Secondary or Specialized Metabolites, or Natural Products: A Case Study of Untargeted LC–QTOF Auto-MS/MS Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals
2.3. Extraction and Fractionation
2.4. Sample Preparation
2.5. LC–TOFMS Analysis
2.6. Data Analysis
2.7. Identification and Nomenclature
3. Results
3.1. Quercetin-3-glu-rha-7-glu (6.20 min)
3.2. Quercetin-7-rha-(4″-glu)-glu (6.78 min)
3.3. Kaempferol-3-glu-rha-7-glu (7.35 min)
3.4. Kaempferol-3-(2″-glu)-glu-rha (7.46 min)
3.5. Quercetin-3-glu-rha-7-rha (7.67 min)
3.6. Quercetin-7-(2″-glu)-glu-rha (7.93 min)
3.7. Quercetin-3-(2″-rha)-glu-rha (8.04 min)
3.8. Luteolin-7-(2″-glu)-glu-rha (8.56 min)
3.9. Isorhamnetin-3-(2″-glu-6″-feruloyl)-glu (8.70 min)
3.10. Isorhamnetin-3-(2″-xyl)-glu-7-rha (8.72 min)
3.11. Quercetin-3-(2″-p-coumaroyl)-glu-rha (9.11 min)
3.12. Isorhamnetin-3-(6″-feruloyl)-glu-7-glu (9.50 min)
3.13. UV-Spectra
4. Discussion
4.1. Structure Identification and Feature Sorting on Basis of Auto-MS/MS Spectra
4.2. UV-Spectra
4.3. Limiting Candidate Structures with Molecular Structure Databases
4.4. Searching the Literature and Making Yourself Searchable
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pichersky, E.; Lewinsohn, E. Convergent evolution in plant specialized metabolism. Annu. Rev. Plant Biol. 2011, 62, 549–566. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, B. Similarities between plants and animals for avoiding predation and disease. Physiol. Zool. 1992, 65, 473–492. [Google Scholar] [CrossRef]
- Fiehn, O.; Kopka, J.; Dörmann, P.; Altmann, T.; Trethewey, R.N.; Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000, 18, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Sparkman, O.D. Gas Chromatography and Mass Spectrometry: A Practical Guide, 2nd ed.; Elsevier Science & Technology: San Diego, CA, USA, 2011; ISBN 9780080920153. [Google Scholar]
- Kopka, J.; Schauer, N.; Krueger, S.; Birkemeyer, C.; Usadel, B.; Bergmüller, E.; Dörmann, P.; Weckwerth, W.; Gibon, Y.; Stitt, M.; et al. [email protected]: The Golm Metabolome Database. Bioinformatics 2005, 21, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef]
- Iijima, Y. Recent advances in the application of metabolomics to studies of biogenic volatile organic compounds (BVOC) produced by plant. Metabolites 2014, 4, 699–721. [Google Scholar] [CrossRef]
- Beck, J.J.; Smith, L.; Baig, N. An overview of plant volatile metabolomics, sample treatment and reporting considerations with emphasis on mechanical damage and biological control of weeds. Phytochem. Anal. 2014, 25, 331–341. [Google Scholar] [CrossRef]
- Diez-Simon, C.; Mumm, R.; Hall, R.D. Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics 2019, 15, 41. [Google Scholar] [CrossRef]
- Krill, C.; Rochfort, S.; Spangenberg, G. A high-throughput method for the comprehensive analysis of terpenes and terpenoids in medicinal cannabis biomass. Metabolites 2020, 10, 276. [Google Scholar] [CrossRef]
- Lemfack, M.C.; Gohlke, B.-O.; Toguem, S.M.T.; Preissner, S.; Piechulla, B.; Preissner, R. mVOC 2.0: A database of microbial volatiles. Nucl. Acids. Res. 2018, 46, D1261–D1265. [Google Scholar] [CrossRef]
- Anonymous. NIST/EPA/NIH EI-MS Library. Available online: https://www.nist.gov/programs-projects/nist20-updates-nist-tandem-and-electron-ionization-spectral-libraries (accessed on 27 January 2022).
- Niessen, W.M.A. Liquid Chromatography—Mass Spectrometry, 3rd ed.; CRC/Taylor & Francis: Boca Raton, IL, USA, 2006; ISBN 9781420014549. [Google Scholar]
- Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S.S.; Wohlgemuth, G.; Barupal, D.K.; Showalter, M.R.; Arita, M.; et al. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018, 37, 513–532. [Google Scholar] [CrossRef]
- Wolfender, J.-L.; Nuzillard, J.-M.; van der Hooft, J.J.J.; Renault, J.-H.; Bertrand, S. Accelerating metabolite identification in natural product research: Toward an ideal combination of liquid chromatography-high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal. Chem. 2019, 91, 704–742. [Google Scholar] [CrossRef] [PubMed]
- Sorokina, M.; Steinbeck, C. Review on natural products databases: Where to find data in 2020. J. Cheminform. 2020, 12, 20. [Google Scholar] [CrossRef]
- CompMS|MS-DIAL. Available online: http://prime.psc.riken.jp/compms/msdial/main.html (accessed on 31 January 2022).
