3D Cell Culture as Tools to Characterize Rheumatoid Arthritis Signaling and Development of New Treatments
Abstract
:1. Introduction
2. Pathophysiology and Treatment
3. 3D Cell Culture
4. In Vitro Models of Joint Rheumatological Diseases
5. RA and 3D Models
6. Applications
6.1. Autologous Chondrocyte Implantation (ACI)
6.2. Mesenchymal Stem Cells (MSC)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rothbauer, M.; Höll, G.; Eilenberger, C.; Kratz, S.R.A.; Farooq, B.; Schuller, P.; Olmos Calvo, I.; Byrne, R.A.; Meyer, B.; Niederreiter, B.; et al. Monitoring Tissue-Level Remodelling during Inflammatory Arthritis Using a Three-Dimensional Synovium-on-a-Chip with Non-Invasive Light Scattering Biosensing. Lab. Chip 2020, 20, 1461–1471. [Google Scholar] [CrossRef]
- Germano, J.L.; Reis-Pardal, J.; Tonin, F.S.; Pontarolo, R.; Melchiors, A.C.; Fernandez-Llimos, F. Prevalence of Rheumatoid Arthritis in South America: A Systematic Review and Meta-Analysis. Cienc. Saude Coletiva 2021, 26, 5371–5382. [Google Scholar] [CrossRef]
- Papadimitropoulos, E.; Brnabic, A.; Vorstenbosch, E.; Leonardi, F.; Moyano, S.; Gomez, D. The Burden of Illness of Rheumatoid Arthritis in Latin America—A Systematic Literature Review. Int. J. Rheum. Dis. 2022, 25, 405–421. [Google Scholar] [CrossRef]
- Arenaza-Corona, G.N.; Corina-Sosa, B.; Mendieta-Zerón, H. Inmunología y Papel de La Fototerapia En Artritis Reumatoide y Embarazo. Investig. Clínica Mex. 2022, 1, 26–35. [Google Scholar]
- de Maréa López Pérez, D.C.; Morales Álvarez, C.T.; Álvarez Aguirre, A. Implicaciones de La Capacidad Funcional En La Funcionalidad Familiar de Las Personas Con Artritis Reumatoide. Atención Fam. 2021, 29, 51. [Google Scholar] [CrossRef]
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The Etiology of Rheumatoid Arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef]
- Bullock, J.; Rizvi, S.A.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid Arthritis: A Brief Overview of the Treatment. Med. Princ. Pract. 2019, 27, 501–507. [Google Scholar] [CrossRef]
- Žigon-Branc, S.; Barlič, A.; Knežević, M.; Jeras, M.; Vunjak-Novakovic, G. Testing the Potency of Anti-TNF-α and Anti-IL-1β Drugs Using Spheroid Cultures of Human Osteoarthritic Chondrocytes and Donor-Matched Chondrogenically Differentiated Mesenchymal Stem Cells. Biotechnol. Prog. 2018, 34, 1045–1058. [Google Scholar] [CrossRef]
- Tomás-Bort, E.; Kieler, M.; Sharma, S.; Candido, J.B.; Loessner, D. 3D Approaches to Model the Tumor Microenvironment of Pancreatic Cancer. Theranostics 2020, 10, 5074–5089. [Google Scholar] [CrossRef]
- Lohberger, B.; Glaenzer, D.; Eck, N.; Steinecker-Frohnwieser, B.; Leithner, A.; Rinner, B.; Kerschbaum-Gruber, S.; Georg, D. Effects of a Combined Therapy of Bortezomib and Ionizing Radiation on Chondrosarcoma Three-Dimensional Spheroid Cultures. Oncol. Lett. 2021, 21, 428. [Google Scholar] [CrossRef]
- Alzheimer, M.; Svensson, S.L.; König, F.; Schweinlin, M.; Metzger, M.; Walles, H.; Sharma, C.M. A Three-Dimensional Intestinal Tissue Model Reveals Factors and Small Regulatory RNAs Important for Colonization with Campylobacter Jejuni. PLoS Pathog. 2020, 16, e1008304. [Google Scholar] [CrossRef] [PubMed]
