume 2. [Google Scholar]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R Package Version 0.2 2019, 4. [Google Scholar]
- Nakagawa, S.; Johnson, P.C.D.; Schielzeth, H. The Coefficient of Determination R2 and Intra-Class Correlation Coefficient from Generalized Linear Mixed-Effects Models Revisited and Expanded. J. R. Soc. Interface 2017, 14, 20170213. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. R Companion Appl. Regres; Sage Publications: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Zuur, A.F.; Ieno, E.N.; Elphick, C.S. A Protocol for Data Exploration to Avoid Common Statistical Problems: Data Exploration. Methods Ecol. Evol. 2010, 1, 3–14. [Google Scholar] [CrossRef]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
- R Studio Team RStudio: Integrated Development Environment for R; RStudio Team: Boston, MA, USA, 2021.
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.43.17. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 15 April 2020).
- Parker, G.A.; Pizzari, T. Sperm Competition and Ejaculate Economics. Biol. Rev. 2010, 85, 897–934. [Google Scholar] [CrossRef]
- Parker, G.A. Sperm Competition Games: Raffles and Roles. Proc. R. Soc. Biol. Sci. Ser. B 1990, 242, 120–126. [Google Scholar]
- Parker, G.A. Sperm Competition and the Evolution of Ejaculates: Towards a Theory Base. In Sperm Competition and Sexual Selection; Birkhead, T.R., Møller, A.P., Eds.; Academic Press: San Diego, CA, USA, 1998; pp. 3–54. [Google Scholar]
- Parker, G.A.; Lessells, C.M.; Simmons, L.W. Sperm competition games: A general model for precopulatory male-male competition. Evolution 2012, 67, 95–109. [Google Scholar] [CrossRef]
- Parker, G.A.; Immler, S.; Pitnick, S.; Birkhead, T.R. Sperm Competition Games: Sperm Size (Mass) and Number under Raffle and Displacement, and the Evolution of P. J. Theor. Biol. 2010, 264, 1003–1023. [Google Scholar] [CrossRef]
- Immler, S.; Pitnick, S.; Parker, G.A.; Durrant, K.L.; Lüpold, S.; Calhim, S.; Birkhead, T.R. Resolving Variation in the Reproductive Tradeoff between Sperm Size and Number. Proc. Natl. Acad. Sci. USA 2011, 108, 5325–5330. [Google Scholar] [CrossRef]
- Double, M.; Cockburn, A. Pre-Dawn Infidelity: Females Control Extra-Pair Mating in Superb Fairy-Wrens. Tech. Rep. Proc. R. Soc. London Series B Biol. Sci. 2000, 267, 465–470. [Google Scholar] [CrossRef]
- Ball, M.A.; Parker, G.A. Sperm Competition Games: A Comparison of Loaded Raffle Models and Their Biological Implications. J. Theor. Biol. 2000, 206, 487–506. [Google Scholar] [CrossRef]
- Parker, G.A.; Ball, M.A. Sperm Competition, Mating Rate and the Evolution of Testis and Ejaculate Sizes: A Population Model. Biol. Lett. 2005, 1, 235–238. [Google Scholar] [CrossRef]
- Vahed, K.; Parker, D.J. The Evolution of Large Testes: Sperm Competition or Male Mating Rate? Ethology 2011, 118, 107–117. [Google Scholar] [CrossRef]
- Parker, G.A.; Ball, M.A.; Stockley, P.; Gage, M.J.G. Sperm Competition Games: Individual Assessment of Sperm Competition Intensity by Group Spawners. Proc. R. Soc. London. Ser. B: Biol. Sci. 1996, 263, 1291–1297. [Google Scholar] [CrossRef]
- Ball, M.A.; Parker, G.A. Sperm Competition Games: Inter- and Intra-Species Results of a Continuous External Fertilization Model. J Theor Biol 1997, 186, 459–466. [Google Scholar] [CrossRef]