- Lai, Z.; Tsugawa, H.; Wohlgemuth, G.; Mehta, S.; Mueller, M.; Zheng, Y.; Ogiwara, A.; Meissen, J.; Showalter, M.; Takeuchi, K.; et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics. Nat. Methods 2018, 15, 53–56. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software Tools and Approaches for Compound Identification of LC-MS/MS Data in Metabolomics. Metabolites 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- Hadacek, F. Secondary metabolites as plant traits: Current assessment and future perspectives. Crit. Rev. Plant Sci. 2002, 21, 273–322. [Google Scholar] [CrossRef]
- Böcker, S. Searching molecular structure databases using tandem MS data: Are we there yet? Curr. Opin. Chem. Biol. 2017, 36, 1–6. [Google Scholar] [CrossRef] [PubMed]
- CompMS|MS-FINDER. Available online: http://prime.psc.riken.jp/compms/msfinder/main.html (accessed on 31 January 2022).
- Dührkop, K.; Shen, H.; Meusel, M.; Rousu, J.; Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl. Acad. Sci. USA 2015, 112, 12580–12585. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Böcker, S.; Letzel, M.C.; Lipták, Z.; Pervukhin, A. SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics 2009, 25, 218–224. [Google Scholar] [CrossRef] [PubMed]
- SIRIUS|Lehrstuhl Bioinformatik Jena. Available online: https://bio.informatik.uni-jena.de/software/sirius/ (accessed on 31 January 2022).
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, C.J.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass spectrometry-based metabolomics: A guide for annotation, quantification and best reporting practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef]
- Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite measurement: Pitfalls to avoid and practices to follow. Annu. Rev. Biochem. 2017, 86, 277–304. [Google Scholar] [CrossRef] [PubMed]
- SciFinderⁿ Login. Available online: https://sso.cas.org/as/authorization.oauth2?response_type=code&client_id=scifinder-n&redirect_uri=https%3A%2F%2Fscifinder-n.cas.org%2Fpa%2Foidc%2Fcb&state=eyJ6aXAiOiJERUYiLCJhbGciOiJkaXIiLCJlbmMiOiJBMTI4Q0JDLUhTMjU2Iiwia2lkIjoiZ20yUXdoSE85NTFwd21wQllmMUlvckk2YXcwIiwic3VmZml4IjoiRzF1REVmLjE2NDM4MTMwMjIifQ.4_B_i1JNBcNg62Wy1bRbZQ.NQgu9-5VB2e1v0rSRdwoWCNWmUA9IW-mnUKo95Qx-64KSOzL-8rm8ax1gQ0Ftr5nC7D1iTKWY8NdTBUV8FFTfg.igGkya93hBfpcUETbkIp9g&nonce=ZOSpkb290rreb88lfn_SFeH0dbNFIMoOdVB-ij_0YnU&scope=openid%20address%20email%20phone%20profile&vnd_pi_requested_resource=https%3A%2F%2Fscifinder-n.cas.org%2F&vnd_pi_application_name=SciFinder-nIDF (accessed on 30 January 2022).
- Reaxys. Available online: https://www.reaxys.com/#/login (accessed on 30 January 2022).
- Little, J.L.; Cleven, C.D.; Brown, S.D. Identification of “known unknowns” utilizing accurate mass data and chemical abstracts service databases. J. Am. Soc. Mass Spectrom. 2011, 22, 348–359. [Google Scholar] [CrossRef]
- Little, J.L.; Williams, A.J.; Pshenichnov, A.; Tkachenko, V. Identification of “known unknowns” utilizing accurate mass data and ChemSpider. J. Am. Soc. Mass Spectrom. 2012, 23, 179–185. [Google Scholar] [CrossRef]
- Andersen, Ø.M.; Markham, K.R. (Eds.) Flavonoids: Chemistry, Biochemistry, and Applications; CRC Taylor & Francis: Boca Raton, FL, USA, 2006; ISBN 9781420039443. [Google Scholar]
- Ulum, F.B.; Hadacek, F.; Hörandl, E. Polyploidy improves photosynthesis regulation within the Ranunculus auricomus complex (Ranunculaceae). Biology 2021, 10, 811. [Google Scholar] [CrossRef]
- Rathgeb, A. (Molecular Phytopathology and Mycotoxin Research, Georg-August-Universität Göttingen, Göttingen, Germany) Personal communication. 2022. [Google Scholar]
- Reifycs Abf Converter. Available online: https://www.reifycs.com/AbfConverter/ (accessed on 31 January 2022).
