Cumulative Metabolic and Epigenetic Effects of Paternal and/or Maternal Supplementation with Arachidonic Acid across Three Consecutive Generations in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. Maternal and Paternal Supplementation Experiments
2.3. Analysis of Offspring of AA and VH Supplemented Dams and Sires
2.4. RT-PCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Maternal and Paternal Supplementation Experiments
3.2. Effects of Offspring AA and VH Exposure on Body Weight
3.3. Exposure to AA Prior to Coitus in Males or during Pregnancy in Females Correlated Positively with Offspring Body and Organ Weight
3.4. Effects of AA Supplementation on Liver FA and DNAm Profiles
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barker, D.; Osmond, C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1986, 327, 1077–1081. [Google Scholar] [CrossRef]
- Fleming, T.P.; Watkins, A.J.; Velazquez, M.A.; Mathers, J.C.; Prentice, A.M.; Stephenson, J.; Barker, M.; Saffery, R.; Yajnik, C.S.; Eckert, J.J.; et al. Origins of lifetime health around the time of conception: Causes and consequences. Lancet 2018, 391, 1842–1852. [Google Scholar] [CrossRef]
- Hajkova, P.; Erhardt, S.; Lane, N.; Haaf, T.; El-Maarri, O.; Reik, W.; Walter, J.; Surani, M.A. Epigenetic reprogramming in mouse primordial germ cells. Mech. Dev. 2002, 117, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Waterland, R.A.; Jirtle, R.L. Transposable elements: Targets for early nNutritional effects on epigenetic gene regulation. Society 2003, 23, 5293–5300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunford, A.R.; Sangster, J.M. Maternal and paternal periconceptional nutrition as an indicator of offspring metabolic syndrome risk in later life through epigenetic imprinting: A systematic review. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S655–S662. [Google Scholar] [CrossRef] [PubMed]
- Sadler-Riggleman, I.; Klukovich, R.; Nilsson, E.; Beck, D.; Xie, Y.; Yan, W.; Skinner, M.K. Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: Generational origins of male infertility. Environ. Epigenetics 2019, 5, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, J.C.; Lanzillotti, C.; Mazziotta, C.; Tognon, M.; Martini, F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front. Cell Dev. Biol. 2021, 9. [Google Scholar] [CrossRef]
- Anway, M.D.; Cupp, A.S.; Uzumcu, N.; Skinner, M.K. Toxicology: Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005, 308, 1466–1469. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Bosagna, C.; Settles, M.; Lucker, B.; Skinner, M.K. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE 2010, 5, e13100. [Google Scholar] [CrossRef] [Green Version]
- Hoile, S.P.; Grenfell, L.M.; Hanson, M.A.; Lillycrop, K.A.; Burdge, G.C. Fat and carbohydrate intake over three generations modify growth, metabolism and cardiovascular phenotype in female mice in an age-related manner. PLoS ONE 2015, 10, e0134664. [Google Scholar] [CrossRef]
- Cropley, J.E.; Eaton, S.A.; Aiken, A.; Young, P.E.; Giannoulatou, E.; Ho, J.W.K.; Buckland, M.E.; Keam, S.P.; Hutvagner, G.; Humphreys, D.T.; et al. Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol. Metab. 