The Role of Chitinases in Chronic Airway Inflammation Associated with Tobacco Smoke Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Study Design and Participants
2.2. Subjects
2.3. Spirometry
2.4. Induced Sputum Collection and Processing
2.5. Cytokine and Chitinase Concentration Measurements in IS
2.6. Chitinolytic Activity Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Przysucha, N.; Górska, K.; Krenke, R. Chitinases and Chitinase-Like Proteins in Obstructive Lung Diseases—Current Concepts and Potential Applications. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 885–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesner, D.L.; Specht, C.A.; Lee, C.K.; Smith, K.D.; Mukaremera, L.; Lee, S.T.; Lee, C.G.; Elias, J.A.; Nielsen, J.N.; Boulware, D.R.; et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015, 11, e1004701. [Google Scholar] [CrossRef] [PubMed]
- Kzhyshkowska, J.; Gratchev, A.; Goerdt, S. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomark. Insights 2007, 2, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Majewski, S.; Szewczyk, K.; Jerczyńska, H.; Miłkowska-Dymanowska, J.; Białas, A.J.; Gwadera, Ł.; Piotrowski, W.J. Longitudinal and Comparative Measures of Serum Chitotriosidase and YKL-40 in Patients With Idiopathic Pulmonary Fibrosis. Front. Immunol. 2022, 13, 760776. [Google Scholar] [CrossRef]
- Chang, D.; Sharma, L.; Dela Cruz, C.S. Chitotriosidase: A marker and modulator of lung disease. Eur. Respir. Rev. 2020, 29, 190143. [Google Scholar] [CrossRef]
- Sklepkiewicz, P.; Dymek, B.A.; Mlacki, M.; Koralewski, R.; Mazur, M.; Nejman-Gryz, P.; Korur, S.; Zagozdzon, A.; Rymaszewska, A.; von der Thüsen, J.H.; et al. Inhibition of CHIT1 as a novel therapeutic approach in idiopathic pulmonary fibrosis. Eur. J. Pharmacol. 2022, 919, 174792. [Google Scholar] [CrossRef]
- Dymek, B.; Sklepkiewicz, P.; Mlacki, M.; Güner, N.C.; Nejman-Gryz, P.; Drzewicka, K.; Przysucha, N.; Rymaszewska, A.; Paplinska-Goryca, M.; Zagozdzon, A.; et al. Pharmacological Inhibition of Chitotriosidase (CHIT1) as a Novel Therapeutic Approach for Sarcoidosis. J. Inflamm. Res. 2022, 15, 5621–5634. [Google Scholar] [CrossRef]
- Létuvé, S.; Kozhich, A.; Humbles, A.; Brewah, Y.; Dombret, M.C.; Grandsaigne, M.; Adle, H.; Kolbeck, R.; Aubier, M.; Coyle, A.J.; et al. Lung chitinolytic activity and chitotriosidase are elevated in chronic obstructive pulmonary disease and contribute to lung inflammation. Am. J. Pathol. 2010, 176, 638–649. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, K.; Matsumoto, H.; Niimi, A.; Muro, S.; Ito, I.; Takeda, T.; Terada, K.; Yamaguchi, M.; Matsuoka, H.; Jinnai, M.; et al. Sputum YKL-40 levels and pathophysiology of asthma and chronic obstructive pulmonary disease. Respiration 2012, 83, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Majewski, S.; Tworek, D.; Szewczyk, K.; Kiszałkiewicz, J.; Kurmanowska, Z.; Brzeziańska-Lasota, E.; Jerczyńska, H.; Antczak, A.; Piotrowski, W.J.; Górski, P. Overexpression of chitotriosidase and YKL-40 in peripheral blood and sputum of healthy smokers and patients with chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2019, 14, 1611–1631. [Google Scholar] [CrossRef]
