Association between Immunosenescence, Mitochondrial Dysfunction and Frailty Syndrome in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Clinical Evaluation
2.2. T Cell Activation
2.3. Flow Cytometry
2.4. Cytokine Production
2.5. Functional Evaluation of Mitochondrial Activity
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, Q.-L. The frailty syndrome: Definition and natural history. Clin. Geriatr. Med. 2011, 27, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cesari, M.; Calvani, R.; Marzetti, E. Frailty in older persons. Clin. Geriatr. Med. 2017, 33, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Vetter, V.M.; Kalies, C.H.; Sommerer, Y.; Spira, D.; Drewelies, J.; Regitz-Zagrosek, V.; Bertram, L.; Gerstorf, D.; Demuth, I. Relationship between 5 epigenetic clocks, telomere length, and functional capacity assessed in older adults: Cross-sectional and longitudinal analyses. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 1724–1733. [Google Scholar] [CrossRef] [PubMed]
- Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Front. Immunol. 2018, 8, 1960. [Google Scholar] [CrossRef] [Green Version]
- Yousefzadeh, M.J.; Flores, R.R.; Zhu, Y.; Schmiechen, Z.C.; Brooks, R.W.; Trussoni, C.E.; Cui, Y.; Angelini, L.; Lee, K.-A.; McGowan, S.J.; et al. An Aged Immune system drives senescence and ageing of solid organs. Nature 2021, 594, 100–105. [Google Scholar] [CrossRef]
- Goronzy, J.J.; Lee, W.-W.; Weyand, C.M. Aging and T-cell diversity. Exp. Gerontol. 2007, 42, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Goronzy, J.J.; Fang, F.; Cavanagh, M.M.; Qi, Q.; Weyand, C.M. Naive T cell maintenance and function in human aging. J. Immunol. 2015, 194, 4073–4080. [Google Scholar] [CrossRef] [Green Version]
- Fagnoni, F.F.; Vescovini, R.; Passeri, G.; Bologna, G.; Pedrazzoni, M.; Lavagetto, G.; Casti, A.; Franceschi, C.; Passeri, M.; Sansoni, P. Shortage of circulating naive CD8(+) T cells provides new insights on immunodeficiency in aging. Blood 2000, 95, 2860–2868. [Google Scholar] [CrossRef]
- Globerson, A.; Effros, R.B. Ageing of lymphocytes and lymphocytes in the aged. Immunol. Today 2000, 21, 515–521. [Google Scholar] [CrossRef]
- Fahey, J.L.; Schnelle, J.F.; Boscardin, J.; Thomas, J.K.; Gorre, M.E.; Aziz, N.; Sadeghi, H.; Nishanian, P. Distinct categories of immunologic changes in frail elderly. Mech. Ageing Dev. 2000, 115, 1–20. [Google Scholar] [CrossRef]
- Semba, R.D.; Margolick, J.B.; Leng, S.; Walston, J.; Ricks, M.O.; Fried, L.P. T cell subsets and mortality in older community-dwelling women. Exp. Gerontol. 2005, 40, 81–87. [Google Scholar] [CrossRef]
- Löhning, M.; Hutloff, A.; Kallinich, T.; Mages, H.W.; Bonhagen, K.; Radbruch, A.; Hamelmann, E.; Kroczek, R.A. Expression of ICOS in vivo defines CD4+ effector T cells with high inflammatory potential and a strong bias for secretion of interleukin 10. J. Exp. Med. 2003, 197, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Channappanavar, R.; Twardy, B.S.; Krishna, P.; Suvas, S. Advancing age leads to predominance of inhibitory receptor expressing CD4 T cells. Mech. Ageing Dev. 2009, 130, 709–712. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Sant, S.; Bird, N.L.; Grant, E.J.; Clemens, E.B.; Koutsakos, M.; Valkenburg, S.A.; Gras, S.; Lappas, M.; Jaworowski, A.; et al. Perturbed CD8+ T cell immunity across universal influenza epitopes in the elderly. J. Leukoc. Biol. 2018, 103, 321–339. [Google Scholar] [CrossRef] [Green Version]
