Integrated Multi-Omic Characterization of the Detachment Process of Adherent Vero Cells with Animal-Based and Animal-Origin-Free Enzymes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Cell Cultures
2.2. Cell Detachment Processes
2.3. Cell Number, Cell Viability, and Cell Aggregation Rate Analysis
2.4. Cell Growth and Proliferation Assay
2.5. Cell Glucose Metabolism Analysis
2.6. Apoptosis Analysis
2.7. Sample Grouping and Processing for Multi-Omic Analysis
2.8. RNA-seq
2.9. Proteomics
2.10. Metabolomics
2.11. Combined Transcriptome and Metabolome Analysis
3. Results
3.1. Effects of Different Detachment Processes on Cell Apoptosis
3.2. Transcriptomic Analysis of Different Detachment Processes
3.3. Proteomic Analysis of Different Detachment Processes
3.4. Metabolomics Analysis of Different Detachment Processes
3.5. Combined Metabolomics and Transcriptomic Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kiesslich, S.; Kamen, A.A. Vero cell upstream bioprocess development for the production of viral vectors and vaccines. Biotechnol. Adv. 2020, 44, 107608. [Google Scholar] [CrossRef] [PubMed]
- Jayson, A.; Goldvaser, M.; Dor, E.; Monash, A.; Levin, L.; Cherry, L.; Lupu, E.; Natan, N.; Girshengorn, M.; Epstein, E.; et al. Application of Ambr15 system for simulation of entire SARS-CoV-2 vaccine production process involving macrocarriers. Biotechnol. Prog. 2022, 38, e3277. [Google Scholar] [CrossRef]
- Montagnon, B.J.; Vincent-Falquet, J.C.; Saluzzo, J.F. Experience with vero cells at Pasteur Mérieux Connaught. Dev. Biol. Stand. 1999, 98, 137–140. [Google Scholar] [PubMed]
- Huang, H.L.; Hsing, H.W.; Lai, T.C.; Chen, Y.W.; Lee, T.R.; Chan, H.T.; Lyu, P.C.; Wu, C.L.; Lu, Y.C.; Lin, S.T.; et al. Trypsin-induced proteome alteration during cell subculture in mammalian cells. J. Biomed. Sci. 2010, 17, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennardini, F.; Mattana, A.; Nossai, E.P.; Mignano, M.; Franconi, F.; Juliano, C.; Sciola, L.; Pippia, P.; Chiesi, M. Kinetic changes of alpha B crystallin expression in neoplastic cells and syngeneic rat fibroblasts at various subculture stages. Mol. Cell Biochem. 1995, 152, 23–30. [Google Scholar]
- Gong, C.; Pan, W.; Hu, W.; Chen, L. Bone morphogenetic protein-7 retards cell subculture-induced senescence of human nucleus pulposus cells through activating the PI3K/Akt pathway. Biosci. Rep. 2019, 39, BSR20182312. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.S.; Zheng, R.L. Retardation of cell aging by lipid peroxidation. II. Shi Yan Sheng Wu Xue Bao 1994, 27, 205–213. (In Chinese) [Google Scholar]
- Zhang, Y.; Zhang, L.; Zhao, L.Y.; Ma, X.; Deng, L.Q.; Jiang, N.; Dai, H.H.; Zhang, J.; Liang, H.Y. Comparison of digestion of Vero cells with different types of digestive solutions. Chin. J. Biol. 2019, 32, 1407–1410. (In Chinese) [Google Scholar]
- Sun, Y.V.; Hu, Y.J. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases. Adv. Genet. 2016, 93, 147–190. [Google Scholar]
- Kluge, S.; Rourou, S.; Vester, D.; Majoul, S.; Benndorf, D.; Genzel, Y.; Rapp, E.; Kallel, H.; Reichl, U. Proteome analysis of virus-host cell interaction: Rabies virus replication in Vero cells in two different media. Appl. Microbiol. Biotechnol. 2013, 97, 5493–5506. [Google Scholar] [CrossRef]
- Ye, Y.; Zhu, J.; Ai, Q.; Wang, C.; Liao, M.; Fan, H. Quantitative Proteomics Reveals Changes in Vero Cells in Response to Porcine Epidemic Diarrhea Virus. J. Proteome Res. 2019, 18, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Montagnon, B.J.; Nicolas, A.J.; Fanget, B.; Peyron, L. Comparison of sensitivity of VERO cell line versus primary monkey kidney cells in the detection of residual live polio virus during and after inactivation. Dev. Biol. Stand. 1981, 47, 151–155. [Google Scholar] [PubMed]