- de Dios-Figueroa, G.T.; Aguilera-Marquez, J.D.R.; Camacho-Villegas, T.A.; Lugo-Fabres, P.H. 3d Cell Culture Models in Covid-19 Times: A Review of 3d Technologies to Understand and Accelerate Therapeutic Drug Discovery. Biomedicines 2021, 9, 602. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Rim, Y.A.; Jung, H.; Nam, Y.; Ju, J.H. Lupus Heart Disease Modeling with Combination of Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Lupus Patient Serum. Int. J. Stem. Cells 2021, 15, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Koper-Lenkiewicz, O.M.; Sutkowska, K.; Wawrusiewicz-Kurylonek, N.; Kowalewska, E.; Matowicka-Karna, J. Proinflammatory Cytokines (IL-1,-6,-8,-15,-17,-18,-23, TNF-α) Single Nucleotide Polymorphisms in Rheumatoid Arthritis—A Literature Review. Int. J. Mol. Sci. 2022, 23, 2106. [Google Scholar] [CrossRef] [PubMed]
- Deane, K.D.; Demoruelle, M.K.; Kelmenson, L.B.; Kuhn, K.A.; Norris, J.M.; Holers, V.M. Genetic and Environmental Risk Factors for Rheumatoid Arthritis. Best Pract. Res. Clin. Rheumatol. 2017, 31, 3–18. [Google Scholar] [CrossRef]
- Tilvawala, R.; Nguyen, S.H.; Maurais, A.J.; Nemmara, V.; Nagar, M.; Salinger, A.J.; Nagpal, S.; Weerapana, E.; Thompson, P.R. The Rheumatoid Arthritis-Associated Citrullinome. Cell Chem. Biol. 2018, 25, 691–704.e6. [Google Scholar] [CrossRef] [Green Version]
- Fert-Bober, J.; Darrah, E.; Andrade, F. Insights into the Study and Origin of the Citrullinome in Rheumatoid Arthritis. Immunol. Rev. 2020, 294, 133–147. [Google Scholar] [CrossRef]
- Volkov, M.; van Schie, K.A.; van der Woude, D. Autoantibodies and B Cells: The ABC of Rheumatoid Arthritis Pathophysiology. Immunol. Rev. 2020, 294, 148–163. [Google Scholar] [CrossRef] [Green Version]
- Jang, D.I.; Lee, A.H.; Shin, H.Y.; Song, H.R.; Park, J.H.; Kang, T.B.; Lee, S.R.; Yang, S.H. The Role of Tumor Necrosis Factor Alpha (Tnf-α) in Autoimmune Disease and Current Tnf-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Tseng, C.C.; Chen, Y.J.; Chang, W.A.; Tsai, W.C.; Ou, T.T.; Wu, C.C.; Sung, W.Y.; Yen, J.H.; Kuo, P.L. Dual Role of Chondrocytes in Rheumatoid Arthritis: The Chicken and the Egg. Int. J. Mol. Sci. 2020, 21, 1071. [Google Scholar] [CrossRef] [Green Version]
- Damerau, A.; Gaber, T. Modeling Rheumatoid Arthritis in Vitro: From Experimental Feasibility to Physiological Proximity. Int. J. Mol. Sci. 2020, 21, 7916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C. Flare-up of Cytokines in Rheumatoid Arthritis and Their Role in Triggering Depression: Shared Common Function and Their Possible Applications in Treatment (Review). Biomed. Rep. 2020, 14, 16. [Google Scholar] [CrossRef]
- Mitoma, H.; Horiuchi, T.; Tsukamoto, H.; Ueda, N. Molecular Mechanisms of Action of Anti-TNF-α Agents—Comparison among Therapeutic TNF-α Antagonists. Cytokine 2018, 101, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Dedmon, L.E. The Genetics of Rheumatoid Arthritis. Rheumatology 2020, 59, 2661–2670. [Google Scholar] [CrossRef] [PubMed]
- Cassotta, M.; Pistollato, F.; Battino, M. Rheumatoid Arthritis Research in the 21st Century: Limitations of Traditional Models, New Technologies, and Opportunities for a Human Biology-Based Approach. Altex 2020, 37, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Ridgley, L.A.; Anderson, A.E.; Pratt, A.G. What Are the Dominant Cytokines in Early Rheumatoid Arthritis? Curr. Opin. Rheumatol. 2018, 30, 207. [Google Scholar] [CrossRef] [Green Version]
- Mysler, E.; Caubet, M.; Lizarraga, A. Current and Emerging DMARDs for the Treatment of Rheumatoid Arthritis. Open Access Rheumatol. 2021, 13, 139–152. [Google Scholar] [CrossRef]