- Sanfilippo, C.; Longo, A.; Lazzara, F.; Cambria, D.; Distefano, G.; Palumbo, M.; Cantarella, A.; Malaguarnera, L.; Di Rosa, M. CHI3L1 and CHI3L2 overexpression in motor cortex and spinal cord of sALS patients. Mol. Cell Neurosci. 2017, 85, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Logue, E.C.; Neff, C.P.; Mack, D.G.; Martin, A.K.; Fiorillo, S.; Lavelle, J.; Vandivier, R.W.; Campbell, T.B.; Palmer, B.E.; Fontenot, A.P. Upregulation of Chitinase 1 in Alveolar Macrophages of HIV-Infected Smokers. J. Immunol. 2019, 202, 1363–1372. [Google Scholar] [CrossRef] [Green Version]
- Guerra, S.; Halonen, M.; Sherrill, D.L.; Venker, C.; Spangenberg, A.; Carsin, A.E.; Tarès, L.; Lavi, I.; Barreiro, E.; Martínez-Moratalla, J.; et al. The relation of circulating YKL-40 to levels and decline of lung function in adult life. Respir. Med. 2013, 107, 1923–1930. [Google Scholar] [CrossRef] [Green Version]
- Mazur, M.; Dymek, B.; Koralewski, R.; Sklepkiewicz, P.; Olejniczak, S.; Mazurkiewicz, M.; Piotrowicz, M.; Salamon, M.; Jędrzejczak, K.; Zagozdzon, A.; et al. Development of Dual Chitinase Inhibitors as Potential New Treatment for Respiratory System Diseases. J. Med. Chem. 2019, 62, 7126–7145. [Google Scholar] [CrossRef] [PubMed]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: The global lung function 2012 equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. (Updated 2018). Available online: www.goldcopd.org (accessed on 17 July 2018).
- Miller, M.R.; Hankinson, J.A.T.S.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [Green Version]
- Djukanović, R.; Sterk, P.J.; Fahy, J.V.; Hargreave, F.E. Standardised methodology of sputum induction and processing. Eur. Respir. J. Suppl. 2002, 37, 1s–2s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Górska, K.; Paplińska-Goryca, M.; Nejman-Gryz, P.; Goryca, K.; Krenke, R. Eosinophilic and Neutrophilic Airway Inflammation in the Phenotyping of Mild-to-Moderate Asthma and Chronic Obstructive Pulmonary Disease. COPD 2017, 14, 181–189. [Google Scholar] [CrossRef]
- Mazur, M.; Olczak, J.; Olejniczak, S.; Koralewski, R.; Czestkowski, W.; Jedrzejczak, A.; Golab, J.; Dzwonek, K.; Dymek, B.; Sklepkiewicz, P.L.; et al. Targeting Acidic Mammalian chitinase Is Effective in Animal Model of Asthma. J. Med. Chem. 2018, 61, 695–710. [Google Scholar] [CrossRef]
- Létuvé, S.; Kozhich, A.; Arouche, N.; Grandsaigne, M.; Reed, J.; Dombret, M.C.; Kiener, P.A.; Aubier, M.; Coyle, A.J.; Pretolani, M. YKL-40 is elevated in patients with chronic obstructive pulmonary disease and activates alveolar macrophages. J. Immunol. 2008, 181, 5167–5173. [Google Scholar] [CrossRef] [PubMed]