- Appay, V.; Sauce, D. Naive T cells: The crux of cellular immune aging? Exp. Gerontol. 2014, 54, 90–93. [Google Scholar] [CrossRef]
- Lian, J.; Yue, Y.; Yu, W.; Zhang, Y. Immunosenescence: A key player in cancer development. J. Hematol. Oncol. 2020, 13, 151. [Google Scholar] [CrossRef]
- Sun, N.; Youle, R.J.; Finkel, T. The mitochondrial basis of aging. Mol. Cell 2016, 61, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Alves-Figueiredo, H.; Silva-Platas, C.; Lozano, O.; Vázquez-Garza, E.; Guerrero-Beltrán, C.E.; Zarain-Herzberg, A.; García-Rivas, G. A systematic review of post-translational modifications in the mitochondrial permeability transition pore complex associated with cardiac diseases. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1867, 165992. [Google Scholar] [CrossRef]
- Romani, M.; Berger, M.M.; D’Amelio, P. From the bench to the bedside: Branched amino acid and micronutrient strategies to improve mitochondrial dysfunction leading to sarcopenia. Nutrients 2022, 14, 483. [Google Scholar] [CrossRef]
- Yu, Y.-R.; Imrichova, H.; Wang, H.; Chao, T.; Xiao, Z.; Gao, M.; Rincon-Restrepo, M.; Franco, F.; Genolet, R.; Cheng, W.-C.; et al. Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nat. Immunol. 2020, 21, 1540–1551. [Google Scholar] [CrossRef]
- Reed, R.G. Stress and immunological aging. Curr. Opin. Behav. Sci. 2019, 28, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Faas, M.M.; de Vos, P. Mitochondrial function in immune cells in health and disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165845. [Google Scholar] [CrossRef] [PubMed]
- Wikby, A.; Johansson, B.; Ferguson, F.; Olsson, J. Age-related changes in immune parameters in a very old population of Swedish people: A longitudinal study. Exp. Gerontol. 1994, 29, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, F.G.; Wikby, A.; Maxson, P.; Olsson, J.; Johansson, B. Immune parameters in a longitudinal study of a very old population of Swedish people: A comparison between survivors and nonsurvivors. J. Gerontol. A Biol. Sci. Med. Sci. 1995, 50, B378–B382. [Google Scholar] [CrossRef] [PubMed]
- Pawelec, G.; Ouyang, Q.; Colonna-Romano, G.; Candore, G.; Lio, D.; Caruso, C. Is human immunosenescence clinically relevant? Looking for ‘Immunological risk phenotypes’. Trends Immunol. 2002, 23, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Speiser, D.E.; Lichterfeld, M.; Bonini, C. T memory stem cells in health and disease. Nat. Med. 2017, 23, 18–27. [Google Scholar] [CrossRef]
- Cattaneo, F.; Buondonno, I.; Cravero, D.; Sassi, F.; D’Amelio, P. Musculoskeletal diseases role in the frailty syndrome: A case–control study. Int. J. Environ. Res. Public Health 2022, 19, 11897. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- D’Amelio, P.; Grimaldi, A.; Di Bella, S.; Brianza, S.Z.M.; Cristofaro, M.A.; Tamone, C.; Giribaldi, G.; Ulliers, D.; Pescarmona, G.P.; Isaia, G. Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: A key mechanism in osteoporosis. Bone 2008, 43, 92–100. [Google Scholar] [CrossRef]
