Cell-Free Double-Stranded DNA to DNase Ratio Predicts Outcome after Primary Survived Cardiac Arrest
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Study Course
2.2. Measurement of dsDNA
2.3. Total DNase Activity
2.4. Statistics
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Age—yrs | DNase—mU/mL | dsDNA—ng/mL | dsDNA/DNase Ratio | ||
---|---|---|---|---|---|
Valid | 75 | 72 | 75 | 72 | |
Missing | 0 | 3 | 0 | 3 | |
Mean | 61.77 | 7.00 | 275.74 | 45.31 | |
Standard error (mean) | 1.26 | 0.33 | 9.04 | 2.52 | |
Median | 64.00 | 6.61 | 264.00 | 41.77 | |
Standard deviation | 10.92 | 2.82 | 78.31 | 21.41 | |
Variance | 119.20 | 7.95 | 6132.24 | 458.23 | |
Minimum | 29.00 | 2.93 | 150.99 | 14.69 | |
Maximum | 92.00 | 15.17 | 538.00 | 111.30 | |
Percentile | 25 | 54.00 | 4.60 | 216.75 | 30.68 |
50 | 64.00 | 6.61 | 264.00 | 41.77 | |
75 | 70.00 | 8.49 | 323.53 | 57.63 |
References
- Gräsner, J.-T.; Herlitz, J.; Tjelmeland, I.B.M.; Wnent, J.; Masterson, S.; Lilja, G.; Bein, B.; Böttiger, B.W.; Rosell-Ortiz, F.; Nolan, J.P.; et al. European Resuscitation Council Guidelines 2021: Epidemiology of Cardiac Arrest in Europe. Resuscitation 2021, 161, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Gräsner, J.-T.; Wnent, J.; Herlitz, J.; Perkins, G.D.; Lefering, R.; Tjelmeland, I.; Koster, R.W.; Masterson, S.; Rossell-Ortiz, F.; Maurer, H.; et al. Survival after Out-of-Hospital Cardiac Arrest in Europe—Results of the EuReCa TWO Study. Resuscitation 2020, 148, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Neumar, R.W.; Nolan, J.P.; Adrie, C.; Aibiki, M.; Berg, R.A.; Böttiger, B.W.; Callaway, C.; Clark, R.S.B.; Geocadin, R.G.; Jauch, E.C.; et al. Post–Cardiac Arrest Syndrome. Circulation 2008, 118, 2452–2483. [Google Scholar] [CrossRef] [Green Version]
- Döring, Y.; Libby, P.; Soehnlein, O. Neutrophil Extracellular Traps Participate in Cardiovascular Diseases. Circ. Res. 2020, 126, 1228–1241. [Google Scholar] [CrossRef]
- Branitzki-Heinemann, K.; Möllerherm, H.; Völlger, L.; Husein, D.M.; de Buhr, N.; Blodkamp, S.; Reuner, F.; Brogden, G.; Naim, H.Y.; Köckritz-Blickwede, M. von Formation of Neutrophil Extracellular Traps under Low Oxygen Level. Front. Immunol. 2016, 7, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisschops, L.L.; van der Hoeven, J.G.; Mollnes, T.E.; Hoedemaekers, C.W. Seventy-Two Hours of Mild Hypothermia after Cardiac Arrest Is Associated with a Lowered Inflammatory Response during Rewarming in a Prospective Observational Study. Crit. Care 2014, 18, 546. [Google Scholar] [CrossRef] [PubMed]