- Guiot, J.; Henket, M.; Corhay, J.L.; Moermans, C.; Louis, R. Sputum biomarkers in IPF: Evidence for raised gene expression and protein level of IGFBP-2, IL-8 and MMP-7. PLoS ONE 2017, 12, e0171344. [Google Scholar] [CrossRef] [Green Version]
- Tang, H.; Sun, Y.; Shi, Z.; Huang, H.; Fang, Z.; Chen, J.; Xiu, Q.; Li, B. YKL-40 induces IL-8 expression from bronchial epithelium via MAPK (JNK and ERK) and NF-κB pathways, causing bronchial smooth muscle proliferation and migration. J. Immunol. 2013, 190, 438–446. [Google Scholar] [CrossRef] [Green Version]
- McDonald, V.M.; Fingleton, J.; Agusti, A.; Hiles, S.A.; Clark, V.L.; Holland, A.E.; Marks, G.B.; Bardin, P.P.; Beasley, R.; Pavord, I.D.; et al. Treatable traits: A new paradigm for 21st century management of chronic airway diseases: Treatable Traits Down Under International Workshop report. Eur. Respir. J. 2019, 53, 1802058. [Google Scholar] [CrossRef]
- Cardoso, J.; Ferreira, A.J.; Guimarães, M.; Oliveira, A.S.; Simão, P.; Sucena, M. Treatable Traits in COPD—A Proposed Approach. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 3167–3182. [Google Scholar] [CrossRef] [PubMed]
Clinical Data | Non-Smoking Control (n = 9) | Smoking Control (n = 12) | COPD (n = 22) | p-Value |
---|---|---|---|---|
Sex (Male/Female) | 4/5 | 7/5 | 13/9 | 0.61 |
Age (years) | 53 (45–69) | 62 (59.5–67) | 63.5 (61–75) | 0.1 |
BMI (kg/m2) | 26.2 (24.7–30.1) | 29 (26.5–32.4) | 27.3 (23.5–31.1) | 0.452 |
Smoking status (current smokers/ex-smokers) | n/a | 9/3 | 12/10 | 0.47 |
Smoking history (pack-years) | 0 | 30 (17.5–36.5) | 45 (30–55) | 0.005 *,& |
Pre-bronchodilator FEV1 (% of predicted) | 106 (83–115) | 88 (83.5–94.5) | 57.5 (49–62) | <0.001 *,& |
Pre-bronchodilator FEV1/FVC (%) | 74.62 (67.2–77.6) | 72.98 (71.2–79.2) | 47.4 (43.1–54.9) | <0.001 *,& |
Post-bronchodilator FEV1 (% of predicted) | n/a | n/a | 64 (55–73) | n/a |
Post-bronchodilator FEV1/FVC (%) | n/a | n/a | 51.38 (46–59.1) | n/a |
GOLD A/B/C/D categories (n) | n/a | n/a | 2/17/1/2 | n/a |
CAT score (points) | n/a | n/a | 12 (8–17) | n/a |
mMRC scale (points) | n/a | n/a | 1 (1–2) | n/a |
Parameters of Induced Sputum | Non-Smoking Control (n = 9) | Smoking Control (n = 12) | COPD (n = 22) | p-Value |
---|---|---|---|---|
Total cell count (×106/g) | 1.2 (0.7–2) | 1.8 (1.4–2.2) | 1.3 (0.7–2.5) | 0.74 |
Macrophage cell count (×106/g) | 0.5 (0.3–0.8) | 0.6 (0.5–0.8) | 0.5 (0.21–0.9) | 0.769 |
Macrophages (%) | 46 (38–48) | 39 (37–46.5) | 35.5 (26–46) | 0.395 |
Neutrophil cell count (×106/g) | 0.6 (0.3–1) | 0.8 (0.6–1.2) | 0.8 (0.4–1.2) | 0.789 |
Neutrophils (%) | 48 (40–50) | 50.5 (40.5–58) | 54.5 (45–68) | 0.175 |
Lymphocyte cell count (×106/g) | 0.1 (0.1–0.1) | 0.1 (0.1–0.2) | 0.1 (0–0.1) | 0.017 * |
