Anatomical Development of the Cerebellothalamic Tract in Embryonic Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Tissue Preparation for Immunohistochemistry
2.3. Immunohistochemistry
2.4. DISCO
2.5. In Utero Electroporation
2.6. Antibodies
2.7. Imaging
2.8. Delineation and Intensity Measurements
2.9. Colocalization and Volume Measurement
2.10. Statistical Analysis
3. Results
3.1. Proportion of CN Neurons Labelled RFP+ in Ntsr1-Cre/AI14 Mice
3.2. Ontogeny of Cerebello-Thalamic Connection
3.3. Invasion of Thalamic Anlage by Putative CbT Axons from E17.5
3.4. Extracerebellar RFP+ Neurons and Axons
3.5. Cerebellar In Utero Electroporation Confirms CbT Position at E18.5
3.6. Quantification of RFP+ Axons in Thalamic Nuclei Indicates Increasing CbT Density
4. Discussion
4.1. Technical Considerations
4.2. Development of the CbT in Mouse Embryos
4.3. Timing of Invasion in the Thalamus
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. List of Abbreviations
- CbT = cerebellothalamic tract
- CbX = decussation of the cerebellothalamic tract
- CN = cerebellar nuclei
- CP = caudate Putamen
- CT = corticothalamic
- Ctx = cerebral cortex
- Th = thalamus
- fr = fasciculus retroflexus
- Hb = habenula
- Hc = hippocampus
- Hyp = hypothalamus
- IC = inferior colliculus
- Int = interposed nucleus of the cerebellum
- LCN = lateral nucleus of the cerebellum
- LG = lateral geniculate nucleus of the thalamus
- dLGN = dorsal lateral geniculate nucleus
- LP = lateral posterior nucleus of the thalamus
- MCN = medial nucleus of the cerebellum
- MD = mediodorsal nucleus of the thalamus
- MG = medial geniculate nucleus of the thalamus
- ML = midline nuclei
- mRF = medullary reticular formation
- mt = mamillothalamic tract
- NHS = normal horse serum
- PBS = phosphate buffer saline
- PBSGT = phosphate buffer saline with gelatin and triton
- Pf = parafascicular nucleus of the thalamus
- POm = Posterior complex of the thalamus
- pSAO = percentage of summed area occupied by above threshold RFP signal
- Pt = pretectum
- RFP = red fluorescent protein
- RN = red nucleus
- rpm = rounds per minute
- Rt = reticular nucleus of the thalamus
- SC = superior colliculus
- TC = thalamocortical
- THF = tetrahydrofuran
- VB = ventrobasal complex of the thalamus
- VL = ventrolateral nucleus of the thalamus
- VM = ventromedial nucleus of the thalamus
- pTh = prethalamus
References
- Gong, S.; Doughty, M.; Harbaugh, C.R.; Cummins, A.; Hatten, M.E.; Heintz, N.; Gerfen, C.R. Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs. J. Neurosci. 2007, 27, 9817–9823. [Google Scholar] [CrossRef] [Green Version]
- Madisen, L.; Zwingman, T.A.; Sunkin, S.M.; Oh, S.W.; Zariwala, H.A.; Gu, H.; Ng, L.L.; Palmiter, R.D.; Hawrylycz, M.J.; Jones, A.R.; et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 2010, 13, 133–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belle, M.; Godefroy, D.; Dominici, C.; Heitz-Marchaland, C.; Zelina, P.; Hellal, F.; Bradke, F.; Chédotal, A. A Simple Method for 3D Analysis of Immunolabeled Axonal Tracts in a Transparent Nervous System. Cell Rep. 2014, 9, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Matsui, A.; Yoshida, A.C.; Kubota, M.; Ogawa, M.; Shimogori, T. Mouse in Utero Electroporation: Controlled Spatiotemporal Gene Transfection. J. Vis. Exp. 2011, 54, 3024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobowitz, D.M.; Abbott, L.C. Chemoarchitectonic Atlas of the Developing Mouse Brain; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Schambra, U.B.; Lauder, J.M.; Silver, J. Atlas of the Prenatal Mouse Brain, 1st ed.; Academic Press: Boca Raton, FL, USA, 1992; p. 327. [Google Scholar]
