The Parallel Presentation of Two Functional CTL Epitopes Derived from the O and Asia 1 Serotypes of Foot-and-Mouth Disease Virus and Swine SLA-2*HB01: Implications for Universal Vaccine Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Genes, and Viruses
2.2. Epitope Prediction and Peptide Synthesis
2.3. Crystallization of SLA-2*HB01 and sβ2m Complexed with Peptides
2.4. Determination and Refinement of Structures
2.5. Analysis of TCR Contact with CTL Epitopes in Different SLA Class I Crystals
2.6. Virus Challenge and Infection
2.7. ELISPOT Assays
2.8. Accession Numbers for Protein Structures
3. Results
3.1. Overall Structures of the SLA-2-HB01 Complexes and the Conformations and Flexibilities of the SLA-I-Binding Peptides
3.2. Comparison of the Peptide-Binding Interfaces and the Pockets of SLA-2*HB01, SLA-1*0401, and SLA-3*hs0202
3.3. Analysis of Potential TCR Contact with CTL Epitopes in Different SLA Class I Crystals
3.4. The Parallel Presentation of Peptide Variants from O and Asia 1 by SLA-2*HB01
3.5. The CTL Activity of Hu64 and As64 Peptides
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Domingo, E.; Baranowski, E.; Escarmis, C.; Sobrino, F. Foot-and-mouth disease virus. Comp. Immunol. Microbiol. Infect. Dis. 2002, 25, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Hansen, S.; Dill, V.; Shalaby, M.A.; Eschbaumer, M.; Bohlken-Fascher, S.; Hoffmann, B.; Czerny, C.P.; Abd El Wahed, A. Serotyping of foot-and-mouth disease virus using oxford nanopore sequencing. J. Virol. Methods 2019, 263, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Tami, C.; Kaplan, G.; Piccone, M.E.; Palma, E.L. Nucleotide sequence of the P1 region of foot-and-mouth disease virus strain O1 Caseros. Virus Genes 1997, 14, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Chen, J.; Hou, L.; Yu, X.; Zheng, Q.; Hou, J. Long-term humoral immunity induced by CVC1302-adjuvanted serotype O foot-and-mouth disease inactivated vaccine correlates with promoted T follicular helper cells and thus germinal center responses in mice. Vaccine 2017, 35, 7088–7094. [Google Scholar] [CrossRef]
- Chinsangaram, J.; Mason, P.W.; Grubman, M.J. Protection of swine by live and inactivated vaccines prepared from a leader proteinase-deficient serotype A12 foot-and-mouth disease virus. Vaccine 1998, 16, 1516–1522. [Google Scholar] [CrossRef]
- Negi, B.S.; Kumar, S. Immunological studies with cell cultured aluminium hydroxide gel adsorbed formalin inactivated foot and mouth disease type Asia I monovalent vaccine. Indian Vet. J. 1970, 47, 555–561. [Google Scholar]
- Anderson, E.C.; Doughty, W.J.; Spooner, P.R. Variation in the thermal stability of isolates of foot-and-mouth disease type SAT 2 and its significance in the selection of vaccine strains. J. Comp. Pathol. 1982, 92, 495–507. [Google Scholar] [CrossRef]
- Cloete, M.; Dungu, B.; Van Staden, L.I.; Ismail-Cassim, N.; Vosloo, W. Evaluation of different adjuvants for foot-and-mouth disease vaccine containing all the SAT serotypes. Onderstepoort J. Vet. Res. 2008, 75, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Harmsen, M.M.; Seago, J.; Perez, E.; Charleston, B.; Eble, P.L.; Dekker, A. Isolation of single-domain antibody fragments that preferentially detect intact (146S) particles of foot-and-mouth disease virus for use in vaccine quality control. Front. Immunol. 2017, 8, 960. [Google Scholar] [CrossRef] [Green Version]