Lymphocytes (%) | 5 (5–7) | 7.5 (4–11) | 3 (0–5) | 0.107 |
Eosinophil cell count (×106/g) | 0.02 (0–0.04) | 0.02 (0.02–0.05) | 0 (0–0.02) | 0.072 |
Eosinophils (%) | 1 (1–2) | 2 (1–4) | 0.5 (0–1) | 0.223 |
IL-6 (pg/mL) | 1.8 (1.5–2.3) | 3. (0.6–5.9) | 0.8 (0.4–3.5) | 0.217 |
IL-8 (pg/mL) | 63.2 (44.1–111.7) | 81.9 (51.5–95.4) | 388.4 (149.8–500) | 0.01 *,& |
IL-18 (pg/mL) | 27.1 (15–56.1) | 14.2 (0–80.8) | 60.5 (6.3–93.5) | 0.361 |
MMP-9 (ng/mL) | 66.8 (19.9–104.7) | 144.4 (69.5–417.8) | 258.4 (60.7–624.1) | 0.175 |
CHIT1 (pg/mL) | 238.5 (42.4–903.9) | 1158.4 (135.8–5387.3) | 961.8 (0–6669.1) | 0.519 |
Chitinolytic activity (μM/μL/h) | 0.017 (0.01–0.02) | 0.021 (0.013–0.086) | 0.01 (0.003–0.05) | 0.74 |
YKL-40 (pg/mL) | 1422.3 (0–3550.8) | 0 (0–1378.7) | 16,407 (4738.3–42,193.3) | <0.001 *,& |
Clinical and Sputum Paramters | r-Coefficient | p-Value |
---|---|---|
(Intercept) | 1.02 | 0.11 |
IL-8 (pg/mL) | 0.66 | 0.38 |
Smoking history (pack-years) | 5.23 | 0.01 |
CHIT1 (pg/mL) | 0.20 | 0.80 |
YKL-40 (pg/mL) | 1.69 | 0.02 |
IL-6 (pg/mL) | −0.26 | 0.67 |
Chitinolytic activity (uM/uL/h) | −0.97 | 0.35 |
Clinical parameters | Cluster 1 (n = 34) | Cluster 2 (n = 9) | p-Value |
---|---|---|---|
COPD, n (%) | 13 (38) | 9 (100) | 0.005 |
Control smokers, n (%) | 12 (35) | 0 (0) | <0.001 |
Control non-smokers, n (%) | 9 (27) | 0 (0) | <0.001 |
Male/female | 17/17 | 6/3 | 0.37 |
Age (years) | 62.5 (56–75) | 62 (61–72) | 0.85 |
BMI (kg/m2) | 27.9 (25.2–31.1) | 24.8 (21.9–28.6) | 0.17 |
Smoking history (pack-years) | 26 (0–40) | 45 (40–55) | 0.03 |
Pre-bronchodilator FEV1 (l) | 2.2 (1.7–3) | 1.3 (1–1.8) | 0.008 |
Pre-bronchodilator FEV1 (% of predicted) | 89 (62–91) | 50 (45–57) | <0.001 |
Pre-bronchodilator FEV1/FVC (%) | 68.5 (55.8–74.6) | 46.3 (42.5–50.8) | <0.001 |
Parameters of Induced Sputum | Cluster 1 (n = 34) | Cluster 2 (n = 9) | p-Value |
---|---|---|---|
Total cell count (×106/g) | 1.2 (0.65–2.03) | 2.82 (2.11–5.9) | <0.001 |
Neutrophils (%) | 50.5 (45–59) | 54 (45–71) | 0.263 |
Neutrophils (×106/g) | 0.64 (0.33–0.98) | 2.14 (0.97–3.56) | 0.001 |
Macrophages (%) | 40 (35–48) | 32 (22–37) | 0.04 |
Macrophages (×106/g) | 0.49 (0.27–0.79) | 0.85 (0.67–1.95) | 0.004 |
IL-6 (pg/mL) | 1.98 (0.72–4.96) | 0.46 (0.19–0.79) | 0.02 |
IL-8 (pg/mL) | 82.8 (57.76–167.95) | 500 (500–500) | <0.001 |
IL-18 (pg/mL) | 18 (0–62.25) | 87.34 (68.79–93.47) | 0.003 |
MMP-9 (ng/mL) | 76.89 (26.73–193.1) | 624.12 (426.7–647.01) | <0.001 |
CHIT1 (pg/mL) | 135.76 (0–1553) | 6669.08 (2119.33–7963.19) | 0.002 |
Chitinolytic activity (μM/μL/h) | 0.013 (0.003–0.027) | 0.06 (0.05–0.23) | 0.001 |
YKL-40 (pg/mL) | 1770.29 (0–5151.67) | 46,429.17 (30,799.17–47,146.67) | <0.001 |
Clinical Data | COPD from Cluster 1 (n = 13) | COPD from Cluster 2 (n = 9) | p-Value |
---|---|---|---|
COPD, n (%) | 13 (38) | 9 (100) | 0.35 |
