Environmental and Circadian Regulation Combine to Shape the Rhythmic Selenoproteome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The Selenoproteome over Diurnal and Circadian Cycles
3.2. Differential Regulation of Selenocysteine Usage by Environmental and Circadian Rhythms
3.3. Phase Coordination of the Rhythmic Selenoproteome
3.4. Diurnal Transcript Abundance Rhythms Do Not Dictate Selenoprotein Abundance
3.5. Cellular Selenium Uptake Is Regulated by the Light/Dark Cycle
3.6. Functional Effects of Selenium Deprivation on Cellular Timekeeping
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, E.E.; Kay, S.A. Clocks not winding down: Unravelling circadian networks. Nat. Rev. Mol. Cell Biol. 2010, 11, 764–776. [Google Scholar] [CrossRef]
- Covington, M.F.; Maloof, J.N.; Straume, M.; Kay, S.A.; Harmer, S.L. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol. 2008, 9, R130. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl. Acad. Sci. USA 2014, 111, 16219–16224. [Google Scholar] [CrossRef] [Green Version]
- Putker, M.; Crosby, P.; Feeney, K.A.; Hoyle, N.P.; Costa, A.S.H.; Gaude, E.; Frezza, C.; O’Neill, J.S. Mammalian Circadian Period, but Not Phase and Amplitude, Is Robust against Redox and Metabolic Perturbations. Antioxid. Redox. Signal. 2018, 28, 507–520. [Google Scholar] [CrossRef]
- Putker, M.; O’Neill, J.S. Reciprocal Control of the Circadian Clock and Cellular Redox State—A Critical Appraisal. Mol. Cells 2016, 39, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Lai, A.G.; Doherty, C.J.; Mueller-Roeber, B.; Kay, S.A.; Schippers, J.H.; Dijkwel, P.P. CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses. Proc. Natl. Acad. Sci. USA 2012, 109, 17129–17134. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.S.; Green, E.W.; Zhao, Y.; van Ooijen, G.; Olmedo, M.; Qin, X.; Xu, Y.; Pan, M.; Valekunja, U.K.; Feeney, K.A.; et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature 2012, 489, 590. [Google Scholar] [CrossRef] [Green Version]
- Merrow, M.; Roenneberg, T. Circadian clocks: Running on redox. Cell 2001, 106, 141–143. [Google Scholar] [CrossRef] [Green Version]
- Spoel, S.H.; van Ooijen, G. Circadian redox signaling in plant immunity and abiotic stress. Antioxid. Redox. Signal. 2014, 20, 3024–3039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, D.C.; Stadtman, T.C. Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch. Biochem. Biophys. 1973, 154, 366–381. [Google Scholar] [CrossRef]
- Arner, E.S. Selenoproteins—What unique properties can arise with selenocysteine in place of cysteine? Exp. Cell Res. 2010, 316, 1296–1303. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Speckmann, B.; Klotz, L.O. Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys. 2016, 595, 113–119. [Google Scholar] [CrossRef]
- Stadtman, T.C. Selenoproteins—Tracing the role of a trace element in protein function. PLoS Biol. 2005, 3, e421. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, A.V.; Hatfield, D.L.; Gladyshev, V.N. Eukaryotic selenoproteins and selenoproteomes. Biochim. Biophys. Acta 2009, 1790, 1424–1428. [Google Scholar] [CrossRef] [Green Version]