- Paxinos, G. Atlas of the Developing Mouse Brain: At E17.5, PO, and P6; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Thompson, C.L.; Ng, L.; Menon, V.; Martinez, S.; Lee, C.-K.; Glattfelder, K.; Sunkin, S.M.; Henry, A.; Lau, C.; Dang, C.; et al. A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain. Neuron 2014, 83, 309–323. [Google Scholar] [CrossRef] [Green Version]
- Ferland, R.J.; Cherry, T.J.; Preware, P.O.; Morrisey, E.E.; Walsh, C.A. Characterization of Foxp2 and Foxp1 mRNA and Protein in the Developing and Mature Brain. J. Comp. Neurol. 2003, 460, 266–279. [Google Scholar] [CrossRef] [PubMed]
- Vargha-Khadem, F.; Gadian, D.G.; Copp, A.; Mishkin, M. FOXP2 and the neuroanatomy of speech and language. Nat. Rev. Neurosci. 2005, 6, 131–138. [Google Scholar] [CrossRef]
- Nagalski, A.; Puelles, L.; Dabrowski, M.; Wegierski, T.; Kuznicki, J.; Wisniewska, M.B. Molecular anatomy of the thalamic complex and the underlying transcription factors. Brain Struct. Funct. 2016, 221, 2493–2510. [Google Scholar] [CrossRef] [Green Version]
- Bodor, A.L.; Giber, K.; Rovo, Z.; Ulbert, I.; Acsady, L. Structural correlates of efficient GABAergic transmission in the basal ganglia-thalamus pathway. J. Neurosci. 2008, 28, 3090–3102. [Google Scholar] [CrossRef] [Green Version]
- Gornati, S.V.; Schafer, C.B.; Eelkman Rooda, O.H.J.; Nigg, A.L.; De Zeeuw, C.I.; Hoebeek, F.E. Differentiating Cerebellar Impact on Thalamic Nuclei. Cell Rep. 2018, 23, 2690–2704. [Google Scholar] [CrossRef]
- Houck, B.D.; Person, A.L. Cerebellar Premotor Output Neurons Collateralize to Innervate the Cerebellar Cortex. J. Comp. Neurol. 2015, 523, 2254–2271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leto, K.; Arancillo, M.; Becker, E.; Buffo, A.; Chiang, C.; Ding, B.; Dobyns, W.; Dusart, I.; Haldipur, P.; Hatten, M.; et al. Consensus Paper: Cerebellar Development. Cerebellum 2016, 15, 789–828. [Google Scholar] [CrossRef] [PubMed]
- Englund, C.; Kowalczyk, T.; Daza, R.A.M.; Dagan, A.; Lau, C.; Rose, M.F.; Hevner, R.F. Development/Plasticity/Repair Unipolar Brush Cells of the Cerebellum Are Produced in the Rhombic Lip and Migrate through Developing White Matter. J. Neurosci. 2006, 26, 9184–9195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, S.; Kaneyama, T.; Inamata, Y.; Onodera, R.; Shirasaki, R. Interstitial branch formation within the red nucleus by deep cerebellar nuclei-derived commissural axons during target recognition. J. Comp. Neurol. 2016, 524, 999–1014. [Google Scholar] [CrossRef]
- Olsen, S.R.; Bortone, D.S.; Adesnik, H.; Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 2012, 483, 47–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, E.C.; Campagnoni, C.; Kampf, K.; Reyes, S.D.; Kalra, V.; Handley, V.; Xie, Y.-Y.; Hong-Hu, Y.; Spreur, V.; Fisher, R.S.; et al. Visualization of corticofugal projections during early cortical development in a τ-GFP-transgenic mouse. Eur. J. Neurosci. 2007, 25, 17–30. [Google Scholar] [CrossRef]