- Kite, G.C.; Veitch, N.C. Identification of common glycosyl groups of flavonoid O-glycosides by serial mass spectrometry of sodiated species. Rapid Commun. Mass Spectrom. 2011, 25, 2579–2590. [Google Scholar] [CrossRef]
- Ablajan, K.; Abliz, Z.; Shang, X.-Y.; He, J.-M.; Zhang, R.-P.; Shi, J.-G. Structural characterization of flavonol 3,7-di-O-glycosides and determination of the glycosylation position by using negative ion electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2006, 41, 352–360. [Google Scholar] [CrossRef]
- Guan, P.; Liu, W.; Cao, Y.; Tang, H.; Huo, H.; Wan, J.-B.; Qiao, X.; Tu, P.; Li, J.; Song, Y. Full collision energy ramp-MS2 spectrum in structural analysis relying on MS/MS. Anal. Chem. 2021, 93, 15381–15389. [Google Scholar] [CrossRef]
- Stobiecki, M.; Kachlicki, P.; Wojakowska, A.; Marczak, Ł. Application of LC/MS systems to structural characterization of flavonoid glycoconjugates. Phytochem. Lett. 2015, 11, 358–367. [Google Scholar] [CrossRef]
- Ferreres, F.; Llorach, R.; Gil-Izquierdo, A. Characterization of the interglycosidic linkage in di-, tri-, tetra- and pentaglycosylated flavonoids and differentiation of positional isomers by liquid chromatography/electrospray ionization tandem mass spectrometry. J. Mass Spectrom. 2004, 39, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Acquavia, M.A.; Cataldi, T.R.I.; Onzo, A.; Coviello, D.; Bufo, S.A.; Scrano, L.; Ciriello, R.; Guerrieri, A.; Bianco, G. Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI(-)-MS/MS and polarity prediction in reversed-phase separations. Anal. Bioanal. Chem. 2020, 412, 3005–3015. [Google Scholar] [CrossRef] [PubMed]
- Williams, C. Flavone and flavonol O-glyosides. In Flavonoids: Chemistry, Biochemistry, and Applications; Andersen, Ø.M., Markham, K.R., Eds.; CRC Taylor & Francis: Boca Raton, FL, USA, 2006; CRC Taylor & Francis: Boca Raton, FL, USA, 2006; pp. 749–856. ISBN 9781420039443. [Google Scholar]
- Djoukeng, J.D.; Arbona, V.; Argamasilla, R.; Gomez-Cadenas, A. Flavonoid profiling in leaves of citrus genotypes under different environmental situations. J. Agric. Food Chem. 2008, 56, 11087–11097. [Google Scholar] [CrossRef] [PubMed]
- D’Urso, G.; Mes, J.J.; Montoro, P.; Hall, R.D.; de Vos, R.C.H. Identification of bioactive phytochemicals in mulberries. Metabolites 2019, 10, 7. [Google Scholar] [CrossRef] [PubMed]
- Piasecka, A.; Sawikowska, A.; Krajewski, P.; Kachlicki, P. Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves. J. Mass Spectrom. 2015, 50, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Gao, B.; Shi, H.; Cao, J.; Yin, C.; Lu, W.; Yu, L.; Cheng, Z. Characterization of flavonol mono-, di-, tri- and tetra-O-glycosides by ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and its application for identification of flavonol glycosides in Viola tianschanica. J. Pharm. Biomed. Anal. 2017, 142, 113–124. [Google Scholar] [CrossRef]
- Roowi, S.; Crozier, A. Flavonoids in tropical citrus species. J. Agric. Food Chem. 2011, 59, 12217–12225. [Google Scholar] [CrossRef]
- Shimoda, K.; Kobayashi, T.; Akagi, M.; Hamada, H.; Hamada, H. Synthesis of oligosaccharides of genistein and quercetin as potential anti-inflammatory agents. Chem. Lett. 2008, 37, 876–877. [Google Scholar] [CrossRef]
- Carotenuto, A.; Fattorusso, E.; Lanzotti, V.; Magno, S.; de Feo, V.; Cicala, C. The flavonoids of Allium neapolitanum. Phytochemistry 1997, 44, 949–957. [Google Scholar] [CrossRef]