- Cubillos, C.; de la Torre, B.G.; Barcena, J.; Andreu, D.; Sobrino, F.; Blanco, E. Inclusion of a specific T cell epitope increases the protection conferred against foot-and-mouth disease virus in pigs by a linear peptide containing an immunodominant B cell site. Virol. J. 2012, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, L.L.; Grubman, M.J. Foot and mouth disease virus vaccines. Vaccine 2009, 27 (Suppl. 4), D90–D94. [Google Scholar] [CrossRef] [PubMed]
- Doel, T.R. FMD vaccines. Virus Res. 2003, 91, 81–99. [Google Scholar] [CrossRef] [PubMed]
- Grubman, M.J. Development of novel strategies to control foot-and-mouth disease: Marker vaccines and antivirals. Biologicals 2005, 33, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Blanco, E.; Garcia-Briones, M.; Sanz-Parra, A.; Gomes, P.; De Oliveira, E.; Valero, M.L.; Andreu, D.; Ley, V.; Sobrino, F. Identification of T-cell epitopes in nonstructural proteins of foot-and-mouth disease virus. J. Virol. 2001, 75, 3164–3174. [Google Scholar] [CrossRef] [Green Version]
- de Leon, P.; Canas-Arranz, R.; Defaus, S.; Torres, E.; Forner, M.; Bustos, M.J.; Revilla, C.; Dominguez, J.; Andreu, D.; Blanco, E.; et al. Swine T-Cells and specific antibodies evoked by peptide dendrimers displaying different FMDV T-Cell epitopes. Front. Immunol. 2020, 11, 621537. [Google Scholar] [CrossRef]
- Zou, Q.; Wu, B.; He, X.; Zhang, Y.; Kang, Y.; Jin, J.; Xu, H.; Liu, H.; Wang, B. Increasing a robust antigen-specific cytotoxic T lymphocyte response by FMDV DNA vaccination with IL-9 expressing construct. J. Biomed. Biotechnol. 2010, 2010, 562356. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.C.; Lin, H.H.; Lin, C.H.; Chung, W.B. Identification of cytotoxic T lymphocyte epitopes on swine viruses: Multi-epitope design for universal T cell vaccine. PLoS ONE 2013, 8, e84443. [Google Scholar] [CrossRef] [Green Version]
- Hardwick, N.; Buchan, S.; Ingram, W.; Khan, G.; Vittes, G.; Rice, J.; Pulford, K.; Mufti, G.; Stevenson, F.; Guinn, B.A. An analogue peptide from the Cancer/Testis antigen PASD1 induces CD8+ T cell responses against naturally processed peptide. Cancer Immun. 2013, 13, 16. [Google Scholar]
- Dong, S.; Wang, P.; Zhao, P.; Chen, M. Direct loading of iTEP-delivered CTL epitope onto MHC class I complexes on the dendritic cell surface. Mol. Pharm. 2017, 14, 3312–3321. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.J.; Lan, J.; Liu, K.; Deng, Y.; Yao, Y.; Wu, S.; Chen, H.; Bao, L.; Zhang, H.; Zhao, M.; et al. Protective T cell responses featured by concordant recognition of middle east respiratory syndrome coronavirus-derived CD8+ T cell epitopes and host MHC. J. Immunol. 2017, 198, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liu, J.; Yang, M.; Gao, F.; Zhou, J.; Kitamura, Y.; Gao, B.; Tien, P.; Shu, Y.; Iwamoto, A.; et al. Identification and structural definition of H5-specific CTL epitopes restricted by HLA-A*0201 derived from the H5N1 subtype of influenza A viruses. J. Gen. Virol. 2010, 91, 919–930. [Google Scholar] [CrossRef] [PubMed]