2016, 5, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Beck, D.; Sadler-Riggleman, I.; Skinner, M.K. Generational comparisons (F1 versus F3) of vinclozolin induced epigenetic transgenerational inheritance of sperm differential DNA methylation regions (epimutations) using MeDIP-Seq. Environ. Epigenetics 2017, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; Nilsson, E.; McBirney, M.; Klukovich, R.; Xie, Y.; Tang, C.; Yan, W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018, 11, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Maamar, M.; Sadler-Riggleman, I.; Beck, D.; McBirney, M.; Nilsson, E.; Klukovich, R.; Xie, Y.; Tang, C.; Yan, W.; Skinner, M.K. Alterations in sperm DNA methylation, non-coding RNA expression, and histone retention mediate vinclozolin-induced epigenetic transgenerational inheritance of disease. Environ. Epigenetics 2018, 4, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Eaton, S.A.; Aiken, A.J.; Young, P.E.; Ho, J.W.K.; Cropley, J.E.; Suter, C.M. Maternal obesity heritably perturbs offspring metabolism for three generations without serial programming. Int. J. Obes. 2018, 42, 911–914. [Google Scholar] [CrossRef]
- Burdge, G.C.; Hoile, S.P.; Uller, T.; Thomas, N.A.; Gluckman, P.D.; Hanson, M.A.; Lillycrop, K.A. Progressive, transgenerational changes in offspring phenotype and epigenotype following nutritional transition. PLoS ONE 2011, 6, e28282. [Google Scholar] [CrossRef] [Green Version]
- Hoile, S.P.; Lillycrop, K.A.; Thomas, N.A.; Hanson, M.A.; Burdge, G.C. Dietary protein restriction during F0 pregnancy in rats induces transgenerational changes in the hepatic transcriptome in female offspring. PLoS ONE 2011, 6, e21668. [Google Scholar] [CrossRef] [Green Version]
- Braunschweig, M.; Jagannathan, V.; Gutzwiller, A.; Bee, G. Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS ONE 2012, 7, e30583. [Google Scholar] [CrossRef]
- Crudo, A.; Petropoulos, S.; Moisiadis, V.G.; Iqbal, M.; Kostaki, A.; Machnes, Z.; Szyf, M.; Matthews, S.G. Prenatal synthetic glucocorticoid treatment changes DNA methylation states in male organ systems: Multigenerational effects. Endocrinology 2012, 153, 3269–3283. [Google Scholar] [CrossRef] [Green Version]
- Lillycrop, K.A.; Burdge, G.C. Maternal diet as a modifier of offspring epigenetics. J. Dev. Orig. Health Dis. 2015, 6, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Donkin, I.; Barrès, R. Sperm epigenetics and influence of environmental factors. Mol. Metab. 2018, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Flores-Sierra, J.; Arredondo-Guerrero, M.; Cervantes-Paz, B.; Rodríguez-Ríos, D.; Alvarado-Caudillo, Y.; Nielsen, F.C.; Wrobel, K.; Wrobel, K.; Zaina, S.; Lund, G. The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo. Lipids Health Dis. 2016, 15, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.S.; Barraza-Villarreal, A.; Hernandez-Vargas, H.; Sly, P.D.; Biessy, C.; Ramakrishnan, U.; Romieu, I.; Herceg, Z. Modulation of DNA methylation states and infant immune system by dietary supplementation with ω-3 PUFA during pregnancy in an intervention study. Am. J. Clin. Nutr. 2013, 98, 480–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrès, R.; Osler, M.E.; Yan, J.; Rune, A.; Fritz, T.; Caidahl, K.; Krook, A.; Zierath, J.R. Non-CpG methylation of the PGC-1α promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009, 10, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Ceccarelli, V.; Racanicchi, S.; Martelli, M.P.; Nocentini, G.; Fettucciari, K.; Riccardi, C.; Marconi, P.; Nardo, P.D.; Grignani, F.; Binaglia, L.; et al. Eicosapentaenoic acid demethylates a single cpg that mediates expression of tumor suppressor CCAAT/enhancer-binding protein δ in U937 leukemia cells. J. Biol. Chem. 2011, 286, 27092–27102. [Google Scholar] [CrossRef] [Green Version]
- Hall, E.; Volkov, P.; Dayeh, T.; Bacos, K.; Rönn, T.; Nitert, M.D.; Ling, C. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets. BMC Med. 2014, 12, 103. [Google Scholar] [CrossRef] [Green Version]