- Palenik, B.; Grimwood, J.; Aerts, A.; Rouze, P.; Salamov, A.; Putnam, N.; Dupont, C.; Jorgensen, R.; Derelle, E.; Rombauts, S.; et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc. Natl. Acad. Sci. USA 2007, 104, 7705–7710. [Google Scholar] [CrossRef] [Green Version]
- Derelle, E.; Ferraz, C.; Rombauts, S.; Rouze, P.; Worden, A.Z.; Robbens, S.; Partensky, F.; Degroeve, S.; Echeynie, S.; Cooke, R.; et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl. Acad. Sci. USA 2006, 103, 11647–11652. [Google Scholar] [CrossRef] [Green Version]
- Blanc-Mathieu, R.; Verhelst, B.; Derelle, E.; Rombauts, S.; Bouget, F.Y.; Carre, I.; Chateau, A.; Eyre-Walker, A.; Grimsley, N.; Moreau, H.; et al. An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies. BMC Genom. 2014, 15, 1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corellou, F.; Schwartz, C.; Motta, J.P.; Djouani-Tahri el, B.; Sanchez, F.; Bouget, F.Y. Clocks in the green lineage: Comparative functional analysis of the circadian architecture of the picoeukaryote ostreococcus. Plant Cell 2009, 21, 3436–3449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, J.S.; van Ooijen, G.; Dixon, L.E.; Troein, C.; Corellou, F.; Bouget, F.-Y.; Reddy, A.B.; Millar, A.J. Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469, 554–558. [Google Scholar] [CrossRef] [PubMed]
- van Ooijen, G.; Hindle, M.; Martin, S.F.; Barrios-Llerena, M.; Sanchez, F.; Bouget, F.-Y.; O’Neill, J.S.; Le Bihan, T.; Millar, A.J. Functional Analysis of Casein Kinase 1 in a Minimal Circadian System. PLoS ONE 2013, 8, e70021. [Google Scholar] [CrossRef] [Green Version]
- Le Bihan, T.; Hindle, M.; Martin, S.F.; Barrios-Llerena, M.E.; Krahmer, J.; Kis, K.; Millar, A.J.; van Ooijen, G. Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri. Proteomics 2015, 15, 4135–4144. [Google Scholar] [CrossRef] [Green Version]
- Fustin, J.M.; Ye, S.; Rakers, C.; Kaneko, K.; Fukumoto, K.; Yamano, M.; Versteven, M.; Grunewald, E.; Cargill, S.J.; Tamai, T.K.; et al. Methylation deficiency disrupts biological rhythms from bacteria to humans. Commun. Biol. 2020, 3, 211. [Google Scholar] [CrossRef]
- Kay, H.; Grunewald, E.; Feord, H.K.; Gil, S.; Peak-Chew, S.Y.; Stangherlin, A.; O’Neill, J.S.; van Ooijen, G. Deep-coverage spatiotemporal proteome of the picoeukaryote Ostreococcus tauri reveals differential effects of environmental and endogenous 24-hour rhythms. Commun. Biol. 2021, 4, 1147. [Google Scholar] [CrossRef]
- Sterck, L.; Billiau, K.; Abeel, T.; Rouze, P.; Van de Peer, Y. ORCAE: Online resource for community annotation of eukaryotes. Nat. Methods 2012, 9, 1041. [Google Scholar] [CrossRef] [PubMed]
- Boratyn, G.M.; Schaffer, A.A.; Agarwala, R.; Altschul, S.F.; Lipman, D.J.; Madden, T.L. Domain enhanced lookup time accelerated BLAST. Biol. Direct. 2012, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Binns, D.; Dimmer, E.; Huntley, R.; Barrell, D.; O’Donovan, C.; Apweiler, R. QuickGO: A web-based tool for Gene Ontology searching. Bioinformatics 2009, 25, 3045–3046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almagro Armenteros, J.J.; Salvatore, M.; Emanuelsson, O.; Winther, O.; von Heijne, G.; Elofsson, A.; Nielsen, H. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2019, 2. [Google Scholar] [CrossRef] [Green Version]