- Bjorkman, P.J.; Saper, M.A.; Samraoui, B.; Bennett, W.S.; Strominger, J.L.; Wiley, D.C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987, 329, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, N.; Qi, J.; Chen, R.; Dijkstra, J.M.; Li, X.; Wang, Z.; Wang, J.; Wu, Y.; Xia, C. The Structure of the MHC Class I Molecule of Bony Fishes Provides Insights into the Conserved Nature of the Antigen-Presenting System. J. Immunol. 2017, 199, 3668–3678. [Google Scholar] [CrossRef] [Green Version]
- Ljunggren, H.G.; Thorpe, C.J. Principles of MHC class I-mediated antigen presentation and T cell selection. Histol. Histopathol. 1996, 11, 267–274. [Google Scholar]
- Hopkins, L.M.; Schall, M.; Leykam, J.F.; Gerlach, J.A. Characterization of major histocompatibility complex-associated peptides from a small volume of whole blood. Anal. Biochem. 2004, 328, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.R.; Yuan, H.H.; Guo, J.H.; Zhang, W.Y.; Li, Q.Q.; Huang, G.D.; Zhang, Y.J.; Jiang, B.; Liu, F. A signal peptide derived from Hsp60 induces protective cytotoxic T lymphocyte immunity against lymphoid malignancies independently of TAP and classical MHC-I. Cancer Lett. 2020, 494, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, T.; Yamamoto, H.; Matano, T. CD8+ cytotoxic-T-lymphocyte breadth could facilitate early immune detection of immunodeficiency virus-derived epitopes with limited expression levels. mSphere 2019, 4, e00381-18. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, N.; Wei, X.; Lu, S.; Li, S.; Hashimoto, K.; Dijkstra, J.M.; Xia, C. The Structure of a Peptide-Loaded Shark MHC Class I Molecule Reveals Features of the Binding between beta2-Microglobulin and H Chain Conserved in Evolution. J. Immunol. 2021, 207, 308–321. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, N.; Hashimoto, K.; Xia, C.; Dijkstra, J.M. Structural Comparison Between MHC Classes I and II; in Evolution, a Class-II-Like Molecule Probably Came First. Front. Immunol. 2021, 12, 621153. [Google Scholar] [CrossRef]
- Ando, A.; Kawata, H.; Shigenari, A.; Anzai, T.; Ota, M.; Katsuyama, Y.; Sada, M.; Goto, R.; Takeshima, S.N.; Aida, Y.; et al. Genetic polymorphism of the swine major histocompatibility complex (SLA) class I genes, SLA-1, -2 and -3. Immunogenetics 2003, 55, 583–593. [Google Scholar] [CrossRef]
- Zhang, N.; Qi, J.; Feng, S.; Gao, F.; Liu, J.; Pan, X.; Chen, R.; Li, Q.; Chen, Z.; Li, X.; et al. Crystal structure of swine major histocompatibility complex class I SLA-1 0401 and identification of 2009 pandemic swine-origin influenza A H1N1 virus cytotoxic T lymphocyte epitope peptides. J. Virol. 2011, 85, 11709–11724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, S.; Wu, Y.; Wang, S.; Wang, Z.; Jiang, B.; Liu, Y.; Liang, R.; Zhou, W.; Zhang, N.; Xia, C. Structural and biochemical analyses of swine major histocompatibility complex class I complexes and prediction of the epitope map of important influenza A virus strains. J. Virol. 2016, 90, 6625–6641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, S.; Wang, Z.B.; Qi, P.; Xiao, J.; Wang, X.J. Crystallization of SLA-2*04:02:02 complexed with a CTL epitope derived from FMDV. Res. Vet. Sci. 2020, 128, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Tungatt, K.; Dolton, G.; Morgan, S.B.; Attaf, M.; Fuller, A.; Whalley, T.; Hemmink, J.D.; Porter, E.; Szomolay, B.; Montoya, M.; et al. Induction of influenza-specific local CD8 T-cells in the respiratory tract after aerosol delivery of vaccine antigen or virus in the Babraham inbred pig. PLoS Pathog. 