- Mueller, A.L.; Payandeh, Z.; Mohammadkhani, N.; Mubarak, S.M.H.; Zakeri, A.; Bahrami, A.A.; Brockmueller, A.; Shakibaei, M. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells 2021, 10, 3017. [Google Scholar] [CrossRef]
- Morinobu, A. JAK Inhibitors for the Treatment of Rheumatoid Arthritis. Immunol. Med. 2020, 43, 148–155. [Google Scholar] [CrossRef]
- Morán-Álvarez, P.; Arroyo-Palomo, J.; Martínez, M.R.; Corral, F.J.B.; Díaz, M.V. Artritis Reumatoide: Tratamiento. Med. Programa De Form. Médica Contin. Acreditado 2021, 13, 1681–1693. [Google Scholar] [CrossRef]
- Meier, F.M.; Frerix, M.; Hermann, W.; Müller-Ladner, U. Current Immunotherapy in Rheumatoid Arthritis. Immunotherapy 2013, 5, 955–974. [Google Scholar] [CrossRef]
- Fernando, Á.; Caballero, C.; José, M.; Planells, F.; Jarquín, E.V.; Martín, D.G. Estrategias Terapéuticas Para La Artritis Reumatoide: Hacia Las Terapias Biotecnológicas. Ther. Strateg. Rheum. Arthritis 2017, 6, 69–87. [Google Scholar]
- Cadavid, A.P. Aspirin: The Mechanism of Action Revisited in the Context of Pregnancy Complications. Front. Immunol. 2017, 8, 261. [Google Scholar] [CrossRef] [Green Version]
- Drosos, A.A.; Pelechas, E.; Voulgari, P.V. Rheumatoid Arthritis Treatment. A Back to the Drawing Board Project or High Expectations for Low Unmet Needs? J. Clin. Med. 2019, 8, 1237. [Google Scholar] [CrossRef] [Green Version]
- Velasco, V.; Shariati, S.A.; Esfandyarpour, R. Microtechnology-Based Methods for Organoid Models. Microsyst. Nanoeng. 2020, 6, 76. [Google Scholar] [CrossRef]
- Chenchula, S.; Kumar, S.; Shodan Babu, V. Comparative Efficacy of 3dimensional (3D) Cell Culture Organoids vs 2dimensional (2D) Cell Cultures vs Experimental Animal Models in Disease Modeling, Drug Development, and Drug Toxicity Testing. Int. J. Curr. Res. Rev. 2019, 11, 11–17. [Google Scholar]
- Agrawal, G.; Ramesh, A.; Aishwarya, P.; Sally, J.; Ravi, M. Devices and Techniques Used to Obtain and Analyze Three-Dimensional Cell Cultures. Biotechnol. Prog. 2021, 37, e3126. [Google Scholar]
- Polonio-Alcalá, E.; Rabionet, M.; Gallardo, X.; Angelats, D.; Ciurana, J.; Ruiz-Martínez, S.; Puig, T. PLA Electrospun Scaffolds for Three-Dimensional Triple-Negative Breast Cancer Cell Culture. Polymers 2019, 11, 916. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.; Teng, Y. Is It Time to Start Transitioning From 2D to 3D Cell Culture? Front. Mol. Biosci. 2020, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Hoarau-Véchot, J.; Rafii, A.; Touboul, C.; Pasquier, J. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? Int. J. Mol. Sci. 2018, 19, 181. [Google Scholar] [CrossRef] [Green Version]
- Białkowska, K.; Komorowski, P.; Bryszewska, M.; Miłowska, K. Spheroids as a Type of Three-Dimensional Cell Cultures—Examples of Methods of Preparation and the Most Important Application. Int. J. Mol. Sci. 2020, 21, 6225. [Google Scholar] [CrossRef]
- Fennema, E.; Rivron, N.; Rouwkema, J.; van Blitterswijk, C.; de Boer, J. Spheroid Culture as a Tool for Creating 3D Complex Tissues. Trends Biotechnol. 2013, 31, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Piluso, S.; Li, Y.; Abinzano, F.; Levato, R.; Moreira Teixeira, L.; Karperien, M.; Leijten, J.; van Weeren, R.; Malda, J. Mimicking the Articular Joint with In Vitro Models. Trends Biotechnol. 2019, 37, 1063–1077. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, X.; Kaplan, D.L. A 3D Cartilage—Inflammatory Cell Culture System for the Modeling of Human Osteoarthritis. Biomaterials 2011, 32, 5581–5589. [Google Scholar] [CrossRef]