- Gao, Z.; Davis, C.; Thomas, A.M.; Economo, M.N.; Abrego, A.M.; Svoboda, K.; De Zeeuw, C.I.; Li, N. A cortico-cerebellar loop for motor planning. Nature 2018, 563, 113–116. [Google Scholar] [CrossRef]
- Fremeau, R.T., Jr.; Troyer, M.D.; Pahner, I.; Nygaard, G.O.; Tran, C.H.; Reimer, R.J.; Bellocchio, E.E.; Fortin, D.; Storm-Mathisen, J.; Edwards, R.H. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 2001, 31, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Hisano, S.; Sawada, K.; Kawano, M.; Kanemoto, M.; Xiong, G.; Mogi, K.; Sakata-Haga, H.; Takeda, J.; Fukui, Y.; Nogami, H. Expression of inorganic phosphate/vesicular glutamate transporters (BNPI/VGLUT1 and DNPI/VGLUT2) in the cerebellum and precerebellar nuclei of the rat. Brain Res. Mol. Brain Res. 2002, 107, 23–31. [Google Scholar] [CrossRef]
- Kaneko, T.; Fujiyama, F. Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci. Res. 2002, 42, 243–250. [Google Scholar] [CrossRef]
- Grant, E.; Hoerder-Suabedissen, A.; Molnár, Z. Development of the Corticothalamic Projections. Front. Neurosci. 2012, 6, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.B.; Ginsberg, C.Y. Brainstem Reticular Nuclei that Project to the Thalamus in Rats: A Retrograde Tracer Study. Brain Behav. Evol. 2008, 44, 23–31. [Google Scholar] [CrossRef]
- Vertes, R.P.; Crane, A.M.; Colom, L.V.; Bland, B.H. Ascending projections of the posterior nucleus of the hypothalamus: PHA-L analysis in the rat. J. Comp. Neurol. 1995, 359, 90–116. [Google Scholar] [CrossRef] [PubMed]
- Shimogawa, Y.; Sakuma, Y.; Yamanouchi, K. Efferent and afferent connections of the ventromedial hypothalamic nucleus determined by neural tracer analysis: Implications for lordosis regulation in female rats. Neurosci. Res. 2015, 91, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Kivrak, B.G.; Erzurumlu, R.S. Development of the principal nucleus trigeminal lemniscal projections in the mouse. J. Comp. Neurol. 2013, 521, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Z.-H. The interplay of axonal energy homeostasis and mitochondrial trafficking and anchoring. Trends Cell Biol. 2017, 27, 403–416. [Google Scholar] [CrossRef]
- Altman, J.; Bayer, S. Development of the rat thalamus: IV. The intermediate lobule of the thalamic neuroepithelium, and the time and site of origin and settling pattern of neurons of the ventral nuclear complex. J. Comp. Neurol. 1989, 284, 534–566. [Google Scholar] [CrossRef]
- Deck, M.; Lokmane, L.; Chauvet, S.; Mailhes, C.; Keita, M.; Niquille, M.; Yoshida, M.; Yoshida, Y.; Lebrand, C.; Mann, F.; et al. Pathfinding of Corticothalamic Axons Relies on a Rendezvous with Thalamic Projections. Neuron 2013, 77, 472–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink, A.J.; Englund, C.; Daza, R.A.; Pham, D.; Lau, C.; Nivison, M.; Kowalczyk, T.; Hevner, R.F. Development of the deep cerebellar nuclei: Transcription factors and cell migration from the rhombic lip. J. Neurosci. 2006, 26, 3066–3076. [Google Scholar] [CrossRef] [Green Version]
- Kolk, S.M.; Gunput, R.-A.F.; Tran, T.S.; van den Heuvel, D.M.A.; Prasad, A.A.; Hellemons, A.J.C.G.M.; Adolfs, Y.; Ginty, D.D.; Kolodkin, A.L.; Burbach, J.P.H.; et al. Semaphorin 3F is a bifunctional guidance cue for dopaminergic axons and controls their fasciculation, channeling, rostral growth, and intracortical targeting. J. Neurosci. 2009, 29, 12542–12557. [Google Scholar] [CrossRef] [Green Version]