2018, 14, e1007017. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.S.; Feng, L.; Jiang, P.; Li, Z.B.; Gao, H.; Zhai, X.X.; Zhang, Z.H.; Hu, X. Expression, purification, crystallization and preliminary X-ray diffraction analysis of swine leukocyte antigen 2 complexed with a CTL epitope AS64 derived from Asia1 serotype of foot-and-mouth disease virus. BMC Vet. Res. 2018, 14, 407. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.S.; Bai, J.; Gong, X.J.; Zhang, X.H.; Zhang, W.J.; Guo, D.; Zhang, S. Analyzing the genetic characteristics and function of the swine leukocyte antigen 2 gene in a Chinese inbreed of pigs. Microbiol. Immunol. 2012, 56, 208–215. [Google Scholar] [CrossRef]
- Li, D.; Lu, Z.J.; Xie, B.X.; Sun, P.; Chen, Y.L.; Fu, Y.F.; Liu, Z.X. Alternative way to test the efficacy of swine FMD vaccines: Measurement of pigs median infected dose (PID50) and regulation of live virus challenge dose. Virol. J. 2010, 7, 215. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.S.; Zhai, X.X.; Jiang, P.; Zhang, Q.; Gao, H.; Li, Z.B.; Han, Y.; Yang, J.; Zhang, Z.H. Identification of two novel foot-and-mouth disease virus cytotoxic T lymphocyte epitopes that can bind six SLA-I proteins. Gene 2018, 653, 91–101. [Google Scholar] [CrossRef]
- Feng, L.; Sun, M.W.; Jiang, P.; Li, Z.B.; Gao, H.; Zhai, X.X.; Han, Y.; Zhang, Z.H.; Gao, F.S. Purification, crystallization and preliminary X-ray crystallographic studies of swine MHC class I complexed with an FMDV CTL epitope Hu64. Res. Vet. Sci. 2018, 119, 205–208. [Google Scholar] [CrossRef]
- Emsley, P.; Cowtan, K. Coot: Model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2126–2132. [Google Scholar] [CrossRef] [Green Version]
- Torices, R.; Munoz-Pajares, A.J. PHENIX: An R package to estimate a size-controlled phenotypic integration index. Appl. Plant Sci. 2015, 3, 1400104. [Google Scholar] [CrossRef] [PubMed]
- Rigsby, R.E.; Parker, A.B. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem. Mol. Biol. Educ. 2016, 44, 433–437. [Google Scholar] [CrossRef] [PubMed]
- Kovalevskiy, O.; Nicholls, R.A.; Long, F.; Carlon, A.; Murshudov, G.N. Overview of refinement procedures within REFMAC5: Utilizing data from different sources. Acta Crystallogr. D Struct. Biol. 2018, 74, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.; McCoy, A.; et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rieder, E.; Baxt, B.; Lubroth, J.; Mason, P.W. Vaccines prepared from chimeras of foot-and-mouth disease virus (FMDV) induce neutralizing antibodies and protective immunity to multiple serotypes of FMDV. J. Virol. 1994, 68, 7092–7098. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.S.; Fang, Q.M.; Li, Y.G.; Li, X.S.; Hao, H.F.; Xia, C. Reconstruction of a swine SLA-I protein complex and determination of binding nonameric peptides derived from the foot-and-mouth disease virus. Vet. Immunol. Immunopathol. 2006, 113, 328–338. [Google Scholar] [CrossRef]