- Occhetta, P.; Mainardi, A.; Votta, E.; Vallmajo-Martin, Q.; Ehrbar, M.; Martin, I.; Barbero, A.; Rasponi, M. Hyperphysiological Compression of Articular Cartilage Induces an Osteoarthritic Phenotype in a Cartilage-on-a-Chip Model. Nat. Biomed. Eng. 2019, 3, 545–557. [Google Scholar] [CrossRef]
- Rosser, J.; Bachmann, B.; Jordan, C.; Ribitsch, I.; Haltmayer, E.; Gueltekin, S.; Junttila, S.; Galik, B.; Gyenesei, A.; Haddadi, B.; et al. Microfluidic Nutrient Gradient–Based Three-Dimensional Chondrocyte Culture-on-a-Chip as an In Vitro Equine Arthritis Model. Mater. Today Bio 2019, 4, 100023. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D. EPA Plan to End Animal Testing Splits Scientists. Science 2019, 365, 1231. [Google Scholar] [CrossRef]
- Interview of Don Ingber with Albert van Den Berg and Andries van Der Meer (University of Twente, the Netherlands, and EUROoCs Board Members). Stem Cell Rep. 2021, 16, 2047–2048. [CrossRef]
- Kiener, H.P.; Watts, G.F.M.; Cui, Y.; Wright, J.; Thornhill, T.S.; Sköld, M.; Behar, S.M.; Niederreiter, B.; Lu, J.; Cernadas, M.; et al. Synovial Fibroblasts Self-Direct Multicellular Lining Architecture and Synthetic Function in Three-Dimensional Organ Culture. Arthritis Rheum. 2010, 62, 742–752. [Google Scholar] [CrossRef]
- Karonitsch, T.; Beckmann, D.; Dalwigk, K.; Niederreiter, B.; Studenic, P.; Byrne, R.A.; Holinka, J.; Sevelda, F.; Korb-Pap, A.; Steiner, G.; et al. Targeted Inhibition of Janus Kinases Abates Interfon Gamma-Induced Invasive Behaviour of Fibroblast-like Synoviocytes. Rheumatology 2018, 57, 572–577. [Google Scholar] [CrossRef] [Green Version]
- Broeren, M.G.A.; Waterborg, C.E.J.; Wiegertjes, R.; Thurlings, R.M.; Koenders, M.I.; van Lent, P.L.E.M.; van der Kraan, P.M.; van de Loo, F.A.J. A Three-Dimensional Model to Study Human Synovial Pathology. Altex 2019, 36, 18–28. [Google Scholar] [CrossRef]
- Maracle, C.X.; Kucharzewska, P.; Helder, B.; van der Horst, C.; de Sampaio, P.C.; Noort, A.R.; van Zoest, K.; Griffioen, A.W.; Olsson, H.; Tas, S.W. Targeting Non-Canonical Nuclear Factor-ΚB Signalling Attenuates Neovascularization in a Novel 3D Model of Rheumatoid Arthritis Synovial Angiogenesis. Rheumatology 2017, 56, 294–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rüger, B.M.; Buchacher, T.; Giurea, A.; Kubista, B.; Fischer, M.B.; Breuss, J.M. Vascular Morphogenesis in the Context of Inflammation: Self-Organization in a Fibrin-Based 3D Culture System. Front. Physiol. 2018, 9, 679. [Google Scholar] [CrossRef] [Green Version]
- Andreas, K.; Lübke, C.; Häupl, T.; Dehne, T.; Morawietz, L.; Ringe, J.; Kaps, C.; Sittinger, M. Key Regulatory Molecules of Cartilage Destruction in Rheumatoid Arthritis: An in Vitro Study. Arthritis Res. Ther. 2008, 10, R9–R16. [Google Scholar] [CrossRef]