- Liu, M.; Jiang, Y.; Liu, R.; Liu, M.; Yi, L.; Liao, N.; Liu, S. Structural features guided “fishing” strategy to identification of flavonoids from lotus plumule in a self-built data “pool” by ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap high resolution mass spectrometry. J. Chromatogr. B 2019, 1124, 122–134. [Google Scholar] [CrossRef]
- Ji, S.; He, D.; Wang, T.; Han, J.; Li, Z.; Du, Y.; Zou, J.; Guo, M.; Tang, D. Separation and characterization of chemical constituents in Ginkgo biloba extract by off-line hydrophilic interaction×reversed-phase two-dimensional liquid chromatography coupled with quadrupole-time of flight mass spectrometry. J. Pharm. Biomed. Anal. 2017, 146, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Mekky, R.H.; Del Contreras, M.M.; El-Gindi, M.R.; Abdel-Monem, A.R.; Abdel-Sattar, E.; Segura-Carretero, A. Profiling of phenolic and other compounds from Egyptian cultivars of chickpea (Cicer arietinum L.) and antioxidant activity: A comparative study. RSC Adv. 2015, 5, 17751–17767. [Google Scholar] [CrossRef]
- Ferreres, F.; Gil-Izquierdo, A.; Vinholes, J.; Silva, S.T.; Valentão, P.; Andrade, P.B. Bauhinia forficata Link authenticity using flavonoids profile: Relation with their biological properties. Food Chem. 2012, 134, 894–904. [Google Scholar] [CrossRef] [PubMed]
- Tohge, T.; Nishiyama, Y.; Hirai, M.Y.; Yano, M.; Nakajima, J.; Awazuhara, M.; Inoue, E.; Takahashi, H.; Goodenowe, D.B.; Kitayama, M.; et al. Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J. 2005, 42, 218–235. [Google Scholar] [CrossRef] [PubMed]
- Karioti, A.; Furlan, C.; Vincieri, F.F.; Bilia, A.R. Analysis of the constituents and quality control of Viola odorata aqueous preparations by HPLC-DAD and HPLC-ESI-MS. Anal. Bioanal. Chem. 2011, 399, 1715–1723. [Google Scholar] [CrossRef]
- Qu, C.; Wen, J.-H.; Li, P.; Gao, W.; Yang, H. Target profiling of flavonol glycosides in the extract of Ginkgo biloba leaf and their pharmacokinetics in rat plasma by ultra-high-performance liquid chromatography with tandem mass spectrometry. J. Seperat. Sci. 2021, 45, 728–738. [Google Scholar] [CrossRef]
- Tohge, T.; Wendenburg, R.; Ishihara, H.; Nakabayashi, R.; Watanabe, M.; Sulpice, R.; Hoefgen, R.; Takayama, H.; Saito, K.; Stitt, M.; et al. Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae. Nat. Commun. 2016, 7, 12399. [Google Scholar] [CrossRef]
- Human Metabolome Database. Available online: https://hmdb.ca/ (accessed on 3 February 2022).
- Koffi, E.N.; Le Guernevé, C.; Lozano, P.R.; Meudec, E.; Adjé, F.A.; Bekro, Y.-A.; Lozano, Y.F. Polyphenol extraction and characterization of Justicia secunda Vahl leaves for traditional medicinal uses. Ind. Crops Prod. 2013, 49, 682–689. [Google Scholar] [CrossRef]
- Su, X.; Li, L.; Sun, H.; Zhang, F.; Li, C.; Li, F.; Wang, H.; Li, B.; Chen, R.; Kang, J. Eight new glycosides with hepatoprotective activity isolated from the aerial parts of Morinda parvifolia. Bioorg. Chem. 2019, 87, 867–875. [Google Scholar] [CrossRef]
- Chabani, S.; Haba, H.; Lavaud, C.; Benkhaled, M.; Harakat, D. Flavonoid glycosides and triterpenoids from Atractylis flava. Phytochem. Lett. 2013, 6, 9–13. [Google Scholar] [CrossRef]
- Ferrer, I.; Thurman, E.M.; Zweigenbaum, J.A. Auto MS/MS and Identification of Unknowns in Water Samples: Technical Overview Water Analysis; Agilent Technologies Inc.: Santa Clara, CA, USA, 2018; Available online: https://www.agilent.com/cs/library/technicaloverviews/public/technicaloverview-auto-ms-ms-water-samples-5994-0322en-agilent.pdf.pdf (accessed on 8 February 2022).