- Yao, S.; Liu, J.; Qi, J.; Chen, R.; Zhang, N.; Liu, Y.; Wang, J.; Wu, Y.; Gao, G.F.; Xia, C. Structural illumination of equine MHC class I molecules highlights unconventional epitope presentation manner that is evolved in equine leukocyte antigen alleles. J. Immunol. 2016, 196, 1943–1954. [Google Scholar] [CrossRef] [Green Version]
- Lever, O.W., Jr.; Bhatia, A.V.; Chang, K.J. Opioid receptor interactions and conformations of the 6 alpha and 6 beta epimers of oxymorphamine. Solid-state conformation of 6 alpha-oxymorphamine. J. Med. Chem. 1985, 28, 1652–1656. [Google Scholar] [CrossRef]
- Khan, A.R.; Baker, B.M.; Ghosh, P.; Biddison, W.E.; Wiley, D.C. The structure and stability of an HLA-A*0201/octameric tax peptide complex with an empty conserved peptide-N-terminal binding site. J. Immunol. 2000, 164, 6398–6405. [Google Scholar] [CrossRef] [Green Version]
- Roder, G.; Blicher, T.; Justesen, S.; Johannesen, B.; Kristensen, O.; Kastrup, J.; Buus, S.; Gajhede, M. Crystal structures of two peptide-HLA-B*1501 complexes; structural characterization of the HLA-B62 supertype. Acta Crystallogr. D Biol. Crystallogr. 2006, 62, 1300–1310. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Li, H.; Liu, F.; Jia, Q.; Duan, H.; Niu, Y.; Bin, P.; Zheng, Y.; Dai, Y. Peptide-binding motifs and characteristics for HLA -B*13:01 molecule. Tissue Antigens 2013, 81, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Hulsmeyer, M.; Hillig, R.C.; Volz, A.; Ruhl, M.; Schroder, W.; Saenger, W.; Ziegler, A.; Uchanska-Ziegler, B. HLA-B27 subtypes differentially associated with disease exhibit subtle structural alterations. J. Biol. Chem. 2002, 277, 47844–47853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, K.C.; Degano, M.; Pease, L.R.; Huang, M.; Peterson, P.A.; Teyton, L.; Wilson, I.A. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 1998, 279, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Jardetzky, T. Not just another Fab: The crystal structure of a TcR-MHC-peptide complex. Structure 1997, 5, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Godoy, V.; Dutoit, V.; Rimoldi, D.; Lienard, D.; Lejeune, F.; Speiser, D.; Guillaume, P.; Cerottini, J.C.; Romero, P.; Valmori, D. Discrepancy between ELISPOT IFN-gamma secretion and binding of A2/peptide multimers to TCR reveals interclonal dissociation of CTL effector function from TCR-peptide/MHC complexes half-life. Proc. Natl. Acad. Sci. USA 2001, 98, 10302–10307. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.S.; Xu, C.B.; Long, Y.H.; Xia, C. Secondary structure and 3D homology modeling of swine leukocyte antigen class 2 (SLA-2) molecules. Immunobiology 2009, 214, 475–482. [Google Scholar] [CrossRef]
- Schilde, U.; Kelling, A.; Umbreen, S.; Linker, T. Crystal structures of three bicyclic carbohydrate derivatives. Acta Crystallogr. E Crystallogr. Commun. 2016, 72, 1839–1844. [Google Scholar] [CrossRef]
- Espinosa, Y.R.; Alvarez, H.A.; Howard, E.I.; Carlevaro, C.M. Molecular dynamics simulation of the heart type fatty acid binding protein in a crystal environment. J. Biomol. Struct. Dyn. 2021, 39, 3459–3468. [Google Scholar] [CrossRef]
- Zhang, Z.; Pan, L.; Ding, Y.; Zhou, P.; Lv, J.; Chen, H.; Fang, Y.; Liu, X.; Chang, H.; Zhang, J.; et al. Efficacy of synthetic peptide candidate vaccines against serotype-A foot-and-mouth disease virus in cattle. Appl. Microbiol. Biotechnol. 2015, 99, 1389–1398. [Google Scholar] [CrossRef]