Male/female (n) | 7/6 | 6/3 | 0.64 |
Age (years) | 68 (62–77) | 62 (61–72) | 0.35 |
BMI (kg/m2) | 27.9 (24.8–31.1) | 24.8 (21.9–28.6) | 0.3 |
Smoking history (pack-years) | 45 (30–52.5) | 45 (40–55) | 0.815 |
Pre-bronchodilator FEV1 (l) | 1.5 (1.17–1.9) | 1.3 (1–1.8) | 0.664 |
Pre-bronchodilator FEV1 (% of predicted) | 61 (51–66) | 50 (45–57) | 0.082 |
Pre-bronchodilator FEV1/FVC (%) | 47.5 (44.8–56.7) | 46.3 (42.5–50.8) | 0.256 |
Post-bronchodilator FEV1 (l) | 1.7 (1.4–2.1) | 1.4 (1.3–2) | 0.815 |
Post-bronchodilator FEV1 (% of predicted) | 68 (58–73) | 57 (51–64) | 0.285 |
Post-bronchodilator FEV1/FVC (%) | 52.6 (47.5–59.1) | 49.4 (44.4–51.2) | 0.285 |
Parameters of Induced Sputum | COPD from Cluster 1 (n = 13) | COPD from Cluster 2 (n = 9) | p-Value |
---|---|---|---|
Total cell count (×106/g) | 0.8 (0.5–1.1) | 2.8 (2.1–5.9) | <0.001 |
Neutrophils (%) | 55 (49–62) | 54 (45–71) | 0.69 |
Neutrophils (×106/g) | 0.46 (0.26–0.69) | 2.1 (1–3.6) | 0.001 |
Macrophages (%) | 40 (32–47) | 32 (22–37) | 0.22 |
Macrophages (×106/g) | 0.2 (0.2–0.4) | 0.9 (0.7–2) | 0.001 |
IL-6 (pg/mL) | 2.9 (0.6–5) | 0.5 (0.2–0.8) | 0.07 |
IL-8 (pg/mL) | 150.1 (72.8–271.9) | 500 (500–500) | 0.003 |
IL-18 (pg/mL) | 7.2 (3.7–53.4) | 87.34 (68.8–93.5) | 0.019 |
MMP-9 (ng/mL) | 81.2 (54.2–149.8) | 624.1 (426.7–647) | 0.001 |
CHIT1 (pg/mL) | 0 (0–0) | 6669.1 (2119.3–7963.2) | 0.003 |
Chitinolytic activity (μM/μL/h) | 0.004 (0.001–0.01) | 0.06 (0.05–0.23) | 0.001 |
YKL-40 (pg/mL) | 5151.7 (2118.3–11,130) | 46,429.2 (30,799.2–47,146.7) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przysucha, N.; Górska, K.; Maskey-Warzęchowska, M.; Proboszcz, M.; Nejman-Gryz, P.; Paplińska-Goryca, M.; Dymek, B.; Zagozdzon, A.; Krenke, R. The Role of Chitinases in Chronic Airway Inflammation Associated with Tobacco Smoke Exposure. Cells 2022, 11, 3765. https://doi.org/10.3390/cells11233765
Przysucha N, Górska K, Maskey-Warzęchowska M, Proboszcz M, Nejman-Gryz P, Paplińska-Goryca M, Dymek B, Zagozdzon A, Krenke R. The Role of Chitinases in Chronic Airway Inflammation Associated with Tobacco Smoke Exposure. Cells. 2022; 11(23):3765. https://doi.org/10.3390/cells11233765
Chicago/Turabian StylePrzysucha, Natalia, Katarzyna Górska, Marta Maskey-Warzęchowska, Małgorzata Proboszcz, Patrycja Nejman-Gryz, Magdalena Paplińska-Goryca, Barbara Dymek, Agnieszka Zagozdzon, and Rafał Krenke. 2022. "The Role of Chitinases in Chronic Airway Inflammation Associated with Tobacco Smoke Exposure" Cells 11, no. 23: 3765. https://doi.org/10.3390/cells11233765
APA StylePrzysucha, N., Górska, K., Maskey-Warzęchowska, M., Proboszcz, M., Nejman-Gryz, P., Paplińska-Goryca, M., Dymek, B., Zagozdzon, A., & Krenke, R. (2022). The Role of Chitinases in Chronic Airway Inflammation Associated with Tobacco Smoke Exposure. Cells, 11(23), 3765. https://doi.org/10.3390/cells11233765