- Bibollet-Bahena, O.; Okafuji, T.; Hokamp, K.; Tear, G.; Mitchell, K.J. A dual-strategy expression screen for candidate connectivity labels in the developing thalamus. PLoS ONE 2017, 12, e0177977. [Google Scholar] [CrossRef] [Green Version]
- Teune, T.M.; van der Burg, J.; van der Moer, J.; Voogd, J.; Ruigrok, T.J. Topography of cerebellar nuclear projections to the brain stem in the rat. Prog. Brain Res. 2000, 124, 141–172. [Google Scholar] [CrossRef]
- Sathyanesan, A.; Zhou, J.; Scafidi, J.; Heck, D.H.; Sillitoe, R.V.; Gallo, V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat. Rev. Neurosci. 2019, 20, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Juan, V.; Filipchuk, A.; Anton-Bolanos, N.; Mezzera, C.; Gezelius, H.; Andres, B.; Rodriguez-Malmierca, L.; Susin, R.; Schaad, O.; Iwasato, T.; et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat. Commun. 2017, 8, 14172. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.G. Development of the thalamus. In The Thalamus, 1st ed.; Cambridge University Press: Cambridge, UK, 2007; Volume 1, pp. 575–576. [Google Scholar]
- Lauder, J.M.; Wallace, J.A.; Krebs, H.; Petrusz, P.; McCarthy, K. In vivo and in vitro development of serotonergic neurons. Brain Res. Res. Bull. 1982, 9, 605–625. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.F.; Cabana, T.; Hazlett, J.C.; Ho, R.; Waltzer, R. Development of brainstem and cerebellar projections to the diencephalon with notes on thalamocortical projections: Studies in the north american opossum. J. Comp. Neurol. 1987, 260, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Gardette, R.; Debono, M.; Dupont, J.L.; Crepel, F. Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. I. Postsynaptic potentials. Brain Res. 1985, 351, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Uesaka, N.; Hayano, Y.; Yamada, A.; Yamamoto, N. Interplay between laminar specificity and activity-dependent mechanisms of thalamocortical axon branching. J. Neurosci. 2007, 27, 5215–5223. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, N.; Hoshiko, M.; Sugo, N.; Fukazawa, Y.; Yamamoto, N. Synapse-dependent and independent mechanisms of thalamocortical axon branching are regulated by neuronal activity. Dev. Neurobiol. 2016, 76, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Kloth, A.D.; Badura, A. The cerebellum, sensitive periods, and autism. Neuron 2014, 83, 518–532. [Google Scholar] [CrossRef]
- Hensch, T.K. Critical period regulation. Annu. Rev. Neurosci. 2004, 27, 549–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Heijden, M.E.; Gill, J.S.; Sillitoe, R.V. Abnormal Cerebellar Development in Autism Spectrum Disorders. Dev. Neurosci. 2021, 43, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Yan, C.-G.; Li, Q.; Denio, E.; Castellanos, F.X.; Alaerts, K.; Anderson, J.S.; Assaf, M.; Bookheimer, S.Y.; Dapretto, M.; et al. The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 2014, 19, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Carper, R.A.; Abbott, A.E.; Chen, C.P.; Solders, S.; Nakutin, S.; Datko, M.C.; Fishman, I.; Müller, R.-A. Regional specificity of aberrant thalamocortical connectivity in autism. Hum. Brain Mapp. 2015, 36, 4497–4511. [Google Scholar] [CrossRef]
Host Species | Antigen | Concentration | Manufacturer |
---|---|---|---|
Rabbit | Red fluorescent protein | 1:1000 | Rockland 600-401-379 |