- Voisin, S.; Almén, M.S.; Moschonis, G.; Chrousos, G.P.; Manios, Y.; Schiöth, H.B. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of greek preadolescents. Eur. J. Hum. Genet. 2015, 23, 654–662. [Google Scholar] [CrossRef] [Green Version]
- Silva-Martínez, G.A.; Rodríguez-Ríos, D.; Alvarado-Caudillo, Y.; Vaquero, A.; Esteller, M.; Carmona, F.J.; Moran, S.; Nielsen, F.C.; Wickström-Lindholm, M.; Wrobel, K.; et al. Arachidonic and oleic acid exert distinct effects on the DNA methylome. Epigenetics 2016, 11, 321–334. [Google Scholar] [CrossRef] [Green Version]
- de la Rocha, C.; Pérez-Mojica, J.E.; León, S.Z.-D.; Cervantes-Paz, B.; Tristán-Flores, F.E.; Rodríguez-Ríos, D.; Molina-Torres, J.; Ramírez-Chávez, E.; Alvarado-Caudillo, Y.; Carmona, F.J.; et al. Associations between whole peripheral blood fatty acids and DNA methylation in humans. Sci. Rep. 2016, 6, 25867. [Google Scholar] [CrossRef] [Green Version]
- Perfilyev, A.; Dahlman, I.; Gillberg, L.; Rosqvist, F.; Iggman, D.; Volkov, P.; Nilsson, E.; Risérus, U.; Ling, C. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: A randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 991–1000. [Google Scholar] [CrossRef] [Green Version]
- Pescador-Tapia, A.; Silva-Martínez, G.A.; Fragoso-Bargas, N.; Rodríguez-Ríos, D.; Esteller, M.; Moran, S.; Zaina, S.; Lund, G. Distinct Associations of BMI and Fatty Acids With DNA Methylation in Fasting and Postprandial States in Men. Front. Genet. 2021, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Armstrong, C.M.; Kaeberlein, M.; Guarente, L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000, 403, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Amat, R.; Planavila, A.; Chen, S.L.; Iglesias, R.; Giralt, M.; Villarroya, F. SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) gene in skeletal muscle through the PGC-1α autoregulatory loop and interaction with MyoD. J. Biol. Chem. 2009, 284, 21872–21880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guijas, C.; Pérez-Chacón, G.; Astudillo, A.M.; Rubio, J.M.; Gil-de-Gómez, L.; Balboa, M.A.; Balsinde, J. Simultaneous activation of p38 and JNK by arachidonic acid stimulates the cytosolic phospholipase A2 -dependent synthesis of lipid droplets in human monocytes. J. Lipid Res. 2012, 53, 2343–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guijas, C.; Meana, C.; Astudillo, A.M.; Balboa, M.A.; Balsinde, J. Foamy monocytes are enriched in cis-7-hexadecenoic fatty acid (16:1n-9), a possible biomarker for early detection of cardiovascular disease. Cell Chem. Biol. 2016, 23, 689–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenna, J.T.; Varamini, B.; Jensen, R.G.; Diersen-Schade, D.A.; Boettcher, J.A.; Arterburn, L.M. Docosahexaenoic and arachidonic acid concentrations in human breast milk worldwide. Am. J. Clin. Nutr. 2007, 85, 1457–1464. [Google Scholar] [CrossRef] [Green Version]
- Hadley, K.B.; Ryan, A.S.; Forsyth, S.; Gautier, S.; Salem, N. The essentiality of arachidonic acid in infant development. Nutrients 2016, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Salem, N.; Van Dael, P. Arachidonic acid in human milk. Nutrients 2020, 12, 626. [Google Scholar] [CrossRef] [Green Version]
- Taber, L.; Chiu, C.H.; Whelan, J. Assessment of the arachidonic acid content in foods commonly consumed in the American diet. Lipids 1998, 33, 1151–1157. [Google Scholar] [CrossRef]