- Ibold, Y.; Frauenschuh, S.; Kaps, C.; Sittinger, M.; Ringe, J.; Goetz, P.M. Development of a High-Throughput Screening Assay Based on the 3-Dimensional Pannus Model for Rheumatoid Arthritis. J. Biomol. Screen 2007, 12, 956–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peck, Y.; Leom, L.T.; Low, P.F.P.; Wang, D.A. Establishment of an in Vitro Three-Dimensional Model for Cartilage Damage in Rheumatoid Arthritis. J. Tissue Eng. Regen. Med. 2018, 12, e237–e249. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Sun, A.R.J.; Li, J.; Yuan, T.; Cheng, W.; Ke, L.; Chen, J.; Sun, W.; Mi, S.; Zhang, P. A Three-Dimensional Co-Culture Model for Rheumatoid Arthritis Pannus Tissue. Front. Bioeng. Biotechnol. 2021, 9, 764212. [Google Scholar] [CrossRef]
- Ma, H.P.; Deng, X.; Chen, D.Y.; Zhu, D.; Tong, J.L.; Zhao, T.; Ma, J.H.; Liu, Y.Q. A Microfluidic Chip-Based Co-Culture of Fibroblast-like Synoviocytes with Osteoblasts and Osteoclasts to Test Bone Erosion and Drug Evaluation. R Soc. Open Sci. 2018, 5, 180528. [Google Scholar] [CrossRef]
- Oliveira, I.M.; Carvalho, M.R.; Fernandes, D.C.; Abreu, C.M.; Maia, F.R.; Pereira, H.; Caballero, D.; Kundu, S.C.; Reis, R.L.; Oliveira, J.M. Modulation of Inflammation by Anti-TNF α MAb-Dendrimer Nanoparticles Loaded in Tyramine-Modified Gellan Gum Hydrogels in a Cartilage-on-a-Chip Model. J. Mater. Chem. B 2021, 9, 4211–4218. [Google Scholar] [CrossRef]
- Rothbauer, M.; Byrne, R.A.; Schobesberger, S.; Olmos Calvo, I.; Fischer, A.; Reihs, E.I.; Spitz, S.; Bachmann, B.; Sevelda, F.; Holinka, J.; et al. Establishment of a Human Three-Dimensional Chip-Based Chondro-Synovial Coculture Joint Model for Reciprocal Cross Talk Studies in Arthritis Research. Lab. Chip 2021, 21, 4128–4143. [Google Scholar] [CrossRef] [PubMed]
- Bhamidipati, K.; Wei, K. Precision Medicine in Rheumatoid Arthritis. Best Pract. Res. Clin. Rheumatol. 2022, 36, 101742. [Google Scholar] [CrossRef]
- Ingegnoli, F.; Coletto, L.A.; Scotti, I.; Compagnoni, R.; Randelli, P.S.; Caporali, R. The Crucial Questions on Synovial Biopsy: When, Why, Who, What, Where, and How? Front. Med. 2021, 8, 705382. [Google Scholar] [CrossRef]
- Önnheim, K.; Huang, S.; Strid Holmertz, A.; Andersson, S.; Lönnblom, E.; Jonsson, C.; Holmdahl, R.; Gjertsson, I. Rheumatoid Arthritis Chondrocytes Produce Increased Levels of Pro-Inflammatory Proteins. Osteoarthr. Cartil. Open 2022, 4, 100235. [Google Scholar] [CrossRef]
- Körsmeier, K.; Claßen, T.; Kamminga, M.; Rekowski, J.; Jäger, M.; Landgraeber, S. Arthroscopic Three-Dimensional Autologous Chondrocyte Transplantation Using Spheroids for the Treatment of Full-Thickness Cartilage Defects of the Hip Joint. Knee Surg. Sport. Traumatol. Arthrosc. 2016, 24, 2032–2037. [Google Scholar] [CrossRef]
- Boehm, E.; Minkus, M.; Scheibel, M. Autologous Chondrocyte Implantation for Treatment of Focal Articular Cartilage Defects of the Humeral Head. J. Shoulder Elb. Surg. 2020, 29, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Fickert, S.; Gerwien, P.; Helmert, B.; Schattenberg, T.; Weckbach, S.; Kaszkin-Bettag, M.; Lehmann, L. One-Year Clinical and Radiological Results of a Prospective, Investigator-Initiated Trial Examining a Novel, Purely Autologous 3-Dimensional Autologous Chondrocyte Transplantation Product in the Knee. Cartilage 2012, 3, 27–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.J.; Chang, C.H.; Suh, D.S.; Ha, H.K.; Suhl, K.H. Autologous Chondrocyte Implantation for Rheumatoid Arthritis of the Knee: A Case Report. J. Med. Case Rep. 2009, 3, 6619. [Google Scholar] [CrossRef] [Green Version]
- Leigheb, M.; Bosetti, M.; de Consoli, A.; Borrone, A.; Cannas, M.; Grassi, F. Chondral Tissue Engineering of the Reumatoid Knee with Collagen Matrix Autologous Chondrocytes Implant. Acta Biomedica 2017, 88, 107–113. [Google Scholar] [CrossRef]
