Neutrophil Counts, Neutrophil-to-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery
Abstract
:1. Introduction
2. Materials and Methods
Statistics Analysis
3. Results
3.1. Clinical Results
3.2. Receiver Operator Characteristics (ROC) Analysis
3.3. Univariable Analysis
3.4. Multivariable Analysis
3.5. Receiver Operator Curve for Postoperative Inflammatory Markers Revealed in the Multivariable Analysis
3.6. Receiver Operator Curve for Multifactor Models, including Factors Presented in Multivariable Analysis (Preoperative Factors and Postoperative Inflammatory Markers)
3.7. Multifactorial Models Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, D.; Cheng, Y.; Zhang, H.; Ba, M.; Chen, P.; Li, H.; Chen, K.; Sha, W.; Zhang, C.; Chen, H. Association between high blood pressure and long term cardiovascular events in young adults: Systematic review and meta-analysis. BMJ 2020, 370, m3222. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Zhang, Y.; Li, M.; Wu, J.H.; Mai, L.; Li, J.; Yang, Y.; Hu, Y.; Huang, Y. Association between prediabetes and risk of all cause mortality and cardiovascular disease: Updated meta-analysis. BMJ 2020, 370, m2297. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Tomás, N.; Blanco Mejía, S.; Viguiliouk, E.; Khan, T.; Kendall, C.W.C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Mediterranean diet, cardiovascular disease and mortality in diabetes: A systematic review and meta-analysis of prospective cohort studies and randomized clinical trials. Crit. Rev. Food Sci. Nutr. 2019, 60, 1207–1227. [Google Scholar] [CrossRef] [PubMed]
- Taouk, Y.; Spittal, M.J.; LaMontagne, A.D.; Milner, A.J. Psychosocial work stressors and risk of all-cause and coronary heart disease mortality: A systematic review and meta-analysis. Scand. J. Work Environ. Health 2019, 46, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Urbanowicz, T.; Michalak, M.; Olasińska-Wiśniewska, A.; Haneya, A.; Straburzyńska-Migaj, E.; Bociański, M.; Jemielity, M. Gender differences in coronary artery diameters and survival results after off-pump coronary artery bypass (OPCAB) procedures. J. Thorac. Dis. 2021, 13, 2867–2873. [Google Scholar] [CrossRef]
- Pedro-Botet, J.; Climent, E.; Benaiges, D. Atherosclerosis and inflammation. New therapeutic approaches. Med. Clin. 2020, 155, 256–262. [Google Scholar] [CrossRef]
- Chen, Y.-T.; Yuan, H.-X.; Ou, Z.-J.; Ou, J.-S. Microparticles (Exosomes) and Atherosclerosis. Curr. Atheroscler. Rep. 2020, 22, 23–29. [Google Scholar] [CrossRef]
- Kuk, M.; Ward, N.C.; Dwivedi, G. Extrinsic and Intrinsic Responses in the Development and Progression of Atherosclerosis. Heart Lung Circ. 2021, 30, 807–816. [Google Scholar] [CrossRef]
- Thuijs, D.J.F.M.; Kappetein, A.P.; Serruys, P.W.; Mohr, F.W.; Morice, M.C.; Mack, M.J.; Holmes, D.R.; Curzen, N.; Davierwala, P.; Noack, T.; et al. SYNTAX Extended Survival Investigators. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet 2019, 394, 1325–1334. [Google Scholar] [CrossRef]
- Jia, S.; Liu, Y.; Yuan, J. Evidence in Guidelines for Treatment of Coronary Artery Disease. Adv. Exp. Med. Biol. 2020, 1177, 37–73. [Google Scholar]