- Forsyth, S.; Gautier, S.; Salem, N., Jr. Dietary intakes of arachidonic acid and docosahexaenoic acid in early life—With a special focus on complementary feeding in developing countries. Ann. Nutr. Metab. 2017, 70, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Koletzko, B.; Lien, E.; Agostoni, C.; Böhles, H.; Campoy, C.; Cetin, I.; Decsi, T.; Dudenhausen, J.W.; Dupont, C.; Forsyth, S.; et al. The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: Review of current knowledge and consensus recommendations. J. Perinat. Med. 2008, 36, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noureddini, H.; Teoh, B.C.; Clements, L.D. Densities of vegetable oOils and fatty acids. Chem. Biomol. Eng. Res. Publ. 1992, 69, 1184–1188. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, W.; Hammels, I.; Jenke, B.; Binczek, E.; Schmidt-soltau, I.; Odenthal, M.; Thevis, M. Obesity resistance and deregulation of lipogenesis in D 6 -fatty acid desaturase ( FADS 2 ) deficiency. EMBO Rep. 2014, 15, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, E.; Harauma, A.; Yasuda, H.; Watanabe, J.; Nakamura, M.T.; Salem, N.; Moriguchi, T. Essentiality of arachidonic acid intake in murine early development. Prostaglandins Leukot. Essent. Fat. Acids 2016. [Google Scholar] [CrossRef] [PubMed]
- Hadley, K.B.; Guimont-Desrochers, F.; Bailey-Hall, E.; Salem, N.; Yurko-Mauro, K.; Field, C.J. Supplementing dams with both arachidonic and docosahexaenoic acid has beneficial effects on growth and immune development. Prostaglandins Leukot. Essent. Fat. Acids 2017, 126, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of omega-3 fatty acids on immune cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Lochmann, T.L.; Thomas, R.R.; Bennett, J.P.; Taylor, S.M. Epigenetic modifications of the PGC-1α promoter during exercise induced expression in mice. PLoS ONE 2015, 10, e0129647. [Google Scholar] [CrossRef]
- Schwenk, R.W.; Jonas, W.; Ernst, S.B.; Kammel, A.; Jähnert, M.; Schürmann, A. Diet-dependent alterations of hepatic scd1 expression are accompanied by differences in promoter methylation. Horm. Metab. Res. 2013, 45, 786–794. [Google Scholar] [CrossRef] [Green Version]
- Forsyth, S.; Gautier, S.; Salem, N. Global estimates of dietary intake of docosahexaenoic acid and arachidonic acid in developing and developed countries. Ann. Nutr. Metab. 2016, 68, 258–267. [Google Scholar] [CrossRef] [Green Version]
- Dumas, M.-E.; Barton, R.H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J.C.; et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc. Natl. Acad. Sci. 2006, 103, 12511–12516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fearnside, J.F.; Dumas, M.-E.; Rothwell, A.R.; Wilder, S.P.; Cloarec, O.; Toye, A.; Blancher, C.; Holmes, E.; Tatoud, R.; Barton, R.H.; et al. Phylometabonomic patterns of adaptation to high fat diet feeding in inbred mice. PLoS ONE 2008, 3, e1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, S.E.; Werkman, S.H.; Peeples, J.M.; Cooke, R.J.; Tolley, E.A. Arachidonic acid status correlates with first year growth in preterm infants. Appl. Biol. Sci. 1993, 90, 1073–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koletzko, B.; Braun, M. Arachidonic acid and early human growth: Is there a relation? Ann. Nutr. Metab. 1991, 35, 128–131. [Google Scholar] [CrossRef]
- Stern, Z.; Korsten, M.A.; De Carli, L.M.; Lieber, C.S. Effects of arachidonic acid on Hepatic Lipids in Ethanol-Fed Rats. Alcohol. Clin. Exp. Res. 1990, 14, 127–129. [Google Scholar] [CrossRef]
- Yoshizawa, K.; Emoto, Y.; Kinoshita, Y.; Kimura, A.; Uehara, N.; Yuri, T.; Shikata, N.; Hamazaki, T.; Tsubura, A. Arachidonic acid supplementation does not affect N-methyl-N-nitrosourea-induced renal Preneoplastic lesions in young Lewis rats. Oncol. Lett. 2013, 5, 1112–1116. [Google Scholar] [CrossRef] [Green Version]
- Weiler, H.A. Dietary supplementation of arachidonic acid is associated with higher whole body weight and bone mineral density in growing pigs. Pediatr. Res. 2000, 47, 692–697. [Google Scholar] [CrossRef] [Green Version]