- Wasito, H.; Causon, T.; Hann, S. Alternating in-source fragmentation with single-stage high-resolution mass spectrometry with high annotation confidence in non-targeted metabolomics. Talanta 2022, 236, 122828. [Google Scholar] [CrossRef] [PubMed]
- Seitzer, P.M.; Searle, B.C. Incorporating in-source fragment information improves metabolite identification accuracy in untargeted LC-MS Data Sets. J. Proteom Res. 2019, 18, 791–796. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Lu, W.; Rabinowitz, J.D. Avoiding misannotation of in-source fragmentation products as cellular metabolites in liquid chromatography-mass spectrometry-based metabolomics. Anal. Chem. 2015, 87, 2273–2281. [Google Scholar] [CrossRef]
- Abrankó, L.; García-Reyes, J.F.; Molina-Díaz, A. In-source fragmentation and accurate mass analysis of multiclass flavonoid conjugates by electrospray ionization time-of-flight mass spectrometry. J. Mass Spectrom. 2011, 46, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Fraisier-Vannier, O.; Chervin, J.; Cabanac, G.; Puech, V.; Fournier, S.; Durand, V.; Amiel, A.; André, O.; Benamar, O.A.; Dumas, B.; et al. MS-CleanR: A feature-filtering workflow for untargeted LC-MS based metabolomics. Anal. Chem. 2020, 92, 9971–9981. [Google Scholar] [CrossRef]
- Hubert, J.; Nuzillard, J.-M.; Renault, J.-H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem. Rev. 2017, 16, 55–95. [Google Scholar] [CrossRef]
- STN on the Web. Available online: https://stnweb.fiz-karlsruhe.de/ (accessed on 9 February 2022).
- Vaniya, A.; Samra, S.N.; Palazoglu, M.; Tsugawa, H.; Fiehn, O. Using MS-FINDER for identifying 19 natural products in the CASMI 2016 contest. Phytochem. Lett. 2017, 21, 306–312. [Google Scholar] [CrossRef]
- Hadacek, F. MS-FINDER Analyses; Göttingen Research Online/Data: Göttingen, Germany, 2022. [Google Scholar] [CrossRef]
- Hadacek, F. SIRIUS Analyses; Göttingen Research Online/Data: Göttingen, Germany, 2022. [Google Scholar] [CrossRef]
- PubChem Sketcher V2.4. Available online: https://pubchem.ncbi.nlm.nih.gov//edit3/index.html (accessed on 9 February 2022).
- Wikipedia. Beilstein Database. Available online: https://en.wikipedia.org/w/index.php?title=Beilstein_database&oldid=1062932923 (accessed on 9 February 2022).
- Ganzera, M.; Sturm, S. Recent advances on HPLC/MS in medicinal plant analysis-An update covering 2011–2016. J. Pharm. Biomed. Anal. 2018, 147, 211–233. [Google Scholar] [CrossRef]
- Dickerson, W.S. (CAS Customer Service: Columbus, OH, USA). Personal Communication, 2020.
- Allard, P.-M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; van Pham, C.; Roussi, F.; Litaudon, M.; Wolfender, J.-L. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal. Chem. 2016, 88, 3317–3323. [Google Scholar] [CrossRef]
- Hadacek, F. MS/MS Spectra in MassBank Format; Göttingen Research Online/Data: Göttingen, Germany, 2022. [Google Scholar] [CrossRef]
- Hadacek, F. MS/MS Spectra in NIST Format; Göttingen Research Online/Data: Göttingen, Germany, 2022. [Google Scholar] [CrossRef]