- Gao, G.F.; Tormo, J.; Gerth, U.C.; Wyer, J.R.; McMichael, A.J.; Stuart, D.I.; Bell, J.I.; Jones, E.Y.; Jakobsen, B.K. Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature 1997, 387, 630–634. [Google Scholar] [CrossRef]
- Li, X.; Lamothe, P.A.; Walker, B.D.; Wang, J.H. Crystal structure of HLA-B*5801 with a TW10 HIV Gag epitope reveals a novel mode of peptide presentation. Cell. Mol. Immunol. 2017, 14, 631–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mobbs, J.I.; Illing, P.T.; Dudek, N.L.; Brooks, A.G.; Baker, D.G.; Purcell, A.W.; Rossjohn, J.; Vivian, J.P. The molecular basis for peptide repertoire selection in the human leucocyte antigen (HLA) C*06:02 molecule. J. Biol. Chem. 2017, 292, 17203–17215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, L.C.; Harlos, K.; Brackenridge, S.; Rozbesky, D.; Barrett, J.R.; Jain, V.; Walter, T.S.; O’Callaghan, C.A.; Borrow, P.; Toebes, M.; et al. Pathogen-derived HLA-E bound epitopes reveal broad primary anchor pocket tolerability and conformationally malleable peptide binding. Nat. Commun. 2018, 9, 3137. [Google Scholar] [CrossRef]
- Wang, J.; Lim, K.; Smolyar, A.; Teng, M.; Liu, J.; Tse, A.G.; Liu, J.; Hussey, R.E.; Chishti, Y.; Thomson, C.T.; et al. Atomic structure of an alphabeta T cell receptor (TCR) heterodimer in complex with an anti-TCR fab fragment derived from a mitogenic antibody. EMBO J. 1998, 17, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Gras, S.; Chadderton, J.; Del Campo, C.M.; Farenc, C.; Wiede, F.; Josephs, T.M.; Sng, X.Y.X.; Mirams, M.; Watson, K.A.; Tiganis, T.; et al. Reversed T cell receptor docking on a major histocompatibility class I complex limits involvement in the immune response. Immunity 2016, 45, 749–760. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, E.; Netti, G.S.; Gigante, M. CTL ELISPOT assay and T cell detection. Methods Mol. Biol. 2021, 2325, 65–77. [Google Scholar] [CrossRef]
- Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988, 16, 10881–10890. [Google Scholar] [CrossRef]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, W320–W324. [Google Scholar] [CrossRef]
Name | Sequence | Antigen | Position | %Rank | IC50 (nM) | Serotype |
---|---|---|---|---|---|---|
Q10 | LLRTATYYF | VP1 | VP1-65–73 | 0.422 | 520.43 | O |
INT3 | ILNNIYVLY | 3D | 3D-308–316 | 0.559 | 118.39 | Asia I |
AS3 | TVYNGTSKY | VP1 | VP1-127–135 | 0.05 | 34.94 | A |
Hu64 | ALLRTATYY | VP1 | VP1-64–72 | 0.538 | 520.43 | O |
As64 | ALLRSATYY | VP1 | VP1-64–72 | 0.534 | 155.48 | Asia I |
WX96 | ALNNHTNPTAY | VP1 | VP1-96–106 | 15 | 2059.23 | Asia I |
WH64 | MLRAATYYF | VP1 | VP1-65–73 | 0.439 | 430.49 | A |
3D314 | VLYALRRHY | 3D | 3D-314–322 | 0.548 | 132.74 | A |
AHu64 | AMLRAATYY | VP1 | VP1-64–72 | 0.603 | 73.58 | A |
Group | Numbers | Inoculum | Dose |
---|---|---|---|
Control | 3 | PBS | 1 mL |
O | 3 | Tibet/CHA/99 (HuBHK99) | 1 mL/104 TCID50 |
A | 3 | A-HuBWH (1) 2009 | 1 mL/104 TCID50 |
Asia 1 | 3 | 1/Jiangsu/China/2005 | 1 mL/104 TCID50 |
Complex | Peptide | Hydrogen Bond Partner | Distance (Å) b | Van der Waals Contacts Residues | ||
---|---|---|---|---|---|---|
Residue | Atom | Residue | Atom | |||
SLA-2*HB01–Hu64 a | P1Ala | N | Tyr171 | OH | 2.7 | Leu5, Tyr7, Glu63, Arg163, Trp167, Tyr171, Tyr159 |
N | Tyr7 | OH | 2.9 | |||