- Langeland, H.; Damås, J.K.; Mollnes, T.E.; Ludviksen, J.K.; Ueland, T.; Michelsen, A.E.; Løberg, M.; Bergum, D.; Nordseth, T.; Skjærvold, N.K.; et al. The Inflammatory Response Is Related to Circulatory Failure after Out-of-Hospital Cardiac Arrest: A Prospective Cohort Study. Resuscitation 2022, 170, 115–125. [Google Scholar] [CrossRef]
- Adrie, C.; Laurent, I.; Monchi, M.; Cariou, A.; Dhainaou, J.-F.; Spaulding, C. Postresuscitation Disease after Cardiac Arrest: a Sepsis-like Syndrome? Curr. Opin. Crit. Care 2004, 10, 208–212. [Google Scholar] [CrossRef]
- Tsourouktsoglou, T.-D.; Warnatsch, A.; Ioannou, M.; Hoving, D.; Wang, Q.; Papayannopoulos, V. Histones, DNA, and Citrullination Promote Neutrophil Extracellular Trap Inflammation by Regulating the Localization and Activation of TLR4. Cell Rep. 2020, 31, 107602. [Google Scholar] [CrossRef]
- Warnatsch, A.; Ioannou, M.; Wang, Q.; Papayannopoulos, V. Neutrophil Extracellular Traps License Macrophages for Cytokine Production in Atherosclerosis. Science 2015, 349, 316–320. [Google Scholar] [CrossRef]
- Hofbauer, T.M.; Mangold, A.; Ondracek, A.S.; Panzenböck, A.; Scherz, T.; Müller, J.; Distelmaier, K.; Seidl, V.; Kastl, S.; Müller-Nurasyid, M.; et al. Deoxyribonuclease 1 Q222R Single Nucleotide Polymorphism and Long-Term Mortality after Acute Myocardial Infarction. Basic Res. Cardiol. 2021, 116, 29. [Google Scholar] [CrossRef] [PubMed]
- Ondracek, A.S.; Hofbauer, T.M.; Wurm, R.; Arfsten, H.; Seidl, V.; Früh, A.; Seidel, S.; Hubner, P.; Mangold, A.; Goliasch, G.; et al. Imbalance between Plasma Double-Stranded DNA and Deoxyribonuclease Activity Predicts Mortality after out-of-Hospital Cardiac Arrest. Resuscitation 2020, 151, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Mauracher, L.-M.; Buchtele, N.; Schörgenhofer, C.; Weiser, C.; Herkner, H.; Merrelaar, A.; Spiel, A.O.; Hell, L.; Ay, C.; Pabinger, I.; et al. Increased Citrullinated Histone H3 Levels in the Early Post-Resuscitative Period Are Associated with Poor Neurologic Function in Cardiac Arrest Survivors—A Prospective Observational Study. J. Clin. Med. 2019, 8, 1568. [Google Scholar] [CrossRef] [Green Version]
- Rezar, R.; Paar, V.; Seelmaier, C.; Pretsch, I.; Schwaiger, P.; Kopp, K.; Kaufmann, R.; Felder, T.K.; Prinz, E.; Gemes, G.; et al. Soluble Suppression of Tumorigenicity 2 as Outcome Predictor after Cardiopulmonary Resuscitation: An Observational Prospective Study. Sci. Rep. 2021, 11, 21756. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Alcázar, M.; Limacher, A.; Panda, R.; Méan, M.; Bitterling, J.; Peine, S.; Renné, T.; Beer, J.H.; Aujesky, D.; Lämmle, B.; et al. Circulating Extracellular DNA Is an Independent Predictor of Mortality in Elderly Patients with Venous Thromboembolism. PLoS ONE 2018, 13, e0191150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnalich, F.; Menéndez, M.; Lagos, V.; Ciria, E.; Quesada, A.; Codoceo, R.; Vazquez, J.J.; López-Collazo, E.; Montiel, C. Prognostic Value of Cell-Free Plasma DNA in Patients with Cardiac Arrest Outside the Hospital: An Observational Cohort Study. Crit. Care 2010, 14, R47. [Google Scholar] [CrossRef] [Green Version]
- Mangold, A.; Alias, S.; Scherz, T.; Hofbauer, T.; Jakowitsch, J.; Panzenböck, A.; Simon, D.; Laimer, D.; Bangert, C.; Kammerlander, A.; et al. Coronary Neutrophil Extracellular Trap Burden and Deoxyribonuclease Activity in ST-Elevation Acute Coronary Syndrome Are Predictors of ST-Segment Resolution and Infarct Size. Circ. Res. 2015, 116, 1182–1192. [Google Scholar] [CrossRef] [Green Version]
- Mangold, A.; Ondracek, A.S.; Hofbauer, T.M.; Scherz, T.; Artner, T.; Panagiotides, N.; Beitzke, D.; Ruzicka, G.; Nistler, S.; Wohlschläger-Krenn, E.; et al. Culprit Site Extracellular DNA and Microvascular Obstruction in ST-Elevation Myocardial Infarction. Cardiovasc. Res. 2021, 118, 2006–2017. [Google Scholar] [CrossRef]
- Boeltz, S.; Amini, P.; Anders, H.-J.; Andrade, F.; Bilyy, R.; Chatfield, S.; Cichon, I.; Clancy, D.M.; Desai, J.; Dumych, T.; et al. To NET or Not to NET:Current Opinions and State of the Science Regarding the Formation of Neutrophil Extracellular Traps. Cell Death Differ. 2019, 26, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Bro-Jeppesen, J.; Kjaergaard, J.; Wanscher, M.; Nielsen, N.; Friberg, H.; Bjerre, M.; Hassager, C. Systemic Inflammatory Response and Potential Prognostic Implications After Out-of-Hospital Cardiac Arrest. Crit. Care Med. 2015, 43, 1223–1232. [Google Scholar] [CrossRef]
- Pedersen, A.T.; Kjaergaard, J.; Hassager, C.; Frydland, M.; Thomsen, J.H.; Klein, A.; Schmidt, H.; Møller, J.E.; Wiberg, S. Association between Inflammatory Markers and Survival in Comatose, Resuscitated out-of-Hospital Cardiac Arrest Patients. Scand. Cardiovasc. J. 2022, 56, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Jou, C.; Shah, R.; Figueroa, A.; Patel, J.K. The Role of Inflammatory Cytokines in Cardiac Arrest. J. Intensive Care Med. 2018, 35, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Bro-Jeppesen, J.; Kjaergaard, J.; Wanscher, M.; Nielsen, N.; Friberg, H.; Bjerre, M.; Hassager, C. The Inflammatory Response after Out-of-Hospital Cardiac Arrest Is Not Modified by Targeted Temperature Management at 33 °C or 36 °C. Resuscitation 2014, 85, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Fuernau, G.; Desch, S.; Freund, A.; Feistritzer, H.