- Buondonno, I.; Sassi, F.; Carignano, G.; Dutto, F.; Ferreri, C.; Pili, F.G.; Massaia, M.; Nisoli, E.; Ruocco, C.; Porrino, P.; et al. From mitochondria to healthy aging: The role of branched-chain amino acids treatment: MATeR a randomized study. Clin. Nutr. 2019, 39, 2080–2091. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Galeoto, G.; Sansoni, J.; Scuccimarri, M.; Bruni, V.; De Santis, R.; Colucci, M.; Valente, D.; Tofani, M. A psychometric properties evaluation of the Italian version of the geriatric depression scale. Depress. Res. Treat. 2018, 2018, e1797536. [Google Scholar] [CrossRef] [Green Version]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The Physical Activity Scale for the Elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- de Fátima Ribeiro Silva, C.; Ohara, D.G.; Matos, A.P.; Pinto, A.C.P.N.; Pegorari, M.S. Short physical performance battery as a measure of physical performance and mortality predictor in older adults: A comprehensive literature review. Int. J. Environ. Res. Public Health 2021, 18, 10612. [Google Scholar] [CrossRef]
- Derhovanessian, E.; Maier, A.B.; Hähnel, K.; Zelba, H.; de Craen, A.J.M.; Roelofs, H.; Slagboom, E.P.; Westendorp, R.G.J.; Pawelec, G. Lower proportion of naïve peripheral CD8+ T Cells and an unopposed pro-inflammatory response to human Cytomegalovirus proteins in vitro are associated with longer survival in very elderly people. Age 2013, 35, 1387–1399. [Google Scholar] [CrossRef]
- Pawelec, G.; McElhaney, J.E.; Aiello, A.E.; Derhovanessian, E. The impact of CMV infection on survival in older humans. Curr. Opin. Immunol. 2012, 24, 507–511. [Google Scholar] [CrossRef]
- van der Geest, K.S.M.; Abdulahad, W.H.; Tete, S.M.; Lorencetti, P.G.; Horst, G.; Bos, N.A.; Kroesen, B.-J.; Brouwer, E.; Boots, A.M.H. Aging disturbs the balance between effector and regulatory CD4+ T cells. Exp. Gerontol. 2014, 60, 190–196. [Google Scholar] [CrossRef]
- Syrjälä, H.; Surcel, H.M.; Ilonen, J. Low CD4/CD8 T lymphocyte ratio in acute myocardial infarction. Clin. Exp. Immunol. 1991, 83, 326–328. [Google Scholar] [CrossRef]
- Ferrando-Martínez, S.; Romero-Sánchez, M.C.; Solana, R.; Delgado, J.; de la Rosa, R.; Muñoz-Fernández, M.A.; Ruiz-Mateos, E.; Leal, M. Thymic function failure and C-reactive protein levels are independent predictors of all-cause mortality in healthy elderly humans. Age 2013, 35, 251–259. [Google Scholar] [CrossRef]
- Huppert, F.A.; Pinto, E.M.; Morgan, K.; Brayne, C. Survival in a population sample is predicted by proportions of lymphocyte subsets. Mech. Ageing Dev. 2003, 124, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Klopack, E.T.; Crimmins, E.M.; Cole, S.W.; Seeman, T.E.; Carroll, J.E. Social stressors associated with age-related T lymphocyte percentages in older US adults: Evidence from the US Health and Retirement Study. Proc. Natl. Acad. Sci. USA 2022, 119, e2202780119. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, J.; Parsons, R.; Botelho, F.; Millar, J.; McNeil, S.; Fulop, T.; McElhaney, J.E.; Andrew, M.K.; Walter, S.D.; Devereaux, P.J.; et al. T-cell phenotypes predictive of frailty and mortality in elderly nursing home residents. J. Am. Geriatr. Soc. 2017, 65, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.L.; Adams, A.B.; Pearson, T.C. Targeting co-stimulatory pathways: Transplantation and autoimmunity. Nat. Rev. Nephrol. 2014, 10, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Heinze-Milne, S.D.; Banga, S.; Howlett, S.E. Frailty and cytokines in preclinical models: Comparisons with humans. Mech. Ageing Dev. 2022, 206, 111706. [Google Scholar] [CrossRef]
- Marzetti, E.; Picca, A.; Marini, F.; Biancolillo, A.; Coelho-Junior, H.J.; Gervasoni, J.; Bossola, M.; Cesari, M.; Onder, G.; Landi, F.; et al. Inflammatory signatures in older persons with physical frailty and sarcopenia: The frailty “Cytokinome” at its core. Exp. Gerontol. 2019, 122, 129–138. [Google Scholar] [CrossRef]