- Vonk, L.A.; Roël, G.; Hernigou, J.; Kaps, C.; Hernigou, P. Role of Matrix-associated Autologous Chondrocyte Implantation with Spheroids in the Treatment of Large Chondral Defects in the Knee: A Systematic Review. Int. J. Mol. Sci. 2021, 22, 7149. [Google Scholar] [CrossRef]
- Lopez-Santalla, M.; Fernandez-Perez, R.; Garin, M.I. Mesenchymal Stem/Stromal Cells for Rheumatoid Arthritis Treatment: An Update on Clinical Applications. Cells 2020, 9, 1852. [Google Scholar] [CrossRef]
- Ueyama, H.; Okano, T.; Orita, K.; Mamoto, K.; Sobajima, S.; Iwaguro, H.; Nakamura, H. Local Transplantation of Adipose-Derived Stem Cells Has a Significant Therapeutic Effect in a Mouse Model of Rheumatoid Arthritis. Sci. Rep. 2020, 10, 3076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.; Fu, X.; Yan, L.; Li, S.; Zhao, D.; Wang, X.; Duan, Y.; Yan, Y.; Li, E.; Wu, K.; et al. Transplantation of Human ESC-Derived Mesenchymal Stem Cell Spheroids Ameliorates Spontaneous Osteoarthritis in Rhesus Macaques. Theranostics 2019, 9, 6587–6600. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gao, C.; Liu, H.; Liu, H.; Feng, Y.; Li, Z.; Liu, H.; Wang, J.; Yang, B.; Lin, Q. Infliximab-Based Self-Healing Hydrogel Composite Scaffold Enhances Stem Cell Survival, Engraftment, and Function in Rheumatoid Arthritis Treatment. Acta Biomater. 2021, 121, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.; Liu, W.; Li, J.J.; Liu, L.; Guo, A.; Wang, B.; Yu, H.; Zhao, Y.; Chen, Y.; You, Z.; et al. Engineering 3D Functional Tissue Constructs Using Self-Assembling Cell-Laden Microniches. Acta Biomater. 2020, 114, 170–182. [Google Scholar] [CrossRef]
Category | Example | Mechanism | FDA Approval | Side Effects | Reference |
---|---|---|---|---|---|
NSAID | Naproxen Ibuprofen Celecoxib | Interruption of the inflammatory cycle: blocked formation of prostaglandins through the inhibition of COX-1/COX-2 enzymes | 1900 (Aspirin) * | Gastrointestinal problems including indigestion and gastric ulcers Cardiovascular, renal, or hepatic complications | [7,28] |
Corticosteroids | Dexamethasone Prednisone | Modification of inflammatory mechanisms and immune responses by the activation of the cytosolic glucocorticoid receptor | 1955 (Prednisone) | Bone-thinning, diabetes, high blood pressure, weight gain, immunosuppression, and psychological effects | [7,30] |
csDMARD | Methotrexate Leflunomide | Interferes with deoxyribonucleotides metabolism Impedes immune cell proliferation and promotes apoptosis of these cells | 1953 (Methotrexate) ** | Increased risk of developing lymphoma Decreased production of hematoblast Liver, lung, skin, and epithelial damage | [31,32] |
bDMARD | Etanercept Infliximab Rituximab | Inhibition of cytokines (TNF and IL) Co-stimulation blockers by binding to CD80/CD86 Anti-B-cell-agents that cause depletion, inactivation, or prevent differentiation | 1998 (Etanercept) | Increased risk of frequent and severe infections Bone marrow suppression and hepatotoxicity | [27,28] |
tsDMARD | Tofacitinib Upadacitinib | Binding to the adenosine triphosphate-binding site of Janus kinase (JAK) and suppression of the enzyme activity of JAK, thereby suppressing cytokine signal transduction and cytokine action | 2012 (Tofacitinib) | Neutropenia/ lymphopenia/ anemia, severe infection, malignancy, major adverse cardiovascular events, and venous thromboembolism | [29] |