O | Tyr159 | OH | 2.6 | |||
P2Leu | N | Glu63 | OE1 | 2.8 | Tyr7, Tyr9, Met45, Glu63, Ile66, Ser67, Tyr99, Tyr159 | |
P3Leu | N | Tyr99 | OH | 3.2 | Ile66, Tyr99, Glu156, Tyr159 | |
P4Arg | NH1 | Glu69 | OE1 | 2.9 | Ile66, Glu69 | |
NH1 | Glu69 | OE2 | 2.9 | |||
P5Thr | OG1 | Glu152 | OE2 | 2.8 | Arg97, Glu152 | |
P6Ala | none | Asn73 | ||||
P7Thr | OG1 | Glu152 | OE1 | 2.2 | Asn73, Trp147, Val150, Glu152 | |
P8Tyr | O | Trp147 | NE1 | 2.8 | Asn73, Val76, Asp77, Trp147 | |
P9Tyr | N | Asp77 | OD1 | 2.7 | Tyr74, Asp77, Thr80, Leu81, Tyr84, Arg114, Asp116, Tyr123, Thr143, Lys146 | |
OH | Tyr74 | OH | 2.8 | |||
OH | Asp116 | OD1 | 2.2 | |||
OH | Arg114 | NH2 | 3.1 | |||
O | Lys146 | NZ | 2.9 | |||
OXT | Tyr84 | OH | 3.0 | |||
OXT | Thr143 | OG1 | 2.5 | |||
SLA-2*HB01–As64 | P1Ala | N | Tyr171 | OH | 2.6 | Tyr7, Arg62, Glu63, Tyr159, Arg163, Trp167, Tyr171 |
N | Tyr7 | OH | 2.7 | |||
O | Tyr159 | OH | 2.6 | |||
P2Leu | N | Glu63 | OE1 | 2.8 | Tyr7, Tyr9, Met45, Glu63, Ile66, Ser67, Tyr99, Tyr159, Arg163 | |
P3Leu | N | Tyr99 | OH | 3.3 | Ile66, Arg97, Tyr99, Glu156, Tyr159 | |
P4Arg | NH1 | Glu69 | OE1 | 2.6 | Ile66, Glu69 | |
NH1 | Glu69 | OE2 | 3.0 | |||
P5Ser | none | Glu152 | ||||
P6Ala | none | Ser5, Thr7, Asn73 | ||||
P7Thr | OG1 | Glu152 | OE1 | 2.5 | Asn73, Asp77, Trp147, Glu152 | |
P8Tyr | O | Trp147 | NE1 | 3.0 | Asn73, Val76, Asp77, Trp147 | |
P9Tyr | N | Asp77 | OD1 | 2.9 | Tyr74, Asp77, Thr80, Leu81, Tyr84, Arg114, Asp116, Tyr123, Thr143, Lys146, Trp147 | |
OH | Tyr74 | OH | 2.7 | |||
OH | Asp116 | OD1 | 2.4 | |||
OH | Arg114 | NH2 | 3.5 | |||
O | Lys146 | NZ | 2.7 | |||
OXT | Tyr84 | OH | 2.6 | |||
OXT | Thr143 | OG1 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Gao, Y.-Y.; Sun, M.; Li, Z.-B.; Zhang, Q.; Yang, J.; Qiao, C.; Jin, H.; Feng, H.-S.; Xian, Y.-H.; et al. The Parallel Presentation of Two Functional CTL Epitopes Derived from the O and Asia 1 Serotypes of Foot-and-Mouth Disease Virus and Swine SLA-2*HB01: Implications for Universal Vaccine Development. Cells 2022, 11, 4017. https://doi.org/10.3390/cells11244017
Feng L, Gao Y-Y, Sun M, Li Z-B, Zhang Q, Yang J, Qiao C, Jin H, Feng H-S, Xian Y-H, et al. The Parallel Presentation of Two Functional CTL Epitopes Derived from the O and Asia 1 Serotypes of Foot-and-Mouth Disease Virus and Swine SLA-2*HB01: Implications for Universal Vaccine Development. Cells. 2022; 11(24):4017. https://doi.org/10.3390/cells11244017
Chicago/Turabian StyleFeng, Lei, Yong-Yu Gao, Mingwei Sun, Zi-Bin Li, Qiang Zhang, Jie Yang, Cui Qiao, Hang Jin, Hong-Sheng Feng, Yu-Han Xian, and et al. 2022. "The Parallel Presentation of Two Functional CTL Epitopes Derived from the O and Asia 1 Serotypes of Foot-and-Mouth Disease Virus and Swine SLA-2*HB01: Implications for Universal Vaccine Development" Cells 11, no. 24: 4017. https://doi.org/10.3390/cells11244017
APA StyleFeng, L., Gao, Y. -Y., Sun, M., Li, Z. -B., Zhang, Q., Yang, J., Qiao, C., Jin, H., Feng, H. -S., Xian, Y. -H., Qi, J., Gao, G. F., Liu, W. J., & Gao, F. -S. (2022). The Parallel Presentation of Two Functional CTL Epitopes Derived from the O and Asia 1 Serotypes of Foot-and-Mouth Disease Virus and Swine SLA-2*HB01: Implications for Universal Vaccine Development. Cells, 11(24), 4017. https://doi.org/10.3390/cells11244017