- Lu, Y.; Tan, C.T.Y.; Nyunt, M.S.Z.; Mok, E.W.H.; Camous, X.; Kared, H.; Fulop, T.; Feng, L.; Ng, T.P.; Larbi, A. Inflammatory and immune markers associated with physical frailty syndrome: Findings from Singapore longitudinal aging studies. Oncotarget 2016, 7, 28783–28795. [Google Scholar] [CrossRef] [Green Version]
- Hsu, B.; Hirani, V.; Cumming, R.G.; Naganathan, V.; Blyth, F.M.; Wright, F.C.; Waite, L.M.; Seibel, M.J.; Handelsman, D.J.; Le Couteur, D.G. Cross-sectional and longitudinal relationships between inflammatory biomarkers and frailty in community-dwelling older men: The concord health and ageing in men project. J. Gerontol. Ser. A 2019, 74, 835–841. Available online: https://academic.oup.com/biomedgerontology/article/74/6/835/4001467 (accessed on 23 November 2022). [CrossRef] [Green Version]
- Mohamad, M.; Ebeid, S.; Shawky Khater, M.; Alsadany, M. Interferon-gamma-inducible guanosine triphosphate cyclohydrolase 1 (GTP-CH1) pathway is associated with frailty in Egyptian elderly. Rep. Biochem. Mol. Biol. 2018, 7, 52–58. [Google Scholar]
- Furtado, G.E.; Uba Chupel, M.; Minuzzi, L.; Patrício, M.; Loureiro, M.; Bandelow, S.; Hogervorst, E.; Ferreira, J.P.; Teixeira, A.M. Exploring the potential of salivary and blood immune biomarkers to elucidate physical frailty in institutionalized older women. Exp. Gerontol. 2020, 129, 110759. [Google Scholar] [CrossRef]
- Hammami, S.; Ghzaiel, I.; Hammouda, S.; Sakly, N.; Hammami, M.; Zarrouk, A. Evaluation of pro-inflammatory cytokines in frail Tunisian older adults. PLoS ONE 2020, 15, e0242152. [Google Scholar] [CrossRef]
- Badrasawi, M.; Shahar, S.; Zahara, A.M.; Fadilah, R.N.; Singh, D.K.A. Efficacy of L-carnitine supplementation on frailty status and its biomarkers, nutritional status, and physical and cognitive function among prefrail older adults: A double-blind, randomized, placebo-controlled clinical trial. CIA 2016, 11, 1675–1686. [Google Scholar] [CrossRef] [Green Version]
- Marcos-Pérez, D.; Sánchez-Flores, M.; Maseda, A.; Lorenzo-López, L.; Millán-Calenti, J.C.; Gostner, J.M.; Fuchs, D.; Pásaro, E.; Laffon, B.; Valdiglesias, V. Frailty in older adults is associated with plasma concentrations of inflammatory mediators but not with lymphocyte subpopulations. Front. Immunol. 2018, 9, 1056. [Google Scholar] [CrossRef] [Green Version]
- Alberro, A.; Iribarren-Lopez, A.; Sáenz-Cuesta, M.; Matheu, A.; Vergara, I.; Otaegui, D. Inflammaging markers characteristic of advanced age show similar levels with frailty and dependency. Sci. Rep. 2021, 11, 4358. [Google Scholar] [CrossRef]
- McGuire, P.J. Mitochondrial dysfunction and the aging immune system. Biology 2019, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Tembo, M.C.; Mohebbi, M.; Holloway-Kew, K.L.; Gaston, J.; Sui, S.X.; Brennan-Olsen, S.L.; Williams, L.J.; Kotowicz, M.A.; Pasco, J.A. The contribution of musculoskeletal factors to physical frailty: A cross-sectional study. BMC Musculoskelet. Disord. 2021, 22, 921. [Google Scholar] [CrossRef]
- Klein Geltink, R.I.; O’Sullivan, D.; Corrado, M.; Bremser, A.; Buck, M.D.; Buescher, J.M.; Firat, E.; Zhu, X.; Niedermann, G.; Caputa, G.; et al. Mitochondrial priming by CD28. Cell 2017, 171, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Zhang, L.; Bonner, M.R.; Liu, C.-S.; Li, G.; Vermeulen, R.; Dosemeci, M.; Yin, S.; Lan, Q. Association between mitochondrial DNA copy number, blood cell counts, and occupational benzene exposure. Environ. Mol. Mutagen. 2008, 49, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Pyle, A.; Burn, D.J.; Gordon, C.; Swan, C.; Chinnery, P.F.; Baudouin, S.V. Fall in circulating mononuclear cell mitochondrial DNA content in human sepsis. Intensive Care Med. 2010, 36, 956–962. [Google Scholar] [CrossRef]