- Hahn, K.E.; Dahms, I.; Butt, C.M.; Salem, N.; Grimshaw, V.; Bailey, E.; Fleming, S.A.; Smith, B.N.; Dilger, R.N. Impact of Arachidonic and Docosahexaenoic Acid Supplementation on Neural and Immune Development in the Young Pig. Front. Nutr. 2020, 7, 1–18. [Google Scholar] [CrossRef]
- Goheen, S.C.; Larkin, E.C.; Manix, M.; Rao, G.A. Dietary arachidonic acid reduces fatty liver, increases diet consumption and weight gain in ethanol-fed rats. Lipids 1980, 15, 328–336. [Google Scholar] [CrossRef]
- De La Presa-Owens, S.; Innis, S.M.; Rioux, F.M. Addition of triglycerides with arachidonic acid or docosahexaenoic acid to infant formula has tissue- and lipid class-specific effects on fatty acids and hepatic desaturase activities in formula-fed piglets. J. Nutr. 1998, 128, 1376–1384. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, D.; Muñoz, Y.; Ortiz, M.; Maliqueo, M.; Chouinard-Watkins, R.; Valenzuela, R. Impact of maternal obesity on the metabolism and bioavailability of polyunsaturated fatty acids during pregnancy and breastfeeding. Nutrients 2021, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Massiera, F.; Barbry, P.; Guesnet, P.; Joly, A.; Luquet, S.; Moreilhon-Brest, C.; Mohsen-Kanson, T.; Amri, E.-Z.; Ailhaud, G. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J. Lipid Res. 2010, 51, 2352–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deol, P.; Evans, J.R.; Dhahbi, J.; Chellappa, K.; Han, D.S.; Spindler, S.; Sladek, F.M. Soybean oil is more obesogenic and diabetogenic than coconut oil and fructose in mouse: Potential role for the liver. PLoS ONE 2015, 10, e0132672. [Google Scholar] [CrossRef] [Green Version]
- Sprecher, H. The roles of anabolic and catabolic reactions in the synthesis and recycling of polyunsaturated fatty acids. Prostaglandins Leukot. Essent. Fat. Acids 2002, 67, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes. Nutrients 2010, 2, 355–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutta, S.; Sengupta, P. Men and mice: Relating their ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Bergmann, K.; Thomas Brenna, J.; Calder, P.C.; Campoy, C.; Clandinin, M.T.; Colombo, J.; Daly, M.; Decsi, T.; Demmelmair, H.; et al. Should formula for infants provide arachidonic acid along with DHA? A position paper of the European Academy of Paediatrics and the Child Health Foundation. Am. J. Clin. Nutr. 2020, 111, 10–16. [Google Scholar] [CrossRef]
- Forsyth, S.; Calder, P.C.; Zotor, F.; Amuna, P.; Meyer, B.; Holub, B. Dietary Docosahexaenoic Acid and Arachidonic Acid in Early Life: What Is the Best Evidence for Policymakers? Ann. Nutr. Metab. 2018, 72, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Guijas, C.; Bermúdez, M.A.; Meana, C.; Astudillo, A.M.; Pereira, L.; Fernández-Caballero, L.; Balboa, M.A.; Balsinde, J. Neutral Lipids Are Not a Source of Arachidonic Acid for Lipid Mediator Signaling in Human Foamy Monocytes. Cells 2019, 8, 941. [Google Scholar] [CrossRef] [Green Version]
- Weaver, I.C.G.; Cervoni, N.; Champagne, F.A.; D’Alessio, A.C.; Sharma, S.; Seckl, J.R.; Dymov, S.; Szyf, M.; Meaney, M.J. Epigenetic programming by maternal behavior. Nature Neuroscience 2004, 7, 847–854. [Google Scholar] [CrossRef]
- Zwamborn, R.A.J.; Slieker, R.C.; Mulder, P.C.A.; Zoetemelk, I.; Verschuren, L.; Suchiman, H.E.D.; Toet, K.H.; Droog, S.; Slagboom, P.E.; Kooistra, T.; et al. Prolonged high-fat diet induces gradual and fat depot-specific DNA methylation changes in adult mice. Sci. Rep. 2017, 7, 43261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsen, S.C.; Brøns, C.; Bork-Jensen, J.; Ribel-Madsen, R.; Yang, B.; Lara, E.; Hall, E.; Calvanese, V.; Nilsson, E.; Jørgensen, S.W.; et al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia 2012, 55, 3341–3349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, A.; Trac, C.; Du, J.; Natarajan, R.; Schones, D.E. Persistent chromatin modifications induced by high fat diet. J. Biol. Chem. 2016, 291, 10446–10455. [Google Scholar] [CrossRef] [Green Version]