- Kahrl, A.F.; Kustra, M.C.; Reedy, A.M.; Bhave, R.S.; Seears, H.A.; Warner, D.A.; Cox, R.M. Selection on Sperm Count, but Not on Sperm Morphology or Velocity, in a Wild Population of Anolis Lizards. Cells 2021, 10, 2369. [Google Scholar] [CrossRef]
- Cockburn, A.; Osmond, H.L.; Double, M.C. Swingin’ in the Rain: Condition Dependence and Sexual Selection in a Capricious World. Proc. R. Soc. B 2008, 275, 605–612. [Google Scholar] [CrossRef]
- Varian-Ramos, C.W.; Lindsay, W.R.; Karubian, J.; Webster, M.S. Female Red-Backed Fairy-Wrens (Malurus Melanocephalus) Do Not Appear to Pay a Cost For High Rates of Promiscuity. The Auk 2012, 129, 529–536. [Google Scholar] [CrossRef]
- Potticary, A.L.; Dowling, J.L.; Barron, D.G.; Baldassarre, D.T.; Webster, M.S. Subtle Benefits of Cooperation to Breeding Males of the Red-Backed Fairywren. Auk 2016, 133, 286–297. [Google Scholar] [CrossRef]
- Green, D.J.; Cockburn, A.; Hall, M.L.; Osmond, H.; Dunn, P.O. Increased Opportunities for Cuckoldry May Be Why Dominant Male Fairy-Wrens Tolerate Helpers. Proc. R. Soc. B 1995, 262, 297–303. [Google Scholar]
- Dunn, P.O.; Cockburn, A.; Mulder, R.A. Fairy-Wren Helpers Often Care for Young to Which They Are Unrelated. Proc. R. Soc. Lond. 1995, 259, 339–343. [Google Scholar]
- Brouwer, L.; Cockburn, A.; van de Pol, M. Integrating Fitness Components Reveals That Survival Costs Outweigh Other Benefits and Costs of Group Living in Two Closely Related Species. Am. Nat. 2020, 195, 201–215. [Google Scholar] [CrossRef] [PubMed]
- Dunn, P.O.; Cockburn, A. Costs and Benefits of Extra-Group Paternity in Superb Fairy-Wrens. In Avian Reproductive Tactics: Female and Male Perspectives; Parker, P.G., Burley, N.T., Eds.; The American Ornithologists Union: Washington, DC, USA, 1998; Volume 49, pp. 147–161. [Google Scholar]
- Immler, S.; Birkhead, T.R. A Non-Invasive Method for Obtaining Spermatozoa from Birds: Obtaining Spermatozoa from Birds. Ibis 2005, 147, 827–830. [Google Scholar] [CrossRef]
- Girndt, A.; Cockburn, G.; Sánchez-Tójar, A.; Løvlie, H.; Schroeder, J. Method Matters: Experimental Evidence for Shorter Avian Sperm in Faecal Compared to Abdominal Massage Samples. PLoS ONE 2017, 12, e0182853-17. [Google Scholar] [CrossRef] [PubMed]
- Laskemoen, T.; Kleven, O.; Fossøy, F.; Lifjeld, J.T. Intraspecific Variation in Sperm Length in Two Passerine Species, the Bluethroat Luscinia Svecica and the Willow Warbler Phylloscopus Trochilus. 2007, 84, 9. Ornis Fennica 2007, 84, 9. [Google Scholar]
- Fitzpatrick, J.L.; Lüpold, S. Sexual Selection and the Evolution of Sperm Quality. MHR Basic Sci. Reprod. Med. 2014, 20, 1180–1189. [Google Scholar] [CrossRef]
- Jamieson, B.G.M. Avian Spermatozoa: Structure and Phylogeny. In Reproductive biology and phylogeny of birds; Jamieson, B.G.M., Ed.; Science Publishers: Enfield, NH, USA, 2007; pp. 349–511. [Google Scholar]
- Omotoriogun, T.C.; Albrecht, T.; Gohli, J.; Hořák, D.; Johannessen, L.E.; Johnsen, A.; Kreisinger, J.; Marki, P.Z.; Ottosson, U.; Rowe, M.; et al. Sperm Length Variation among Afrotropical Songbirds Reflects Phylogeny Rather than Adaptations to the Tropical Environment. Zoology 2020, 140, 125770. [Google Scholar] [CrossRef]