- Souza, M.C.; Freire, M.S.; Schulze, E.A.; Gaspar, L.P.; Castilho, L.R. Production of yellow fever virus in microcarrier-based Vero cell cultures. Vaccine 2009, 27, 6420–6423. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Lin, Y.W.; Kuo, C.H.; Liu, W.H.; Tai, H.F.; Pan, C.H.; Chen, Y.T.; Hsiao, P.W.; Chan, C.H.; Chang, C.C.; et al. Inactivated Enterovirus 71 Vaccine Produced by 200-L Scale Serum-Free Microcarrier Bioreactor System Provides Cross-Protective Efficacy in Human SCARB2 Transgenic Mouse. PLoS ONE 2015, 10, e0136420. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.; In, H.J.; Kim, Y.J.; Jang, S.; Lee, Y.H.; Kim, S.H.; Lee, S.H.; Park, J.H.; Yang, H.J.; Yoo, J.S.; et al. Development of an attenuated smallpox vaccine candidate: The KVAC103 strain. Vaccine 2021, 39, 5214–5223. [Google Scholar] [CrossRef]
- Leoni, V.; Gatta, V.; Casiraghi, C.; Nicosia, A.; Petrovic, B.; Campadelli-Fiume, G. A Strategy for Cultivation of Retargeted Oncolytic Herpes Simplex Viruses in Non-cancer Cells. J. Virol. 2017, 91, e00067-17. [Google Scholar] [CrossRef] [Green Version]
- Mallapaty, S. China’s COVID vaccines have been crucial—Now immunity is waning. Nature 2021, 598, 398–399. [Google Scholar] [CrossRef]
- Luo, Y.R.; Zhou, S.T.; Yang, L.; Liu, Y.P.; Jiang, S.Y.; Dawuli, Y.; Hou, Y.X.; Zhou, T.X.; Yang, Z.B. Porcine Epidemic Diarrhoea Virus Induces Cell-cycle Arrest through the DNA Damage-signalling Pathway. J. Vet. Res. 2020, 64, 25–32. [Google Scholar] [CrossRef]
- Liu, M.; Xu, B.; Ma, Y.; Shang, L.; Ye, S.; Wang, Y. Reversible covalent inhibitors suppress enterovirus 71 infection by targeting the 3C protease. Antiviral Res. 2021, 192, 105102. [Google Scholar] [CrossRef]
- Sun, Z.; Li, H.; Sun, Y. A technique for scale-up of trypsinization of cells cultured on microcarrires in bioreactor. Chin. J. Biol. 2015, 28, 628–632. (In Chinese) [Google Scholar]
- Ren, F.; Qian, X.; Song, C. Development and verification of a PCR assay for Torque teno sus virus in cells and trypsin for preparation of vaccine for human use as well as final product of the vaccine. Chin. J. Biol. 2018, 31, 656–661. (In Chinese) [Google Scholar]
- Liu, Q.; Zhao, R.; Huang, C.; Zhou, K.; Zhang, X.; Pan, Q. Effects of enzymatic digestion, cell culture and preservation conditions on surface CD62L expression of primary murine CD3+CD4+ T cells. Biomed. Res. 2018, 29, 2153–2159. [Google Scholar] [CrossRef] [Green Version]
- Pushparajan, C.; Claus, J.D.; Marshall, S.D.; Visnovsky, G. Characterization of growth and Oryctes rhinoceros nudivirus production in attached cultures of the DSIR-HA-1179 coleopteran insect cell line. Cytotechnology 2013, 65, 1003–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishishita, N.; Muramatsu, M.; Kawamata, S. An effective freezing/thawing method for human pluripotent stem cells cultured in chemically-defined and feeder-free conditions. Am. J. Stem Cells 2015, 4, 38–49. [Google Scholar] [PubMed]
- Trosan, P.; Smeringaiova, I.; Brejchova, K.; Bednar, J.; Benada, O.; Kofronova, O.; Jirsova, K. The enzymatic de-epithelialization technique determines denuded amniotic membrane integrity and viability of harvested epithelial cells. PLoS ONE 2018, 13, e0194820. [Google Scholar] [CrossRef] [Green Version]
- Piercy, K.T.; Donnell, R.L.; Kirkpatrick, S.S.; Mundy, B.L.; Stevens, S.L.; Freeman, M.B.; Goldman, M.H. Effect of harvesting and sorting on beta-1 integrin in canine microvascular cells. J. Surg. Res. 2001, 100, 211–216. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, J.; Lee, D.Y.; Yee, A.; Cao, L.; Zhang, Y.; Kiani, C.; Yang, B.B. Versican protects cells from oxidative stress-induced apoptosis. Matrix Biol. 2005, 24, 3–13. [Google Scholar] [CrossRef]
- Gräbner, R.; Till, U.; Heller, R. Flow cytometric determination of E-selectin, vascular cell adhesion molecule-1, and intercellular cell adhesion molecule-1 in formaldehyde-fixed endothelial cell monolayers. Cytometry 2010, 40, 238–244. [Google Scholar] [CrossRef]
- Sebaa, S.; Hizette, N.; Boucherit-Otmani, Z.; Courtois, P. Dose-dependent effect of lysozyme upon Candida albicans biofilm. Mol. Med. Rep. 2017, 15, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell Proteom. 2014, 13, 2513–2526. [Google Scholar] [CrossRef] [Green Version]
