Changes in Mitochondrial Size and Morphology in the RPE and Photoreceptors of the Developing and Ageing Zebrafish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zebrafish Husbandry
2.2. Mice
2.3. Transmission Electron Microscopy
2.4. RT-qPCR
2.5. RNAscope Assay
2.6. Statistics
3. Results
3.1. Alterations in the Mitochondrial Morphology within Zebrafish Retina during Development and Ageing
3.1.1. Retinal Pigment Epithelium (RPE)
3.1.2. Photoreceptor Inner Segments
3.2. Morphology of Mitochondria within the Retina of Embryonic and Adult Mice
3.3. Age-Related Changes in Mitochondria-Associated Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lefevere, E.; Toft-Kehler, A.K.; Vohra, R.; Kolko, M.; Moons, L.; Van Hove, I. Mitochondrial Dysfunction Underlying Outer Retinal Diseases. Mitochondrion 2017, 36, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Eells, J.T. Mitochondrial Dysfunction in the Aging Retina. Biology 2019, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, D.C. Mitochondrial Dynamics and Its Involvement in Disease. Annu. Rev. Pathol. 2020, 15, 235–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu-Wai-Man, P.; Newman, N.J. Inherited Eye-Related Disorders Due to Mitochondrial Dysfunction. Hum. Mol. Genet. 2017, 26, R12–R20. [Google Scholar] [CrossRef] [Green Version]
- Medrano, C.J.; Fox, D.A. Oxygen Consumption in the Rat Outer and Inner Retina: Light- and Pharmacologically-Induced Inhibition. Exp. Eye. Res. 1995, 61, 273–284. [Google Scholar] [CrossRef]
- Kam, J.H.; Jeffery, G. To Unite or Divide: Mitochondrial Dynamics in the Murine Outer Retina That Preceded Age Related Photoreceptor Loss. Oncotarget 2015, 6, 26690–26701. [Google Scholar] [CrossRef] [Green Version]
- Lluch, S.; López-Fuster, M.J.; Ventura, J. Giant Mitochondria in the Retina Cone Inner Segments of Shrews of Genus Sorex (Insectivora, Soricidae). Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2003, 272, 484–490. [Google Scholar] [CrossRef]
- Knabe, W.; Kuhn, H.J. Morphogenesis of Megamitochondria in the Retinal Cone Inner Segments of Tupaia Belangeri (Scandentia). Cell Tissue Res. 1996, 285, 1–9. [Google Scholar] [CrossRef]
- Nag, T.C.; Wadhwa, S.; Chaudhury, S. The Occurrence of Cone Inclusions in the Ageing Human Retina and Their Possible Effect upon Vision: An Electron Microscope Study. Brain Res. Bull. 2006, 71, 224–232. [Google Scholar] [CrossRef]
- Kim, J.; Lee, E.; Chang, B.S.; Oh, C.S.; Mun, G.-H.; Chung, Y.H.; Shin, D.H. The Presence of Megamitochondria in the Ellipsoid of Photoreceptor Inner Segment of the Zebrafish Retina. Anat. Histol. Embryol. 2005, 34, 339–342. [Google Scholar] [CrossRef]
- Masuda, T.; Wada, Y.; Kawamura, S. ES1 Is a Mitochondrial Enlarging Factor Contributing to Form Mega-Mitochondria in Zebrafish Cones. Sci. Rep. 2016, 6, 22360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jarrett, S.G.; Lin, H.; Godley, B.F.; Boulton, M.E. Mitochondrial DNA Damage and Its Potential Role in Retinal Degeneration. Prog. Retin. Eye. Res. 2008, 27, 596–607. [Google Scholar] [CrossRef]