Robust (20) | Frail (20) | p-Value | |
---|---|---|---|
Age (years) | 83 ± 5 | 82 ± 6 | 0.469 |
Gender (number) | 10 W, 10 M | 10 W, 10 M | 0.752 |
Number of drugs/daily | 4.5 ± 2.4 (3.4–5.6) | 5.0 ± 2.3 (3.9–6.0) | 0.523 |
BMI | 23.6 ± 2.7 (22.4–24.9) | 22.9 ± 4.5 (20.8–25.0) | 0.527 |
MNA (score/30) | 23.1 ± 4.5 (21.1–25.2) | 20.4 ± 4.1 (18.5–22.3) | 0.049 |
Four-meter walking test (m/sec) | 0.84 ± 0.2 (0.8–0.9) | 0.5 ± 0.2 (0.5–0.6) | <0.0001 |
PASE (score) | 131.4 ± 25.1 (119.9–142.8) | 67.6 ± 27.1 (55.0–90.31) | <0.0001 |
Handgrip strength (Kg) | 28.9 ± 5.9 (26.2–31.6) | 17.5 ± 6.1 (14.6–20.3) | <0.0001 |
ASMM (Kg/m2) | 7.6 ± 2.7 (6.3–8.8) | 8.1 ± 4.3 (6.1–10.12) | 0.653 |
SPPB (score/30) | 8.4 ± 1.9 (7.4–9.1) | 3.9 ± 3.1 (2.4–5.4) | <0.0001 |
MMSE (score/30) | 27.4 ± 1.3 (26.8–27.9) | 26.8 ± 1.3 (26.2–-27.4) | 0.140 |
CIRS (score/30) | 7.9 ± 3.5 (6.3–9.4) | 11.3 ± 4.7 (9.0–13.5) | 0.012 |
GDS (score/30) | 8.4 ± 4.0 (6.6–10.3) | 16.1 ± 8.6 (12.4–20.4) | <0.0001 |
ADL (number of lost functions) | 0.5 ± 0.48 (0.05–0.15) | 1.1 ± 0.4 (0.2–1.9) | 0.013 |
IADL (score/14) | 11.1 ± 3.3 (6.5–11) | 8.8 ± 4.8 (6.5–11) | 0.08 |
T Cell Type (% of Lymphocytes) | Frail (20) | Robust (20) | p-Value |
---|---|---|---|
CD8+ T cells | 21.5 ± 15.7 (13.7–29.3) | 38.8 ± 22.2 (27.4–48.2) | 0.014 |
CD8+CD45 Ro+ T cells * | 14.8 (5.7–23.3) | 8 (0.9–28.9) | 0.602 |
CD8+ CD45Ra+ T cells * | 1.6 (0.6–3.1) | 0.6 (0–2.2) | 0.211 |
CD4+ T cells | 21.3 ± 15.5 (13.6–29) | 38.3 ± 23.6 (27.3–49.4) | 0.013 |
CD4+ CD45Ro+ T cells | 12.9 (2.3–19.7) | 26.3 (1–28.9) | 0.871 |
CD4+ CD45Ra+ T cells * | 1 (1–1.5) | 0.4 (0.1–2.3) | 0.620 |
CD4+/CD8+ | 1 ± 0.1 (1–1.1) | 1 ± 0.1 (0.9–1.1) | 0.781 |
C8+/ICOS+ | 35.5 ± 5.4 (24.2–46.9) | 26.8 ± (17.2–36.3) | 0.218 |
C4+/ICOS+ | 2.9 ± 0.9 (1.1–-4.7) | 2.7 ± 0.7 (1.1–4.2) | 0.842 |
CD8+/CD28+ | 24.5 ± 4.5 (15–34) | 38 ± 4.8 (27.9–48.2) | 0.048 |
CD4+/CD28+ | 24.9 ± 4.6 (15.2–35.5) | 39.7 ± 5.2 (28.8–50.6) | 0.041 |
Serum Cytokines | Frail (20) | Robust (20) | p-Value |
---|---|---|---|
IL17 (pg/mL) | 268.3 ± 38.3 (190.6–346.1) | 378 ± 52 (273.6–482.5) | 0.098 |
IFNγ (pg/mL) | 284.0 ± 13.9 (255.8–312.3) | 309.1 ± 14.7 (279.3–338.9) | 0.222 |
IL4 (pg/mL) | 580.7 ± 43.8 (491.9–669.5) | 526.4 ± 38.6 (448.4–604.4) | 0.354 |
TNFα (pg/mL) | 283.2 ± 18.6 (245.4–321.0) | 306.3 ± 22.2 (261.3–351.2) | 0.434 |
ICOSL (ng/mL) | 11.4 − 1.6 (8.2–14.5) | 11.4 ± 1.6 (8.3–14.5) | 0.981 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buondonno, I.; Sassi, F.; Cattaneo, F.; D’Amelio, P. Association between Immunosenescence, Mitochondrial Dysfunction and Frailty Syndrome in Older Adults. Cells 2023, 12, 44. https://doi.org/10.3390/cells12010044
Buondonno I, Sassi F, Cattaneo F, D’Amelio P. Association between Immunosenescence, Mitochondrial Dysfunction and Frailty Syndrome in Older Adults. Cells. 2023; 12(1):44. https://doi.org/10.3390/cells12010044
Chicago/Turabian StyleBuondonno, Ilaria, Francesca Sassi, Francesco Cattaneo, and Patrizia D’Amelio. 2023. "Association between Immunosenescence, Mitochondrial Dysfunction and Frailty Syndrome in Older Adults" Cells 12, no. 1: 44. https://doi.org/10.3390/cells12010044
APA StyleBuondonno, I., Sassi, F., Cattaneo, F., & D’Amelio, P. (2023). Association between Immunosenescence, Mitochondrial Dysfunction and Frailty Syndrome in Older Adults. Cells, 12(1), 44. https://doi.org/10.3390/cells12010044