-J.; Pöss, J.; Buettner, P.; Thiele, H. Circulating Monocyte Chemoattractant Protein-1 in Patients with Cardiogenic Shock Complicating Acute Myocardial Infarction Treated with Mild Hypothermia: A Biomarker Substudy of SHOCK-COOL Trial. J. Cardiovasc. Dev. Dis. 2022, 9, 280. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, T.M.; Ondracek, A.S.; Mangold, A.; Scherz, T.; Nechvile, J.; Seidl, V.; Brostjan, C.; Lang, I.M. Neutrophil Extracellular Traps Induce MCP-1 at the Culprit Site in ST-Segment Elevation Myocardial Infarction. Front. Cell Dev. Biol. 2020, 8, 564169. [Google Scholar] [CrossRef]
- De Lemos, J.A.; Morrow, D.A.; Blazing, M.A.; Jarolim, P.; Wiviott, S.D.; Sabatine, M.S.; Califf, R.M.; Braunwald, E. Serial Measurement of Monocyte Chemoattractant Protein-1 After Acute Coronary Syndromes Results From the A to Z Trial. J. Am. Coll. Cardiol. 2007, 50, 2117–2124. [Google Scholar] [CrossRef] [Green Version]
- Al-Mayouf, S.M.; Sunker, A.; Abdwani, R.; Abrawi, S.A.; Almurshedi, F.; Alhashmi, N.; Sonbul, A.A.; Sewairi, W.; Qari, A.; Abdallah, E.; et al. Loss-of-Function Variant in DNASE1L3 Causes a Familial Form of Systemic Lupus Erythematosus. Nat. Genet. 2011, 43, 1186–1188. [Google Scholar] [CrossRef]
- Laridan, E.; Denorme, F.; Desender, L.; François, O.; Andersson, T.; Deckmyn, H.; Vanhoorelbeke, K.; Meyer, S.F. Neutrophil Extracellular Traps in Ischemic Stroke Thrombi. Ann. Neurol. 2017, 82, 223–232. [Google Scholar] [CrossRef]
- Uzuelli, J.A.; Dias-Junior, C.A.C.; Izidoro-Toledo, T.C.; Gerlach, R.F.; Tanus-Santos, J.E. Circulating Cell-Free DNA Levels in Plasma Increase with Severity in Experimental Acute Pulmonary Thromboembolism. Clin. Chim. Acta 2009, 409, 112–116. [Google Scholar] [CrossRef]
- Sharma, S.; Hofbauer, T.M.; Ondracek, A.S.; Chausheva, S.; Alimohammadi, A.; Artner, T.; Panzenboeck, A.; Rinderer, J.; Shafran, I.; Mangold, A.; et al. Neutrophil Extracellular Traps Promote Fibrous Vascular Occlusions in Chronic Thrombosis. Blood 2021, 137, 1104–1116. [Google Scholar] [CrossRef]
- Ng, H.; Havervall, S.; Rosell, A.; Aguilera, K.; Parv, K.; von Meijenfeldt, F.A.; Lisman, T.; Mackman, N.; Thålin, C.; Phillipson, M. Circulating Markers of Neutrophil Extracellular Traps Are of Prognostic Value in Patients With COVID-19. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhao, D.; Xu, L.; Sun, M.; Song, Y.; Liu, M.; Li, M.; Zhang, J. A Fluorescent “Turn-On” Clutch Probe for Plasma Cell-Free DNA Identification from Lung Cancer Patients. Nanomaterial 2022, 12, 1262. [Google Scholar] [CrossRef] [PubMed]