- Upadhyay, M.; Milliner, C.; Bell, B.A.; Bonilha, V.L. Oxidative Stress in the Retina and Retinal Pigment Epithelium (RPE): Role of Aging, and DJ-1. Redox. Biol. 2020, 37, 101623. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, M.M.; Contin, M.A. Oxidative Stress in Retinal Degeneration Promoted by Constant LED Light. Front. Cell. Neurosci. 2019, 13, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toms, M.; Burgoyne, T.; Tracey-White, D.; Richardson, R.; Dubis, A.M.; Webster, A.R.; Futter, C.; Moosajee, M. Phagosomal and Mitochondrial Alterations in RPE May Contribute to KCNJ13 Retinopathy. Sci. Rep. 2019, 9, 3793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formosa, L.E.; Ryan, M.T. Mitochondrial Fusion: Reaching the End of Mitofusin’s Tether. J. Cell. Biol. 2016, 215, 597–598. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.J.; McIntyre, R.L.; Janssens, G.E.; Houtkooper, R.H. Mitochondrial Fission and Fusion: A Dynamic Role in Aging and Potential Target for Age-Related Disease. Mech. Ageing Dev. 2020, 186, 111212. [Google Scholar] [CrossRef]
- Bianchi, E.; Scarinci, F.; Ripandelli, G.; Feher, J.; Pacella, E.; Magliulo, G.; Gabrieli, C.B.; Plateroti, R.; Plateroti, P.; Mignini, F.; et al. Retinal Pigment Epithelium, Age-Related Macular Degeneration and Neurotrophic Keratouveitis. Int. J. Mol. Med. 2013, 31, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Feher, J.; Kovacs, I.; Artico, M.; Cavallotti, C.; Papale, A.; Balacco Gabrieli, C. Mitochondrial Alterations of Retinal Pigment Epithelium in Age-Related Macular Degeneration. Neurobiol. Aging 2006, 27, 983–993. [Google Scholar] [CrossRef]
- Gouras, P.; Ivert, L.; Neuringer, M.; Nagasaki, T. Mitochondrial Elongation in the Macular RPE of Aging Monkeys, Evidence of Metabolic Stress. Graefes. Arch. Clin. Exp. Ophthalmol. 2016, 254, 1221–1227. [Google Scholar] [CrossRef]
- Tarboush, R.; Chapman, G.B.; Connaughton, V.P. Ultrastructure of the Distal Retina of the Adult Zebrafish, Danio Rerio. Tissue Cell 2012, 44, 264–279. [Google Scholar] [CrossRef] [PubMed]
- Tarboush, R.; Novales Flamarique, I.; Chapman, G.B.; Connaughton, V.P. Variability in Mitochondria of Zebrafish Photoreceptor Ellipsoids. Vis. Neurosci. 2014, 31, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio); University of Oregon Press: Eugene, OR, USA, 2020. [Google Scholar]
- Crespo, C.; Knust, E. Characterisation of Maturation of Photoreceptor Cell Subtypes during Zebrafish Retinal Development. Biol. Open 2018, 7, bio036632. [Google Scholar] [CrossRef] [Green Version]
- Heavner, W.; Pevny, L. Eye Development and Retinogenesis. Cold Spring Harb Perspect. Biol. 2012, 4, a008391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, R.; Tracey-White, D.; Webster, A.; Moosajee, M. The Zebrafish Eye—A Paradigm for Investigating Human Ocular Genetics. Eye 2017, 31, 68–86. [Google Scholar] [CrossRef] [Green Version]
- Rochefort, N.L.; Garaschuk, O.; Milos, R.-I.; Narushima, M.; Marandi, N.; Pichler, B.; Kovalchuk, Y.; Konnerth, A. Sparsification of Neuronal Activity in the Visual Cortex at Eye-Opening. Proc. Natl. Acad. Sci. USA 2009, 106, 15049–15054. [Google Scholar] [CrossRef] [Green Version]
- Chapman, J.; Ng, Y.S.; Nicholls, T.J. The Maintenance of Mitochondrial DNA Integrity and Dynamics by Mitochondrial Membranes. Life 2020, 10, 164. [Google Scholar] [CrossRef]
- Longley, M.J.; Clark, S.; Yu Wai Man, C.; Hudson, G.; Durham, S.E.; Taylor, R.W.; Nightingale, S.; Turnbull, D.M.; Copeland, W.C.; Chinnery, P.F. Mutant POLG2 Disrupts DNA Polymerase Gamma Subunits and Causes Progressive External Ophthalmoplegia. Am. J. Hum. Genet. 2006, 78, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Picard, M.; McManus, M.J.; Csordás, G.; Várnai, P.; Dorn Ii, G.W.; Williams, D.; Hajnóczky, G.; Wallace, D.C. Trans-Mitochondrial Coordination of Cristae at Regulated Membrane Junctions. Nat. Commun. 2015, 6, 6259. [Google Scholar] [CrossRef] [Green Version]