- Zielinski, T.; Moore, A.M.; Troup, E.; Halliday, K.J.; Millar, A.J. Strengths and limitations of period estimation methods for circadian data. PLoS ONE 2014, 9, e96462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feeney, K.A.; Hansen, L.L.; Putker, M.; Olivares-Yanez, C.; Day, J.; Eades, L.J.; Larrondo, L.F.; Hoyle, N.P.; O’Neill, J.S.; van Ooijen, G. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature 2016, 532, 375–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbens, S.; Derelle, E.; Ferraz, C.; Wuyts, J.; Moreau, H.; Van de Peer, Y. The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: Organelle genomes of the smallest eukaryote are examples of compaction. Mol. Biol. Evol. 2007, 24, 956–968. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.E.; Hogenesch, J.B.; Kornacker, K. JTK_CYCLE: An efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J. Biol. Rhythms 2010, 25, 372–380. [Google Scholar] [CrossRef]
- Hutchison, A.L.; Maienschein-Cline, M.; Chiang, A.H.; Tabei, S.M.; Gudjonson, H.; Bahroos, N.; Allada, R.; Dinner, A.R. Improved statistical methods enable greater sensitivity in rhythm detection for genome-wide data. PLoS Comput. Biol. 2015, 11, e1004094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, S.V.; Kryukov, G.V.; Xu, X.M.; Carlson, B.A.; Hatfield, D.L.; Gladyshev, V.N. Selenoprotein H is a nucleolar thioredoxin-like protein with a unique expression pattern. J. Biol. Chem. 2007, 282, 11960–11968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korotkov, K.V.; Kumaraswamy, E.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. Association between the 15-kDa selenoprotein and UDP-glucose:glycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J. Biol. Chem. 2001, 276, 15330–15336. [Google Scholar] [CrossRef] [Green Version]
- Monnier, A.; Liverani, S.; Bouvet, R.; Jesson, B.; Smith, J.Q.; Mosser, J.; Corellou, F.; Bouget, F.Y. Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genom. 2010, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Kojima, S.; Shingle, D.L.; Green, C.B. Post-transcriptional control of circadian rhythms. J. Cell Sci. 2011, 124, 311–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robles, M.S.; Cox, J.; Mann, M. In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet. 2014, 10, e1004047. [Google Scholar] [CrossRef] [Green Version]
- van Ooijen, G.; Millar, A.J. Non-transcriptional oscillators in circadian timekeeping. Trends Biochem. Sci. 2012, 37, 484–492. [Google Scholar] [CrossRef] [PubMed]
Identifier | Description | LD | LL | |||||||
---|---|---|---|---|---|---|---|---|---|---|
p-Value | Phase (h) | Rel. Amp. (%) | Mean Ab. (a.u.) | p-Value | Period (h) | Phase (h) | Rel. Amp. (%) | Mean Ab. (a.u.) | ||
ostta01g05530 | Thioredoxin-fold protein | 0.530 | 16.3 | 0.8 | 633,478 | 0.000 | 21.7 | 7.1 | 2.7 | 647,647 |
ostta10g01410 | Selenoprotein F | 0.014 | 3.9 | 4.8 | 76,668 | 0.007 | 23.1 | 14.9 | 5.0 | 84,005 |