- Ondracek, A.S.; Lang, I.M. Neutrophil Extracellular Traps as Prognostic Markers in COVID-19. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 995–998. [Google Scholar] [CrossRef] [PubMed]
- Barnes, B.J.; Adrover, J.M.; Baxter-Stoltzfus, A.; Borczuk, A.; Cools-Lartigue, J.; Crawford, J.M.; Daßler-Plenker, J.; Guerci, P.; Huynh, C.; Knight, J.S.; et al. Targeting Potential Drivers of COVID-19: Neutrophil Extracellular Traps. J. Exp. Med. 2020, 217, e20200652. [Google Scholar] [CrossRef] [PubMed]
Favorable Outcome at Six Months (n = 57) | Unfavorable Outcome at Six Months (n = 19) | p-Value | |
---|---|---|---|
Age—median yrs. (IQR) | 62.0 (54.0–71.0) | 65.0 (53.0–77.0) | 0.41 |
Female sex—n (%) | 24.6 (14.0) | 31.6 (6.0) | 0.55 |
BMI—median kg/m2 (IQR) | 26.2 (24.5–29.2) | 26.1 (24.5–26.2) | 0.53 |
OHCA—n (%) | 48 (84.2) | 17 (89.5) | 0.57 |
Bystander CPR—n (%) | - | - | 0.45 |
Yes | 23 (60.5) | 8 (53.3) | - |
No | 6 (15.8) | 5 (33.3) | - |
In-hospital | 7 (18.4) | 2 (13.3) | - |
CA during transport | 2 (5.3) | 0 (0.0) | - |
Initial rhythm—n (%) | - | - | 0.026 |
Ventricular fibrillation | 47 (85.5) | 12 (63.2) | - |
Asystole | 3 (5.5) | 6 (31.6) | - |
Pulseless electrical activity | 4 (7.3) | 1 (5.3) | - |
Unknown | 1 (1.8) | 0 (0.0) | - |
Cause of arrest—n (%) | - | - | 0.17 |
ACS | 39 (69.6) | 12 (66.7) | - |
Pulmonary embolism | 3 (5.4) | 2 (11.1) | - |
Primary rhythm event | 12 (21.4) | 1 (5.6) | - |
Asphyxia | 2 (3.6) | 2 (11.1) | - |
Unknown | 0 (0.0) | 1 (5.6) | - |
Comorbidities—n (%) | - | - | - |
Arterial hypertension | 46 (85.2) | 8 (80.0) | 0.68 |
Diabetes mellitus | 12 (21.4) | 5 (31.3) | 0.41 |
Hyperlipidemia * | 38 (66.7) | 8 (42.1) | 0.058 |
Smoking history | 27 (58.7) | 8 (72.7) | 0.39 |
CKD | 10 (17.5) | 4 (22.2) | 0.66 |
COPD | 7 (12.3) | 2 (10.5) | 0.84 |
Intensive care measures—n (%) | - | - | - |
Mechanical ventilation | 53 (93.0) | 19 (100) | 0.24 |
Targeted temperature management | 40 (70.2) | 16 (84.2) | 0.23 |
Use of vasopressors | 51 (89.5) | 19 (100.0) | 0.14 |
RRT | 3 (5.3) | 3 (15.8) | 0.14 |
Antibiotic therapy | 51 (89.5) | 19 (100.0) | 0.14 |
RBC transfusions | 4 (7.0) | 5 (26.3) | 0.024 |
Coronary angiography—n (%) | 50 (87.7) | 13 (68.4) | 0.053 |
PCI—n (%) | 36 (63.1) | 11 (57.9) | 0.68 |
SOFA-Score—median pts. (IQR) | 10 (8–12) | 12 (10–12) | 0.013 |
SAPS II—median pts. (IQR) | 76 (70–81) | 84 (76–87) | 0.004 |
Duration mechanical ventilation—median hrs. (IQR) | 41.5 (24.5–61.5) | 190.0 (136.5–322.0) | <0.001 |
Duration ICU stay—median hrs. (IQR) | 119.5 (86.0–209.5) | 233.0 (136.5–322.0) | 0.007 |