- Tandler, B.; Hoppel, C.L. Giant Mitochondria (Megamitochondria). In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Waltham, MA, USA, 2013; pp. 375–376. ISBN 978-0-12-378631-9. [Google Scholar]
- Godley, B.F.; Shamsi, F.A.; Liang, F.-Q.; Jarrett, S.G.; Davies, S.; Boulton, M. Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells. J. Biol. Chem. 2005, 280, 21061–21066. [Google Scholar] [CrossRef]
- Dan, X.; Babbar, M.; Moore, A.; Wechter, N.; Tian, J.; Mohanty, J.G.; Croteau, D.L.; Bohr, V.A. DNA Damage Invokes Mitophagy through a Pathway Involving Spata18. Nucleic Acids Res. 2020, 48, 6611–6623. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.M.; Youle, R.J. PINK1- and Parkin-Mediated Mitophagy at a Glance. J. Cell. Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flynn, J.M.; Melov, S. SOD2 in Mitochondrial Dysfunction and Neurodegeneration. Free Radic. Biol. Med. 2013, 62, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Meschede, I.P.; Ovenden, N.C.; Seabra, M.C.; Futter, C.E.; Votruba, M.; Cheetham, M.E.; Burgoyne, T. Symmetric Arrangement of Mitochondria:Plasma Membrane Contacts between Adjacent Photoreceptor Cells Regulated by Opa1. Proc. Natl. Acad. Sci. USA 2020, 117, 15684–15693. [Google Scholar] [CrossRef]
- Nag, T.C.; Wadhwa, S. Immunolocalisation Pattern of Complex I–V in Ageing Human Retina: Correlation with Mitochondrial Ultrastructure. Mitochondrion 2016, 31, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Ball, J.M.; Chen, S.; Li, W. Mitochondria in Cone Photoreceptors Act as Microlenses to Enhance Photon Delivery and Confer Directional Sensitivity to Light. Sci. Adv. 2022, 8, eabn2070. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
polg2 | GTGGAGGAAGTTTGCTTTAGGCCCG | GGGTCCACAGTGTCTCCAGCGT |
opa1 | GCCGGAAGTGTAGTTACCTG | AGGTGGTCTCTGTGGGTTGT |
mfn1 | CTGGGTCCCGTCAACGCCAA | ACTGAACCACCGCTGGGGCT |
fis1 | ACAGACTTAAGGAGTATGAGAGAGC | AATACCACCGACAATCGCCA |
pink1 | AACACTACCCTTGAAGAATG | AAATCTGAAGGCTTTTACGG |
sod2 | ACAGCAAGCACCATGCAACA | CAGCTCACCCTGTGGTTCTCC |
β-actin | TGTACCCTGGCATTGCTGAC | TGGAAGGTGGACAGGGAGGC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgoyne, T.; Toms, M.; Way, C.; Tracey-White, D.; Futter, C.E.; Moosajee, M. Changes in Mitochondrial Size and Morphology in the RPE and Photoreceptors of the Developing and Ageing Zebrafish. Cells 2022, 11, 3542. https://doi.org/10.3390/cells11223542
Burgoyne T, Toms M, Way C, Tracey-White D, Futter CE, Moosajee M. Changes in Mitochondrial Size and Morphology in the RPE and Photoreceptors of the Developing and Ageing Zebrafish. Cells. 2022; 11(22):3542. https://doi.org/10.3390/cells11223542
Chicago/Turabian StyleBurgoyne, Thomas, Maria Toms, Chris Way, Dhani Tracey-White, Clare E. Futter, and Mariya Moosajee. 2022. "Changes in Mitochondrial Size and Morphology in the RPE and Photoreceptors of the Developing and Ageing Zebrafish" Cells 11, no. 22: 3542. https://doi.org/10.3390/cells11223542
APA StyleBurgoyne, T., Toms, M., Way, C., Tracey-White, D., Futter, C. E., & Moosajee, M. (2022). Changes in Mitochondrial Size and Morphology in the RPE and Photoreceptors of the Developing and Ageing Zebrafish. Cells, 11(22), 3542. https://doi.org/10.3390/cells11223542