- Hadacek, F. Auto MS/MS Spectra in Mascot Format; Göttingen Research Online/Data: Göttingen, Germany, 2022. [Google Scholar] [CrossRef]
Ret. | Putative Structure 1 | Prec. ion | Calc. | D ppm | Adduct | Lit/Ref. |
---|---|---|---|---|---|---|
6.20 | Quercetin-3-glu-rha-7-glu | 771.1989 | 771.1990 | −0.1 | [M − H]− | [46,47,48,49,50] |
MS/MS: 463.0761 (<1) M − glu − rha [C21H19O12]−, 301.0258 (31) [Y0]− [C15H9O7]−, 300.0172 (38) [Y0 − H]•− [C15H8O7]•−, 299.0108 [100) [Y0 − 2H]− [C15H7O7]−, 271.0152 (10) Y0-glu fragm. [41] [C14H8O6]− | ||||||
6.78 | Quercetin-7-rha-glu-glu | 771.1993 | 771.1990 | 0.4 | [M − H]− | |
MS/MS: 446.0853 (1) M − glu− glu [C21H18O11]]•−, 301.0347 (100) [Y0]− [C15H9O7]−, 300.0257 (43) [Y0 − H]•− [C15H9O7]•−, 283.0236 (18) Y0-rha fragm. [41] [C15H7O6]─, 271.0286 (6) Y0-rha fragm. [41] [C14H7O6]─, 255.0297 (7) Y0-rha fragm. [41] [C14H7O5]─ | ||||||
7.35 | Kaempferol-3-glu-rha-7-glu | 755.2030 | 755.2040 | −0.5 | [M − H]− | [46,49,52,53] |
MS/MS: 609.1432 (<1) (M − rha) [C27H29O16]•−, 357.0615 (<1) (Y0-rha fragm. [41]), [C18H13O8]─, 285.0400 (100) [Y0]− [C15H7O6]−, 284.0325 (68) [Y0 ─ H]•− [C15H6O6]•−, 283.0284 (33) ] Y0 ─ 2H]− [C15H8O6]−, 241.0509 (2) (Y0-rha fragm. [41]), [C14H9O4]─ | ||||||
kaempferol-glu-rhaISF | 593.1518 | 593.1506 | 2.0 | [M − H]− | ||
kaempferol-gluISF | 447.0934 | 447.0927 | 1.6 | [M − H]− | ||
7.46 | Kaempferol-3-(2″-glu)-glu-rha | 755.2037 | 755.2040 | −0.4 | [M − H]− | [49,52,54] |
MS/MS: 447.0815 (<1) [C21H19O11]−M-glu-rha, 285.04059 [Y0]− [C15H9O6]− (31), 284.0326 (100) [Y0 ─ H]•− [C15H8O6]•−, 256.0348 (16) Y0-glu-rha fragm. [C15H12O4]─, 241.0523 (3) Y0-glu-rha fragm. [C14H9O4]─ | ||||||
7.67 | Quercetin-3-glu-rha-7-rha | 757.2192 | 757.2201 | 2.0 | [M + H]+ | [55,56,57] |
MS/MS: 303.0497 [C15H11O7]+ | ||||||
779.2006 | 779.2005 | 0.1 | [M + Na]+ | |||
MS/MS: 347.0924 (1) [C12H20O10Na]••+ (glu-rha), 303.0490 (100) [C15H11O7]+; rhaα2glu+Na+: 185.0103 (1.1) [C6H10O5Na]+, 243.0824 (1.0) [C9H16O6Na]+, 331.0998 (13.6) [C12H20O9Na]+ | ||||||
755.2033 | 755.2040 | −1.0 | [M − H]− | |||
MS/MS: 446.0766 (8) [C21H19O11]− M − glu − rha, 301.0226 (51) [Y0]− [C15H9O7]−, 300.0252 (79) [Y0 ─ H]•− [C15H8O7]•−, 299.0108 (100) [Y0 ─ 2H]− [C15H7O7]−, 271.0126 (24) quercetin-glu fragm. [41] [C14H8O6]−, 255.0177 (12) quercetin-glu fragm. [41] [C14H7O5]─ | ||||||
7.93 | Quercetin-7-(2″-glu)-glu-rha | 773.2145 | 773.2096 | 6.3 | [M + H]+ | |
MS/MS: 303.0501 (100) [Y0 + H]+ [C15H11O7]+ | ||||||
quercetin-glu-rhaISF | 611.1614 | 611.1607 | 1.1 | [M + H]+ | ||
quercetin-gluISF | 465.1031 | 465.1028 | 0.6 | [M + H]+ | ||
quercetinISF | 303.0507 | 303.0499 | 2.6 | [M + H]+ | MB: PR309259 | |
MS/MS: 303.0497 (100) [C15H11O7]+, 285.0387 (5) [C15H9O6]•+, 257.044 (9) [C14H9O5]••+, 229.049 (11) [C13H9O4]••+, 165.0179 (11) [C8H5O4]•••+, 153.0183 (10) [C7H5O4]+, 137.0229 (7) [C7H5O3]•+ | ||||||
795.1963 | 795.1954 | 1.1 | [M + Na]+ | |||