Survival > 6 months—n (%) | 57 (100.0) | 0 (0.0) | <0.001 |
Favorable Outcome at Six Months (n = 57) | Unfavorable Outcome at Six Months (n = 19) | p-Value | |
---|---|---|---|
Initial pH median (IQR) | 7.26 (7.13–7.33) | 7.15 (7.02–7.25) | 0.058 |
Initial lactate—mmol/L median (IQR) | 3.7 (2.2–5.9) | 6.1 (2.9–10.0) | 0.037 |
pO2—mmHg median (IQR) | 110.2 (81.3–184.2) | 129.5 (98.5–213.6) | 0.23 |
pCO2—mmHg median (IQR) | 40.5 (35.8–51.6) | 45.3 (39.9–53.0) | 0.21 |
Hemoglobin—g/dL median (IQR) | 14.2 (13.1–15.2) | 13.5 (12.3–14.7) | 0.14 |
Leukocytes—G/L median (IQR) | 14.2 (10.4–18.3) | 14.9 (11.9–17.3) | 0.71 |
Thrombocytes—G/L median (IQR) | 231.0 (190.0–274.0) | 230.0 (170.0–311.0) | 0.88 |
CRP—mg/dL median (IQR) | 0.3 (0.1–0.6) | 0.5 (0.2–1.6) | 0.039 |
IL-8 24 h—pg/mL median (IQR) | 17.3 (9.4–30.5) | 30.8 (19.6–69.8) | 0.018 |
IL-8 96 h—pg/mL median (IQR) | 9.4 (4.8–16.8) | 20.9 (14.8–24.5) | <0.001 |
MCP-1 24 h—pg/mL median (IQR) | 504.1 (218.7–875.6) | 495.2 (273.6–1006.2) | 0.55 |
MCP-1 96 h—pg/mL median (IQR) | 145.6 (86.2–218.7) | 163.5 (97.1–340.0) | 0.46 |
GGT—U/L median (IQR) | 58.0 (32.0–94.5) | 61.0 (38.0–98.0) | 0.83 |
AST—U/L median (IQR) | 184.0 (98.0–287.0) | 191.0 (105.0–395.0) | 0.62 |
ALT—U/L median (IQR) | 134.5 (71.0–259.0) | 200.0 (110.0–263.0) | 0.25 |
Bilirubin—mg/dl median (IQR) | 0.5 (0.4–0.6) | 0.5 (0.3–0.6) | 0.78 |
Creatinkinase—U/L median (IQR) | 215.0 (142.0–625.0) | 241.0 (185.0–474.0) | 0.47 |
Troponin T—ng/L median (IQR) | 113.0 (41.0–447.0) | 147.0 (65.0–197.0) | 0.67 |
TSH—mU/L median (IQR) | 2.7 (1.4–3.8) | 2.5 (1.0–3.8) | 0.96 |
Hba1c—% median (IQR) | 5.5 (5.2–5.8) | 5.6 (5.3–6.1) | 0.24 |
LDL—mg/dL median (IQR) | 80.0 (52.0–107.0) | 66.5 (48.0–119.0) | 0.71 |
dsDNA 24 h—ng/mL median (IQR) | 727.7 (364.8–1012.5) | 878.8 (449.3–1674.6) | 0.11 |
dsDNA 96 h—ng/mL median (IQR) | 518.6 (312.2–877.9) | 830.0 (614.4–1281.9) | 0.015 |
DNase 24 h—mU/mL median (IQR) | 8.9 (6.4–11.8) | 9.1 (6.5–11.1) | 0.69 |
DNase 96 h—mU/mL median (IQR) | 6.3 (4.2–8.1) | 3.4 (2.1–5.4) | <0.001 |
dsDNA/DNase Ratio 24 h median (IQR) | 76.7 (31.3–142.0) | 130.9 (53.9–203.3) | 0.059 |
dsDNA/DNase Ratio 96 h median (IQR) | 93.1 (44.6–166.4) | 239.9 (175.6–355.9) | <0.001 |
dsDNA/DNase Ratio ≤149.97 (n = 40) | dsDNA/DNase Ratio >149.97 (n = 36) | p-Value | |
---|---|---|---|
Age—median yrs. (IQR) | 62.5 (53.0–72.0) | 64.5 (56.0–75.5) | 0.30 |
Female sex—n (%) | 11 (27.5) | 9 (25.0) | 0.80 |
BMI—median kg/m2 (IQR) | 26.2 (24.5–28.7) | 25.7 (24.5–29.3) | 0.99 |
OHCA—n (%) | 32 (80.0) | 33 (91.7) | 0.15 |
Bystander CPR—n (%) | - | - | 0.16 |
Yes | 17 (60.7) | 14 (56.0) | - |