Model | Cells | Applications | Limitations |
---|---|---|---|
Spheroids | Fibroblasts [49] | Analysis of phenotypic characteristics of normal and hyperplastic synovium | Simplistic The stiffness and absorption rate of these natural matrices cannot be adjusted Lack of fluid flow perfusion Accumulation of metabolites Low reproducibility |
Fibroblasts [50] | Determine effects of proinflammatory cytokines | ||
Fibroblasts from patients with RA Monocytes CD14+ [51] | Analysis of hyperplasia Alteration of phenotype in macrophages Determination of the effects of proinflammatory cytokines | ||
Primary chondrocytes Differentiated stem cells [8] | Test of biological anti-inflammatory drugs | ||
Fibroblasts Endothelial cells [52] | Synovial angiogenesis Effect of NF-kB signaling Test of inhibitors of signaling pathways | ||
Primary synoviocytes Peripheral blood mononuclear cell (PBMC) Mesenchymal stromal cell (MSC) [53] | Formation of de novo vascular structures in the context of inflammation | ||
Scaffold | Chondrocytes Fibroblasts [54] | Destruction of cartilage Gene expression To determine the role of genes in the pathogenesis | Reductionist No compound and oxygen gradients Lack of mechanical stimuli, such as tension and compression |
Chondrocytes Fibroblasts [55] | Pannus model Investigation of pathogenesis High-throughput drug screening | ||
Macrophages Primary chondrocytes Fibroblasts [56] | Simulate pathological characteristics of cartilage with RA Determine alterations in chondrocyte phenotype Test drugs | ||
Synovial fibroblasts Vascular endothelial cells [57] | Pannus model applying 3D printing technique Drug testing | ||
Microfluidics | Primary synoviocytes [1] | Monitor the onset and progression of synovial inflammatory responses | Challenging Difficult to operate, control, standardize and scale Difficult to adapt to high throughput screening Lack of biomechanical stimulation |
Fibroblasts Osteoclasts [58] | Predict fibroblast migration to bone cells Test drugs | ||
Monocytes Primary chondrocytes [59] | Representation of healthy and disease scenario Test the therapeutic efficacy of possible treatments | ||
Primary synoviocytes Primary chondrocytes [60] | Joint-on-a-chip Simulation of crosstalk between synovial and chondral organoids |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badillo-Mata, J.A.; Camacho-Villegas, T.A.; Lugo-Fabres, P.H. 3D Cell Culture as Tools to Characterize Rheumatoid Arthritis Signaling and Development of New Treatments. Cells 2022, 11, 3410. https://doi.org/10.3390/cells11213410
Badillo-Mata JA, Camacho-Villegas TA, Lugo-Fabres PH. 3D Cell Culture as Tools to Characterize Rheumatoid Arthritis Signaling and Development of New Treatments. Cells. 2022; 11(21):3410. https://doi.org/10.3390/cells11213410
Chicago/Turabian StyleBadillo-Mata, Jessica Andrea, Tanya Amanda Camacho-Villegas, and Pavel Hayl Lugo-Fabres. 2022. "3D Cell Culture as Tools to Characterize Rheumatoid Arthritis Signaling and Development of New Treatments" Cells 11, no. 21: 3410. https://doi.org/10.3390/cells11213410
APA StyleBadillo-Mata, J. A., Camacho-Villegas, T. A., & Lugo-Fabres, P. H. (2022). 3D Cell Culture as Tools to Characterize Rheumatoid Arthritis Signaling and Development of New Treatments. Cells, 11(21), 3410. https://doi.org/10.3390/cells11213410