- Siersbaek, M.; Varticovski, L.; Yang, S.; Baek, S.; Nielsen, R.; Mandrup, S.; Hager, G.L.; Chung, J.H.; GrØntved, L. High fat diet-induced changes of mouse hepatic transcription and enhancer activity can be reversed by subsequent weight loss. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakimoto, P.A.; Kowaltowski, A.J. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biol. 2016, 8, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, C.W.; Ntambi, J.M. Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc. Natl. Acad. Sci. USA 1996, 93, 9443–9448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobosz, A.M.; Janikiewicz, J.; Borkowska, A.M.; Dziewulska, A.; Lipiec, E.; Dobrzyn, P.; Kwiatek, W.M.; Dobrzyn, A. Stearoyl-coa desaturase 1 activity determines the maintenance of DNMT1-mediated DNA methylation patterns in pancreatic β-cells. Int. J. Mol. Sci. 2020, 21, 6844. [Google Scholar] [CrossRef]
- Butruille, L.; Marousez, L.; Pourpe, C.; Oger, F.; Lecoutre, S.; Catheline, D.; Görs, S.; Metges, C.C.; Guinez, C.; Laborie, C.; et al. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int. J. Obes. 2019, 43, 2381–2393. [Google Scholar] [CrossRef]
- Horsthemke, B. A critical view on transgenerational epigenetic inheritance in humans. Nat. Commun. 2018, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Seisenberger, S.; Peat, J.R.; Hore, T.A.; Santos, F.; Dean, W.; Reik, W. Reprogramming DNA methylation in the mammalian life cycle: Building and breaking epigenetic barriers. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fitz-James, M.H.; Cavalli, G. Molecular mechanisms of transgenerational epigenetic inheritance. Nat. Rev. Genet. 2022. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Wang, L.; You, T.; Liu, Y.; Wu, F.; Zhu, L.; Tang, C. Perivascular adipose tissue modulates carotid plaque formation induced by disturbed flow in mice. J. Vasc. Surg. 2019, 70, 927–936.e4. [Google Scholar] [CrossRef] [PubMed]
Offspring | Tissue Exposed | All | Male | Female |
---|---|---|---|---|
PAA | germline | 0.822 * | 0.797 | 0.917 |
MAA | germline + somatic | 0.841 * | 0.888 | 0.807 |
PAA+MAA | germline | 0.720 ** | 0.757 | 0.704 |
germline + somatic | 0.850 *** | 0.867 * | 0.860 * | |
PVH | germline | 0.845 * | 0.736 | 0.999 * |
MVH | germline + somatic | −0.218 | −0.399 | 0.095 |
PVH+MVH | germline | 0.063 | −0.146 | 0.351 |
germline + somatic | 0.271 | 0.080 | 0.566 |
PAA | MAA | PAA+MAA | PVH | MVH | PVH+MVH | ||||
---|---|---|---|---|---|---|---|---|---|
gl | gl+s | gl | gl+s | gl | gl+s | gl | gl+s | ||
LW | 0.924 * | 0.825 * | 0.751 ** | 0.852 *** | 0.816 * | 0.264 | 0.415 | 0.492 | |
Total fat | 0.601 | −0.549 | −0.180 | −0.205 | −0.122 | −0.091 | −0.098 | −0.018 | |
SFA | 0.182 | 0.599 | 0.168 | 0.557 | 0.019 | −0.084 | −0.057 | −0.322 | |
MUFA | 0.060 | 0.081 | −0.056 | 0.363 | −0.227 | −0.690 | −0.473 | −0.114 | |
PUFA | all | −0.149 | −0.467 | −0.058 | −0.551 | 0.315 | 0.346 | 0.333 | 0.355 |
n−3 | 0.193 | 0.266 | 0.263 | −0.215 | 0.609 | 0.427 | 0.444 | 0.547 | |
n−6 | −0.241 | −0.535 | −0.115 | −0.605 * | −0.173 | 0.343 | 0.281 | 0.225 | |
n−9 | 0.103 | −0.065 | −0.080 | 0.283 | −0.237 | −0.699 | −0.486 | −0.110 | |
Myristic | C14:0 | −0.279 | −0.140 | −0.237 | 0.170 | −0.345 | −0.873 *** | −0.387 | −0.518 |