Model | Intercept | CP Volume (mm3) | Sperm F:H Ratio | Total Sperm Length (μm): Linear | SD (Total Sperm Length) | Total Sperm Length (μm): Quadratic | Helpers Present (Y/N) | Incestuous Pairing (Y/N) | Number of Neighbors | Plumage Color | Year | ΔAICc | Model Weight |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | −0.59 ± 0.41 | 0.58 ± 0.26 | −1.88 ± 0.78 | 0.24 ± 0.10 | 1.03 ± 0.39 | 0.59 ± 0.22 | 0 | 0.06 | |||||
2 | −0.46 ± 0.42 | 0.13 ± 0.10 | 0.57 ± 0.26 | −1.81 ± 0.77 | 0.23 ± 0.10 | 0.91 ± 0.40 | 0.52 ± 0.22 | 1.16 | 0.03 | ||||
3 | −0.53 ± 0.41 | 0.11 ± 0.10 | 0.59 ± 0.26 | −1.84 ± 0.76 | 0.25 ± 0.10 | 0.98 ± 0.39 | 0.54 ± 0.22 | 1.42 | 0.03 | ||||
4 | −0.53 ± 0.41 | 0.11 ± 0.10 | 0.59 ± 0.26 | −1.84 ± 0.77 | 0.25 ± 0.10 | 0.98 ± 0.39 | 0.54 ± 0.22 | 1.43 | 0.03 |
Model | Intercept | CP Volume (mm3) | Sperm F:H Ratio | Total Sperm Length (μm): Linear | SD (Total Sperm Length) | Total Sperm Length (μm): Quadratic | Helpers Present (Y/N) | Incestuous Pairing (Y/N) | Number of Neighbors | Plumage Color | Year | ΔAICc | Model Weight |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | −0.23 ± 0.39 | 1.17 ± 0.47 | −0.68 ± 0.44 | 0 | 0.03 | ||||||||
2 | −0.26 ± 0.39 | 1.22 ± 0.47 | 0.4 | 0.03 | |||||||||
3 | −0.13 ± 0.39 | 1.15 ± 0.46 | −0.80 ± 0.46 | −2.55 ± 2.10 | 0.71 | 0.02 | |||||||
4 | −0.83 ± 0.59 | 1.14 ± 0.46 | 1.03 ± 0.80 | 0.90 | 0.02 | ||||||||
5 | −0.23 ± 0.39 | 1.22 ± 0.48 | −0.68 ± 0.44 | −0.37 ± 0.38 | 1.31 | 0.02 | |||||||
6 | −0.27 ± 0.39 | 1.28 ± 0.48 | −0.37 ± 0.39 | 1.67 | 0.01 | ||||||||
7 | −0.60 ± 0.61 | 1.13 ± 0.46 | −0.54 ± 0.46 | 0.65 ± 0.84 | 1.70 | 0.01 | |||||||
8 | −0.12 ± 0.40 | 1.20 ± 0.47 | −0.81 ± 0.46 | −0.40 ± 0.38 | −2.69 ± 2.12 | 1.93 | 0.01 | ||||||
9 | −0.20 ± 0.40 | 1.21 ± 0.47 | −1.65 ± 2.04 | 1.95 | 0.01 |
Model | Intercept | CP Volume (mm3) | Sperm F:H Ratio | Total Sperm Length (μm): Linear | SD (Total Sperm Length) | Total Sperm Length (μm): Quadratic | Helpers Present (Y/N) | Number of Neighbors | Year | ΔAICc | Model Weight |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1.13 ± 0.35 | −0.96 ± 0.42 | 0 | 0.04 | |||||||
2 | 1.41 ± 0.41 | −0.65 ± 0.45 | −1.09 ± 0.44 | 0.36 | 0.04 | ||||||
3 | 1.25 ± 0.36 | 0.31 ± 0.23 | −1.25 ± 0.36 | 0.67 | 0.03 | ||||||
4 | 1.56 ± 0.42 | 0.36 ± 0.24 | −0.73 ± 0.46 | −1.37 ± 0.48 | 0.74 | 0.03 | |||||
5 | 1.09 ± 0.35 | 0.33 ± 0.26 | −0.80 ± 0.44 | 0.82 | 0.03 | ||||||
6 | 1.16 ± 0.35 | 0.26 ± 0.21 | −1.06 ± 0.43 | 0.99 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rowe, M.; van Oort, A.; Brouwer, L.; Lifjeld, J.T.; Webster, M.S.; Welklin, J.F.; Baldassarre, D.T. Sperm Numbers as a Paternity Guard in a Wild Bird. Cells 2022, 11, 231. https://doi.org/10.3390/cells11020231
Rowe M, van Oort A, Brouwer L, Lifjeld JT, Webster MS, Welklin JF, Baldassarre DT. Sperm Numbers as a Paternity Guard in a Wild Bird. Cells. 2022; 11(2):231. https://doi.org/10.3390/cells11020231
Chicago/Turabian StyleRowe, Melissah, Annabel van Oort, Lyanne Brouwer, Jan T. Lifjeld, Michael S. Webster, Joseph F. Welklin, and Daniel T. Baldassarre. 2022. "Sperm Numbers as a Paternity Guard in a Wild Bird" Cells 11, no. 2: 231. https://doi.org/10.3390/cells11020231
APA StyleRowe, M., van Oort, A., Brouwer, L., Lifjeld, J. T., Webster, M. S., Welklin, J. F., & Baldassarre, D. T. (2022). Sperm Numbers as a Paternity Guard in a Wild Bird. Cells, 11(2), 231. https://doi.org/10.3390/cells11020231