ostta01g00700 | Disulphide isomerase 1 | 0.182 | 5.2 | 2.5 | 2,371,875 | 0.008 | 22.5 | 13.5 | 6.3 | 2,144,215 |
ostta09g01390 | Selenoprotein U | 0.061 | 20.7 | 2.2 | 1,505,570 | 0.012 | 18.6 | 4.8 | 1.2 | 1,433,558 |
ostta02g02950 | Selenoprotein H | 0.018 | 19.8 | 4.9 | 353,763 | 0.016 | 25.6 | 5.6 | 2.8 | 322,590 |
ostta08g03450 | Glutathione peroxidase A | 0.000 | 6.8 | 6.3 | 2,441,906 | 0.027 | 21.6 | 15.8 | 7.4 | 4,076,098 |
ostta09g00190 | Peroxiredoxin | 0.182 | 8.6 | 3.2 | 2,093,776 | 0.027 | 24.1 | 18.9 | 7.1 | 2,806,390 |
ostta14g01560 | Selenoprotein K | ND | ND | ND | 41,402 | 0.031 | 25.7 | 9.4 | 1.9 | 41,354 |
ostta01g06300 | Selenoprotein W | 0.123 | 9.3 | 5.9 | 574,635 | 0.039 | 24.2 | 17.8 | 10.6 | 889,748 |
ostta09g00530 | Glutathione peroxidase C | 0.108 | 21.5 | 1.2 | 395,005 | 0.063 | 21.6 | 17.1 | 4.7 | 514,482 |
ostta09g01720 | Methionine sulphoxide reductase A | ND | ND | ND | 1577 | 0.063 | 22.0 | 17.3 | 9.6 | 2771 |
ostta12g02030 | Disulphide isomerase 2 | 0.000 | 5.3 | 7.3 | 503,473 | 0.102 | 22.2 | 5.9 | 3.8 | 377,407 |
ostta02g02735 | Glutathione peroxidase E | 0.000 | 16.7 | 7.9 | 628,421 | 0.102 | 22.1 | 10.1 | 3.6 | 587,297 |
ostta17g00710 | SAM-dependant methyltransferase | 0.037 | 20.5 | 1.4 | 485,420 | 0.125 | 21.3 | 4.8 | 2.1 | 487,887 |
ostta01g04220 | Thioredoxin reductase | 0.008 | 13.8 | 4.5 | 951,929 | 0.219 | 24.4 | 1.6 | 2.5 | 1,150,422 |
ostta08g03600 | Unknown | 0.000 | 22.0 | 6.8 | 258,959 | 0.281 | 25.8 | 3.7 | 3.2 | 262,933 |
ostta18g01790 | Selenoprotein O | 0.016 | 23.6 | 5.4 | 328,866 | 0.281 | 23.3 | 11.1 | 0.6 | 379,395 |
ostta05g01540 | Glutathione peroxidase B | 0.197 | 7.9 | 2.6 | 719,605 | 0.406 | 21.9 | 9.3 | 1.2 | 765,471 |
ostta10g02090 | Membrane selenoprotein | 0.009 | 21.4 | 27.9 | 6724 | 0.656 | 27.6 | 2.7 | 10.0 | 6528 |
ostta07g00300 | Glutathione peroxidase D | 0.061 | 16.5 | 1.5 | 552,907 | 0.688 | 34.2 | 23.3 | 0.6 | 612,140 |
ostta13g00280 | Disulphide isomerase 3 | 0.669 | 13.9 | 0.7 | 604,624 | 0.750 | 23.4 | 8.4 | 2.2 | 601,203 |
ostta10g00035 | Selenoprotein S | 0.106 | 22.5 | 10.7 | 144,751 | 0.781 | 21.8 | 16.4 | 4.0 | 137,022 |
ostta03g04910 | Selenoprotein T | 0.106 | 16.5 | 1.8 | 113,777 | 0.844 | 17.8 | 3.8 | 1.2 | 114,652 |
ostta04g01370 | Selenoprotein M | ND | ND | ND | 68,795 | ND | ND | ND | ND | 77,943 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kay, H.; Taylor, H.; van Ooijen, G. Environmental and Circadian Regulation Combine to Shape the Rhythmic Selenoproteome. Cells 2022, 11, 340. https://doi.org/10.3390/cells11030340
Kay H, Taylor H, van Ooijen G. Environmental and Circadian Regulation Combine to Shape the Rhythmic Selenoproteome. Cells. 2022; 11(3):340. https://doi.org/10.3390/cells11030340
Chicago/Turabian StyleKay, Holly, Harry Taylor, and Gerben van Ooijen. 2022. "Environmental and Circadian Regulation Combine to Shape the Rhythmic Selenoproteome" Cells 11, no. 3: 340. https://doi.org/10.3390/cells11030340
APA StyleKay, H., Taylor, H., & van Ooijen, G. (2022). Environmental and Circadian Regulation Combine to Shape the Rhythmic Selenoproteome. Cells, 11(3), 340. https://doi.org/10.3390/cells11030340