MS/MS: 493.1517 (4) [C18H30O14Na]••+ glu-rha-glu − OH, 347.0924 (1) [C12H20O10Na]••+ glu-rha, 303.0490 (100) [Y0 + H]+ [C15H11O7]+; rhaα6glu+Na+: 185.0410 (1.6) [C6H10O5Na]+, 331.0954 (5.5) [C12H20O9Na]+ ; gluβ2glu+Na+: 185.0410 (1.6) [C6H10O5Na]+, 245.0499 (0.8) [C9H14O7Na]+, 259.0483 (0.5) [C9H16O7Na]+, 329.0226 (1.0) [C12H18O9Na]+, 347.0983 (1.0) [C12H20O10Na]+ | ||||||
771.1990 | 771.1989 | 0.1 | [M − H]− | |||
MS/MS: 301.0340 (100) [C15H9O7]− | ||||||
1543.4070 | 1543.4045 | 1.6 | [2M − H]− | |||
MS/MS: 755.3816 (<1) ≈ [C33H40O20]•−, 301.0336 (57) [Y0]− [C15H9O7]−, 300.0266 (100) [Y0 ─ H]•− [C15H8O7]•−, 271.0243 (59) quercetin-glu fragm. [41] [C14H8O6]−, 255.0294 (35) quercetin-glu fragm. [41] [C14H7O5]─ | ||||||
8.04 | Quercetin-3-(2″-rha)-glu-rha | 755.2015 | 755.2040 | −3.3 | [M − H]− | [56,58,59,60] |
MS/MS: 489.0837 (<1) [C23H21O12]••− (M − rha − rha), 301.0343 (35) [Y0]− [C15H9O7]−, 300.0275 [Y0 ─ H]•− (100) [C15H8O7]•−, 299.0198 (14) [Y0 ─ 2H]− [C15H7O7]−, 271.0248 (25) quercetin-glu fragm. [41] [C14H8O6]−, 255.0301 (12) quercetin-glu fragm. [C14H7O5]─ [41] | ||||||
8.56 | Luteolin-7-(2″-glu)-glu-rha | 757.2203 | 757.2186 | 2.2 | [M + H]+ | |
MS/MS: 287.0551 (100) [C15H11O6]+ | ||||||
luteolinISF | 287.0550 | 287.0551 | −0.3 | [M + H]+ | BMDMS-NP 29525 | |
MS/MS: 287.055 (100) [C15H11O6]+, 241.0486 (3) [C14H9O4]••+, 213.0547 (3) [C13H9O3]••+, 153.0179 (8) [C7H5O4]+ | ||||||
779.2012 | 779.2005 | 0.7 | [M + Na]+ | |||
MS/MS: 347.0893 (0.2) glu-rha [C12H20O10Na]●●+, 287.0538 (100)) [C15H11O6]+, 203.0529 (5) glucose [C6H12O6Na]+; rhaα6glu+ Na+: 185.0080 (1.4) [C6H10O5Na]+, 243.2668 (0.4) [C9H16O6Na]+, 331.0982 (26.2) [C12H20O9Na]+ ; gluβ2glu+Na+: 185.0080 (1.4) [C6H10O5Na]+, 245.0467 (1.1) [C9H14O7Na]+, 329.0215 (4.9) [C12H18O9Na]+, 347.0983 (2.4) [C12H20O10Na]+ | ||||||
755.2039 | 75.2040 | −0.1 | [M − H]− | |||
MS/MS: 327.0515 (38) [C17H11O7]••−, 285.0400 (100) [Y0]− [C15H10O6]−, 284.0325 [Y0 ─ H]•− (53) [C15H9O6]•− | ||||||
8.70 | Isorhamnetin-3-(2″-glu-6″-feruloyl)-glu | 815.2037 | 815.2040 | −0.4 | [M − H]− | |
MS/MS: 451.1647 (1) ferulic acid-glu + sugar fragm. [C21H29O11]─ (MS-Finder), 357.0563 (2) isorhamnetin-glu fragm. [C15H17O10]─, 315.0490 (47) [Y0 ]− [C16H11O7]−, 314.0423 (100) [Y0 ─ H]•− [C16H10O7]•−, 301.0285 (20) [Y0 ─ CH2]− [C15H9O7]−, 300.0251 [Y0–CH2–H]•− (100) [C15H8O7]•−, 175.0395 (8) [C10H7O3]••− ferulic acid | ||||||
8.72 | Isorhamnetin-3-(2″-xyl)-glu-7-rha | 757.2193 | 757.2186 | 0.9 | [M + H]+ | [55] |
MS/MS: 287.0551 (100) [C15H11O6]+ | ||||||
779.2010 | 779.2005 | 0.6 | [M + Na]+ | |||
755.2045 | 755.2040 | 0.7 | [M − H]− | |||
MS/MS: 357.0594 (<1) isorhamnetin-glu fragm. [C15H17O10]─, 315.0492 (100) [Y0]− [C16H11O7]−, 314.0413 (44) [Y0 ─ H]•− [C16H10O7]•−, 301.0297 (19) [Y0 ─ CH2]− [C15H9O7]−, 300.0258 (97) [Y0–CH2–H]•− [C15H9O7]•−, 299.0183 (64) [Y0–CH2–2H]− [C15H7O7]− | ||||||
9.11 | Quercetin-3-(3″-p-coumaroyl)-glu-rha | 755.1826 | 755.1829 | −0.4 | [M − H]− | [59] |
MS/MS: 423.01762 (1) [C21H11O10]8●−, 395.03312 (10) [C20H11O9)6●−, (querc. fragm. + p-coum.a.), 301.032 (25) [C15H9O7]−, 300.0259 (100) [C15H9O7]•−, 271.0240 (33) Y0-glu-rha fragm. [41] [C14H8O6]−, 255.00303 (19), 147.045 (1) [C9H7O2]− (p-coumaric a.) | ||||||