Palmitic | C16:0 | 0.604 | 0.350 | 0.269 | 0.579 * | −0.011 | −0.103 | −0.062 | −0.289 |
Stearic | C18:0 | −0.544 | 0.0332 | −0.123 | −0.076 | 0.284 | 0.010 | 0.043 | −0.105 |
Arachidic | C20:0 | −0.985 *** | −0.650 | −0.758 ** | −0.498 | −0.341 | −0.319 | −0.24 | −0.235 |
Palmitoleic | C16:1n−7 | −0.546 | −0.008 | −0.298 | 0.135 | −0.215 | −0.68 | −0.486 | −0.298 |
HDA | C16:1n−9 | 0.556 | 0.586 | 0.498 | 0.605 * | −0.099 | −0.475 | −0.193 | 0.223 |
Oleic | cC18:1n−9 | 0.503 | 0.118 | 0.129 | 0.408 | 0.0349 | −0.636 | −0.341 | 0.051 |
Elaidic | tC18:1n−9 | −0.21 | −0.074 | −0.163 | 0.065 | −0.774 | −0.609 | −0.641 * | −0.440 |
Eicosenoic | C20:1n−9 | −0.723 | −0.803 | −0.547 | −0.637 * | −0.471 | −0.499 | −0.431 | −0.312 |
MEAD | C20:3n−9 | −0.693 | −0.751 | −0.741 ** | −0.544 | −0.454 | −0.601 | −0.517 | −0.148 |
Linoleic | C18:2n−6 | −0.342 | −0.268 | −0.027 | −0.549 | −0.326 | 0.226 | 0.131 | 0.0826 |
Arachidonic | C20:4n−6 | −0.071 | −0.870 * | −0.260 | −0.592 * | 0.179 | 0.454 | 0.412 | 0.316 |
DGLA | C20:3n−6 | −0.294 | 0.186 | 0.081 | −0.345 | 0.034 | 0.246 | 0.122 | 0.192 |
EPA | C20:5n−3 | 0.736 | 0.852 * | 0.766 ** | 0.781 ** | 0.026 | 0.205 | 0.161 | 0.114 |
DHA | C22:6n−3 | 0.116 | 0.061 | 0.174 | −0.317 | 0.642 | 0.486 | 0.484 | 0.604 * |
Promoter Methylation | |||||||
---|---|---|---|---|---|---|---|
Global DNAm | Scd1 | Ppargc1a | |||||
Offspring | Tissue Exposed | mg FA | LW | mg FA | LW | mg FA | LW |
PAA | germline | 0.646 | 0.759 | −0.425 | −0.632 | 0.285 | 0.329 |
MAA | germline + somatic | 0.526 | 0.669 | −0.697 | −0.725 | −0.467 | −0.612 |
PAA+MAA | germline | 0.488 | 0.729 ** | −0.643 * | −0.511 | −0.277 | −0.105 |
germline + somatic | 0.600 * | −0.398 | 0.015 | ||||
PVH | germline | 0.493 | 0.499 | −0.139 | −0.036 | −0.384 | −0.220 |
MVH | germline + somatic | −0.676 | −0.797 | 0.191 | 0.362 | 0.326 | 0.757 |
PVH+MVH | germline | −0.071 | 0.015 | 0.120 | 0.175 | 0.001 | 0.172 |
germline + somatic | −0.247 | 0.070 | 0.169 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de la Rocha, C.; Rodríguez-Ríos, D.; Ramírez-Chávez, E.; Molina-Torres, J.; de Jesús Flores-Sierra, J.; Orozco-Castellanos, L.M.; Galván-Chía, J.P.; Sánchez, A.V.; Zaina, S.; Lund, G. Cumulative Metabolic and Epigenetic Effects of Paternal and/or Maternal Supplementation with Arachidonic Acid across Three Consecutive Generations in Mice. Cells 2022, 11, 1057. https://doi.org/10.3390/cells11061057
de la Rocha C, Rodríguez-Ríos D, Ramírez-Chávez E, Molina-Torres J, de Jesús Flores-Sierra J, Orozco-Castellanos LM, Galván-Chía JP, Sánchez AV, Zaina S, Lund G. Cumulative Metabolic and Epigenetic Effects of Paternal and/or Maternal Supplementation with Arachidonic Acid across Three Consecutive Generations in Mice. Cells. 2022; 11(6):1057. https://doi.org/10.3390/cells11061057
Chicago/Turabian Stylede la Rocha, Carmen, Dalia Rodríguez-Ríos, Enrique Ramírez-Chávez, Jorge Molina-Torres, José de Jesús Flores-Sierra, Luis M. Orozco-Castellanos, Juan P. Galván-Chía, Atenea Vázquez Sánchez, Silvio Zaina, and Gertrud Lund. 2022. "Cumulative Metabolic and Epigenetic Effects of Paternal and/or Maternal Supplementation with Arachidonic Acid across Three Consecutive Generations in Mice" Cells 11, no. 6: 1057. https://doi.org/10.3390/cells11061057
APA Stylede la Rocha, C., Rodríguez-Ríos, D., Ramírez-Chávez, E., Molina-Torres, J., de Jesús Flores-Sierra, J., Orozco-Castellanos, L. M., Galván-Chía, J. P., Sánchez, A. V., Zaina, S., & Lund, G. (2022). Cumulative Metabolic and Epigenetic Effects of Paternal and/or Maternal Supplementation with Arachidonic Acid across Three Consecutive Generations in Mice. Cells, 11(6), 1057. https://doi.org/10.3390/cells11061057