- Sellick, C.A.; Hansen, R.; Stephens, G.M.; Goodacre, R.; Dickson, A.J. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat. Protoc. 2011, 6, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Breitkopf, S.B.; Yang, X.; Asara, J.M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012, 7, 872–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, B.; Mei, Z.; Zeng, C.; Liu, S. metaX: A flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 2017, 18, 183. [Google Scholar] [CrossRef] [Green Version]
- Bouhaddani, S.E.; Houwing-Duistermaat, J.; Salo, P.; Perola, M.; Jongbloed, G.; Uh, H.W. Evaluation of O2PLS in Omics data integration. BMC Bioinform. 2016, 17 (Suppl. S2), 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.E.; Nevitt, T.; Thiele, D.J. Mechanisms for copper acquisition, distribution and regulation. Nat. Chem. Biol. 2008, 4, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.; Sui, J.; Zhang, J. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol. Open 2016, 5, 829–836. [Google Scholar] [CrossRef]
- Wurm, F.M. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22, 1393–1398. [Google Scholar] [CrossRef]
- Wurm, M.J.; Wurm, F.M. Naming CHO cells for bio-manufacturing: Genome plasticity and variant phenotypes of cell populations in bioreactors question the relevance of old names. Biotechnol. J. 2021, 16, e2100165. [Google Scholar] [CrossRef]
- Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 77–81. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, Y.; Wang, Y.; Wang, H.; Yang, Y.; Gao, G.F.; Tan, W.; Wu, G.; Xu, M.; Lou, Z.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect. Dis. 2021, 21, 39–51. [Google Scholar] [CrossRef]
- Amaravadi, R.; Glerum, D.M.; Tzagoloff, A. Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum. Genet. 1997, 99, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Maxfield, A.B.; Heaton, D.N.; Winge, D.R. Cox17 is functional when tethered to the mitochondrial inner membrane. J. Biol. Chem. 2004, 279, 5072–5080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Zhang, T.; Sun, H.; Liu, J.X. Copper nanoparticles induce zebrafish intestinal defects via endoplasmic reticulum and oxidative stress. Metallomics 2020, 12, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Tabor, C.W.; Tabor, H. Polyamines. Annu. Rev. Biochem. 1984, 53, 749–790. [Google Scholar] [CrossRef]
- Pegg, A.E. Mammalian polyamine metabolism and function. IUBMB Life 2009, 61, 880–894. [Google Scholar] [CrossRef] [Green Version]
- Igarashi, K.; Kashiwagi, K. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 2010, 42, 39–51. [Google Scholar] [CrossRef]
- Pegg, A.E.; Casero, R.A., Jr. Current status of the polyamine research field. Methods Mol. Biol. 2011, 720, 3–35. [Google Scholar]
- Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, S.; Huang, Y.; Wu, C.; Fu, W.; Liang, H.; Chen, C.; Cheng, Y.; Guo, Y.; Zhang, Y.; Wang, H.; et al. Integrated Multi-Omic Characterization of the Detachment Process of Adherent Vero Cells with Animal-Based and Animal-Origin-Free Enzymes. Cells 2022, 11, 3396. https://doi.org/10.3390/cells11213396
Yu S, Huang Y, Wu C, Fu W, Liang H, Chen C, Cheng Y, Guo Y, Zhang Y, Wang H, et al. Integrated Multi-Omic Characterization of the Detachment Process of Adherent Vero Cells with Animal-Based and Animal-Origin-Free Enzymes. Cells. 2022; 11(21):3396. https://doi.org/10.3390/cells11213396
Chicago/Turabian StyleYu, Shouzhi, Yunchao Huang, Chongyang Wu, Weibin Fu, Hongyang Liang, Chen Chen, Yue Cheng, Yancen Guo, Ying Zhang, Hui Wang, and et al. 2022. "Integrated Multi-Omic Characterization of the Detachment Process of Adherent Vero Cells with Animal-Based and Animal-Origin-Free Enzymes" Cells 11, no. 21: 3396. https://doi.org/10.3390/cells11213396
APA StyleYu, S., Huang, Y., Wu, C., Fu, W., Liang, H., Chen, C., Cheng, Y., Guo, Y., Zhang, Y., Wang, H., & Yang, X. (2022). Integrated Multi-Omic Characterization of the Detachment Process of Adherent Vero Cells with Animal-Based and Animal-Origin-Free Enzymes. Cells, 11(21), 3396. https://doi.org/10.3390/cells11213396