quercetin-3-(3’’-p-coumaric a.)-glu•ISF | 609.12492 | 609.1250 | 34.0 | [M − H]− | ||
9.50 | Isorhamnetin-3-(6″-feruloyl)-glu-7-glu | 815.2040 | 815.2040 | 0 | [M − H]− | |
MS/MS: 315.0467 (18) [C16H11O7]−, 314.0421 (77) [C16H10O7]•−, 300 (26) [C15H9O7]•−, 299.019 (100) [C15H7O7]−, 175.030 (1) [C10H7O3]••− (ferulic a.) |
ID | RT | m/z | Type | Metabolite | S/N | p (ANOVA) | Fold Change | Bar Chart |
---|---|---|---|---|---|---|---|---|
12155 | 8.56 | 757.2199 | [M + H]+ | luteolin-7-(2″-glu)-glu-rha | 380.1 | 7.61 × 10−7 | 338.04 | |
12407 | 8.56 | 795.1692 | [M + K]+ | n.i. | 21.0 | 1.84 × 10−7 | 2536.07 | |
3569 | 8.56 | 287.0542 | [M + H]+ | luteolin | 27.5 | 3.10 × 10−6 | 39.82 | |
12308 | 8.56 | 779.2012 | [M + Na]+ | luteolin-7-(2”-glu)-glu-rha | 261.4 | 5.80 × 10−11 | 301.71 | |
4544 | 8.56 | 328.1361 | [M + H]+ | n.i. | 6.5 | 4.71 × 10−1 | 3.57 | |
3599 | 8.56 | 288.1437 | [M + H]+ | n.i. | 4.6 | 7.19 × 10−1 | 2.15 |
Flavonol Glycoside | MS_FINDER 1st | SIRIUS 1st | Identification (Rank Number of Proposed Structure) |
---|---|---|---|
Que-3-glu-rha-7-glu | Que-3-glu-rha-7-gal | Que-3-glu-rha-7-glu (4 1) | |
Que-7-rha-glu-glu | Kae-3-(2″-glu)-glu-rha | ||
Kae-3-glu-rha-7-glu | Kae-3-glu-glu-7-rha | Kae3-glu-rha-glu | Kae-3-glu-rha-7-glu (10) 1,2 |
Kae-3-(2″-glu)-glu-rha | Kae-3-glu-glu-7-rha | Kae-3-(2″-glu)-glu-rha | Kae-3-(2″-glu)-glu-rha (8 1, 1 2) |
Que-3-glu-rha -7-rha | Kae-3-glu-glu-7-rha | Que-3-glu-rha -7-rha (6 1) | |
Que-7-(2″-glu)-glu-rha | Kae-3-glu-glu-glu | Que-3-glu-rha-glu | Que-7-(2″-glu)-glu-rha (5 1) |
Que-3-(2″-rha)-glu-rha | Kae-3-glu-glu-7-rha | Que-3-glu-rha-rha | Que-3-(2″-rha)-glu-rha (2 1) |
Lut-7-(2″-glu)-glu-rha | Kae-3-glu-glu-7-rha | Kae-3-glu-rha-glu | |
Iso-3-(2″-glu)-glu-ferul. | |||
Iso-3-(2″-xyl)-glu-7-rha | Kae-3-glu-glu-7-rha | Kae-3-glu-glu-rha | Iso-3-(2″-xyl)-glu-7-rha (13 1,45 2) |
Que-3-(3″-coum)-glu-rha | Que-3-rha-glu-coum | Kae-3-glu-rha-sinap | Que-3-(3″-coum)-glu-rha (17 1) |
Iso-3-glu-ferul-7-glu | Kae-3-(2″-coum-glu)-glu | Que-3-(2″-sinap)-glu-rha |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadacek, F. Secondary or Specialized Metabolites, or Natural Products: A Case Study of Untargeted LC–QTOF Auto-MS/MS Analysis. Cells 2022, 11, 1025. https://doi.org/10.3390/cells11061025
Hadacek F. Secondary or Specialized Metabolites, or Natural Products: A Case Study of Untargeted LC–QTOF Auto-MS/MS Analysis. Cells. 2022; 11(6):1025. https://doi.org/10.3390/cells11061025
Chicago/Turabian StyleHadacek, Franz. 2022. "Secondary or Specialized Metabolites, or Natural Products: A Case Study of Untargeted LC–QTOF Auto-MS/MS Analysis" Cells 11, no. 6: 1025. https://doi.org/10.3390/cells11061025
APA StyleHadacek, F. (2022). Secondary or Specialized Metabolites, or Natural Products: A Case Study of Untargeted LC–QTOF Auto-MS/MS Analysis. Cells, 11(6), 1025. https://doi.org/10.3390/cells11061025