Chick | Green fluorescent protein | 1:200 | Abcam ab13970 |
Guinea Pig | Vesicular glutamate transporter 2 | 1:500 | MilliP AB2251 |
Goat | FoxP2 | 1:500 | SC-21069 |
Chicken | Calbindin | 1:500 | Syn Sys 214006 |
Mouse | Calbindin D-28 | 1:100 | Sigma CB955 |
Mouse | NeuN | 1:1000 | MilliP MAB377 |
Rabbit | Red fluorescent protein | 1:1000 | Rockland 600-401-379 |
Host Species | Target Species | Conjugate | Concentration | Manufacturer |
---|---|---|---|---|
Donkey | Rabbit | Cy3 | 1:400 | Jackson 711-165-152 |
Donkey | Chick | FITC | 1:200 | Millipore AP194F |
Goat | Rabbit | Biotin | 1:1000 | Jackson 111-065-144 |
Donkey | Guinea Pig | Cy5 | 1:200 | Jackson 706-175-148 |
Donkey | Goat | Alexa488 | 1:200 | Jackson 705-545-147 |
Donkey | Chicken | Cy5 | 1:200 | Jackson 703-175-155 |
Goat | Mouse | Cy3 | 1:1000 | Millipore AP124C |
Donkey | Mouse | Alexa488 | 1:200 | Jackson 715-545-150 |
Light-Sheet Ultramicroscope II | Opera Phenix HCS | Zeiss LSM700 Meta | |||||
---|---|---|---|---|---|---|---|
Dyes | Laser | Filters | Lasers | Filters | Lasers | Filters | Beamsplitter |
Alexa 488 | - | - | 488 nm | 500/50 | 488 nm | 0/590 | 520 |
Cy3 | 561 nm | 615/40 | 561 nm | 570/30 | 555 nm | /640 | 600 |
Cy5 | - | - | 640 nm | 650/60 | 633 nm | 640/ | 630 |
Mouse 1 (3 Sections) | Mouse 2 (5 Sections) | Mouse 3 (4 Sections) | ||||
---|---|---|---|---|---|---|
RFP/NeuN in % | RFP/totalRFP | RFP/NeuN in % | RFP/totalRFP | RFP/NeuN in % | RFP/totalRFP | |
LCN | 20.1 | 13.9 | 19.3 | 9.9 | 23.2 | 16.1 |
Int | 47.7 | 72.2 | 56.8 | 80.2 | 50.4 | 74.3 |
MCN | 21.1 | 14.0 | 10.7 | 9.9 | 13.4 | 9.6 |
Total | 34.9 | 100 | 35.1 | 100 | 34.6 | 100 |
E16.5 | E17.5 | E18.5 | E16.5 vs. E17.5 | E16.5 vs. E18.5 | E17.5 vs. E18.5 | ||||
---|---|---|---|---|---|---|---|---|---|
pSAO | pSAO | pSAO | Z | p | Z | p | Z | p | |
VM | 0.0480% | 4.85% | 14.7% | −1.38 | 0.167 | −2.96 | 0.00307 | −1.71 | 0.0881 |
VL | - | 2.20% | 9.56% | - | - | - | - | - | 0.02 |
MD | 0.00147% | 0.0590% | 1.45% | −1.26 | 0.207 | −2.79 | 0.00535 | −2.02 | 0.0431 |
Pf | 0.330% | 1.06% | 3.30% | −1.60 | 0.111 | −3.00 | 0.00274 | −1.67 | 0.0940 |
ML | 0.0930% | 0.0586% | 0.342% | −1.77 | 0.859 | −2.15 | 0.0317 | −2.25 | 0.0242 |
VB | 0.263% | 0.305% | 0.919% | - | - | - | - | - | - |
POm | 0.0261% | 0.137% | 0.885% | 0.836 | 0.403 | −1.54 | 0.123 | −2.67 | 0.00766 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumas, D.B.; Gornati, S.V.; Adolfs, Y.; Shimogori, T.; Pasterkamp, R.J.; Hoebeek, F.E. Anatomical Development of the Cerebellothalamic Tract in Embryonic Mice. Cells 2022, 11, 3800. https://doi.org/10.3390/cells11233800
Dumas DB, Gornati SV, Adolfs Y, Shimogori T, Pasterkamp RJ, Hoebeek FE. Anatomical Development of the Cerebellothalamic Tract in Embryonic Mice. Cells. 2022; 11(23):3800. https://doi.org/10.3390/cells11233800
Chicago/Turabian StyleDumas, Daniël B., Simona V. Gornati, Youri Adolfs, Tomomi Shimogori, R. Jeroen Pasterkamp, and Freek E. Hoebeek. 2022. "Anatomical Development of the Cerebellothalamic Tract in Embryonic Mice" Cells 11, no. 23: 3800. https://doi.org/10.3390/cells11233800
APA StyleDumas, D. B., Gornati, S. V., Adolfs, Y., Shimogori, T., Pasterkamp, R. J., & Hoebeek, F. E. (2022). Anatomical Development of the Cerebellothalamic Tract in Embryonic Mice. Cells, 11(23), 3800. https://doi.org/10.3390/cells11233800