No | 3 (10.7) | 8 (32.0) | - |
In-hospital | 7 (25.0) | 2 (8.0) | - |
CA during transport | 1 (3.6) | 1 (4.0) | - |
Initial rhythm—n (%) | - | - | 0.20 |
Ventricular fibrillation | 33 (84.6) | 26 (74.3) | - |
Asystole | 2 (5.1) | 7 (20.0) | - |
Pulseless electrical activity | 3 (7.7) | 2 (5.7) | - |
Unknown | 1 (2.6) | 0 (0.0) | - |
Cause of arrest—n (%) | - | - | 0.68 |
ACS | 26 (66.7) | 25 (71.4) | - |
Pulmonary embolism | 2 (5.1) | 3 (8.6) | - |
Primary rhythm event | 9 (23.1) | 4 (11.4) | - |
Asphyxia | 2 (5.1) | 2 (5.7) | - |
Unknown | 0 (0.0) | 1 (2.9) | - |
Comorbidities—n (%) | - | - | - |
Arterial hypertension | 33 (86.8) | 21 (80.8) | 0.51 |
Diabetes mellitus | 8 (20.0) | 9 (28.1) | 0.42 |
Hyperlipidemia * | 27 (67.5) | 19 (52.8) | 0.19 |
Smoking history | 21 (63.6) | 14 (58.3) | 0.68 |
CKD | 8 (20.0) | 6 (17.1) | 0.75 |
COPD | 5 (12.5) | 4 (11.1) | 0.85 |
Intensive care measures—n (%) | - | - | - |
Mechanical ventilation | 36 (90.0) | 36 (100.0) | 0.051 |
Targeted temperature management | 25 (62.5) | 31 (86.1) | 0.020 |
Use of vasopressors | 35 (87.5) | 35 (97.2) | 0.12 |
RRT | 1 (2.5) | 5 (13.9) | 0.066 |
Antibiotic therapy | 35 (87.5) | 35 (97.2) | 0.12 |
RBC transfusions | 2 (5.0) | 7 (19.4) | 0.052 |
Coronary angiography—n (%) | 34 (85.0) | 29 (80.6) | 0.61 |
PCI—n (%) | 24 (60.0) | 23 (63.9) | 0.73 |
SOFA-Score—median pts. (IQR) | 10 (8–11.5) | 11 (10–12) | 0.009 |
SAPS II—median pts. (IQR) | 75.5 (70–81) | 80.5 (75–85.5) | 0.015 |
Duration mechanical ventilation—median hrs. (IQR) | 36.2 (20.8–48.5) | 112.5 (46.2–213.0) | <0.001 |
Duration of ICU stay—median hrs. (IQR) | 113.8 (71.0–198.5) | 187.5 (116.3–315.5) | 0.008 |
Survival >6 months—n (%) | 38 (95.0) | 19 (52.8) | <0.001 |
dsDNA/DNase Ratio ≤149.97 (n = 40) | dsDNA/DNase Ratio >149.97 (n = 36) | p-Value | |
---|---|---|---|
Initial pH median (IQR) | 7.28 (7.13–7.35) | 7.22 (7.08–7.28) | 0.066 |
Initial lactate—mmol/L median (IQR) | 3.9 (2.3–6.2) | 4.7 (2.4–8.5) | 0.42 |
pO2—mmHg median (IQR) | 142.0 (86.3–220.2) | 107.4 (84.1–150.6) | 0.20 |
pCO2—mmHg median (IQR) | 39.8 (36.6–51.6) | 43.2 (38.6–51.3) | 0.36 |
Hemoglobin—g/dL median (IQR) | 13.8 (12.9–15.2) | 14.4 (13.3–14.8) | 0.40 |
Leukocytes—G/L median (IQR) | 14.5 (10.4–17.0) | 14.2 (11.7–19.0) | 0.44 |
Thrombocytes—G/L median (IQR) | 238.0 (188.5–274.0) | 228.5 (199.0–299.5) | 0.80 |
CRP—mg/dL median (IQR) | 0.3 (0.1–0.9) | 0.4 (0.2–0.8) | 0.58 |
IL-8 24 h—pg/mL median (IQR) | 14.6 (9.1–26.1) | 25.6 (14.6–51.7) | 0.056 |
IL-8 96 h—pg/mL median (IQR) | 9.1 (5.9–21.0) | 14.9 (9.4–24.0) | 0.069 |
MCP-1 24 h—pg/mL median (IQR) | 343.8 (152.2–723.2) | 818.8 (361.3–1053.6) | 0.007 |
MCP-1 96 h—pg/mL median (IQR) | 130.1 (78.5–206.7) | 170.8 (97.5–334.6) | 0.066 |
GGT—U/L median (IQR) | 58.0 (33.0–104.0) | 56.0 (31.0–95.0) | 0.68 |
AST—U/L median (IQR) | 195.5 (95.0–394.5) | 190.0 (107.0–287.0) | 0.80 |
ALT—U/L median (IQR) | 165.0 (62.0–257.0) | 128.0 (101.0–263.0) | 0.58 |
Bilirubin—mg/dL median (IQR) | 0.5 (0.4–0.7) | 0.5 (0.3–0.6) | 0.26 |
Creatinkinase—U/L median (IQR) | 223.0 (149.0–502.5) | 229.0 (151.0–700.5) | 0.55 |
Troponin T—ng/L median (IQR) | 125.5 (41.0–334.0) | 128.0 (54.0–573.0) | 0.81 |
TSH—mU/L median (IQR) | 3.0 (1.7–3.9) | 2.1 (1.0–3.5) | 0.12 |
Hba1c—% median (IQR) | 5.5 (5.2–5.8) | 5.5 (5.3–5.9) | 0.96 |
LDL—mg/dl median (IQR) | 71.5 (45.0–101.0) | 85.0 (53.0–123.0) | 0.16 |
dsDNA 24 h—ng/mL median (IQR) | 489.1 (352.5–872.6) | 977.3 (676.6–1586.9) | <0.001 |
dsDNA 96 h—ng/mL median (IQR) | 390.3 (259.7–533.3) | 1006.5 (706.1–1460.3) | <0.001 |
DNase 24 h—mU/mL median (IQR) | 8.9 (4.8–11.7) | 9.0 (7.2–11.6) | 0.53 |
DNase 96 h—mU/mL median (IQR) | 7.2 (5.5–8.9) | 3.9 (3.3–5.1) | <0.001 |
dsDNA/DNase Ratio 24 h median (IQR) | 63.1 (28.3–137.2) | 103.6 (58.6–211.7) | 0.006 |
dsDNA/DNase Ratio 96 h median (IQR) | 56.1 (32.5–93.1) | 236.8 (177.9–343.9) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezar, R.; Lichtenauer, M.; Paar, V.; Aszlan, A.; Hofbauer, T.M.; Kaufmann, R.; Wernly, S.; Seelmaier, C.; Mirna, M.; Mangold, A.; et al. Cell-Free Double-Stranded DNA to DNase Ratio Predicts Outcome after Primary Survived Cardiac Arrest. Cells 2022, 11, 3367. https://doi.org/10.3390/cells11213367
Rezar R, Lichtenauer M, Paar V, Aszlan A, Hofbauer TM, Kaufmann R, Wernly S, Seelmaier C, Mirna M, Mangold A, et al. Cell-Free Double-Stranded DNA to DNase Ratio Predicts Outcome after Primary Survived Cardiac Arrest. Cells. 2022; 11(21):3367. https://doi.org/10.3390/cells11213367
Chicago/Turabian StyleRezar, Richard, Michael Lichtenauer, Vera Paar, Adrienne Aszlan, Thomas M. Hofbauer, Reinhard Kaufmann, Sarah Wernly, Clemens Seelmaier, Moritz Mirna, Andreas Mangold, and et al. 2022. "Cell-Free Double-Stranded DNA to DNase Ratio Predicts Outcome after Primary Survived Cardiac Arrest" Cells 11, no. 21: 3367. https://doi.org/10.3390/cells11213367
APA StyleRezar, R., Lichtenauer, M., Paar, V., Aszlan, A., Hofbauer, T. M., Kaufmann, R., Wernly, S., Seelmaier, C., Mirna, M., Mangold, A., Lang, I. M., Hoppe, U. C., Ondracek, A. S., & Wernly, B. (2022). Cell-Free Double-Stranded DNA to DNase Ratio Predicts Outcome after Primary Survived Cardiac Arrest. Cells, 11(21), 3367. https://doi.org/10.3390/cells11213367