- Stone, G.W.; Kappetein, A.P.; Sabik, J.F.; Pocock, S.J.; Morice, M.C.; Puskas, J.; Kandzari, D.E.; Karmpaliotis, D.; Brown, W.M.; Lembo, N.J.; et al. EXCEL Trial Investigators. Five-Year Outcomes after PCI or CABG for Left Main Coronary Disease. N. Engl. J. Med. 2019, 381, 1820–1830. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Michalak, M.; Gąsecka, A.; Olasińska-Wiśniewska, A.; Perek, B.; Rodzki, M.; Bociański, M.; Jemielity, M. A Risk Score for Predicting Long-Term Mortality Following Off-Pump Coronary Artery Bypass Grafting. J. Clin. Med. 2021, 10, 3032. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Michalak, M.; Gąsecka, A.; Perek, B.; Rodzki, M.; Bociański, M.; Straburzyńska-Migaj, E.; Jemielity, M. Postoperative Neutrophil to Lymphocyte Ratio as an Overall Mortality Midterm Prognostic Factor following OPCAB Procedures. Clin. Pract. 2021, 11, 587–597. [Google Scholar] [CrossRef]
- Tucker, B.; Vaidya, K.; Cochran, B.; Patel, S. Inflammation during Percutaneous Coronary Intervention—Prognostic Value, Mechanisms and Therapeutic Targets. Cells 2021, 10, 1391. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.; Htun, N.; Lew, R.; Freilich, M.; Quinn, S.; Layland, J. Colchicine to Prevent Periprocedural Myocardial Injury in Percutaneous Coronary Intervention: The COPE-PCI Pilot Trial. Circ. Cardiovasc. Interv. 2021, 14, 9992. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Xu, T.; Luan, Y.; Lv, Q.; Wang, Y.; Lv, X.; Fu, G.; Zhang, W. Impact of increased inflammation biomarkers on periprocedural myocardial infarction in patients undergoing elective percutaneous coronary intervention: A cohort study. J. Thorac. Dis. 2020, 12, 5398–5410. [Google Scholar] [CrossRef]
- Carr, B.D.; Johnson, T.J.; Gomez-Rexrode, A.; Mohammed, A.; Coughlin, M.; Toomasian, J.M.; Rojas-Pena, A.; Bartlett, R.H.; Haft, J.W. Inflammatory Effects of Blood–Air Interface in a Porcine Cardiopulmonary Bypass Model. ASAIO J. 2020, 66, 72–78. [Google Scholar] [CrossRef]
- Johnston, K.A.; Westover, A.J.; Rojas-Pena, A.; Haft, J.W.; Toomasian, J.M.; Johnson, T.; Buffington, D.A.; Humes, H.D. Novel Leukocyte Modulator Device Reduces the Inflammatory Response to Cardiopulmonary Bypass. ASAIO J. 2019, 65, 401–407. [Google Scholar] [CrossRef]
- Giacinto, O.; Satriano, U.; Nenna, A.; Spadaccio, C.; Lusini, M.; Mastroianni, C.; Nappi, F.; Chello, M. Inflammatory Response and Endothelial Dysfunction Following Cardiopulmonary Bypass: Pathophysiology and Pharmacological Targets. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13, 158–173. [Google Scholar] [CrossRef]
- Naase, H.; Harling, L.; Kidher, E.; Sepehripour, A.; Nguyen, B.; Kapelouzou, A.; Cokkinos, D.; Stavridis, G.; Angelini, G.; Evans, P.C.; et al. Toll-like receptor 9 and the inflammatory response to surgical trauma and cardiopulmonary bypass. J. Cardiothorac. Surg. 2020, 15, 137. [Google Scholar] [CrossRef]
- Mirhafez, S.R.; Khadem, S.H.; Sahebkar, A.; Movahedi, A.; Rahsepar, A.A.; Mirzaie, A.; Jamialahmadi, T.; Ferns, G.A.; Ghayour-Mobarhan, M. Comparative effects of on-pump versus off-pump coronary artery bypass grafting surgery on serum cytokine and chemokine levels. IUBMB Life 2021, 73, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Nooh, H.A.; Abdellateif, M.S.; Refaat, L.; Kandeel, E.Z.; Bayoumi, A.; Samra, M.; Khafagy, M. The role of inflammatory indices in the outcome of COVID-19 cancer patients. Med. Oncol. 2021, 39, 6. [Google Scholar] [CrossRef] [PubMed]
- Hamad, D.A.; Aly, M.M.; Abdelhameid, M.A.; Ahmed, S.A.; Shaltout, A.S.; Abdel-Moniem, A.E.; Ragheb, A.M.R.; Attia, M.N.; Meshref, T.S. Combined Blood Indexes of Systemic Inflammation as a Mirror to Admission to Intensive Care Unit in COVID-19 Patients: A Multicentric Study. J. Epidemiol. Glob. Health 2021, 12, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Fois, A.G.; Paliogiannis, P.; Scano, V.; Cau, S.; Babudieri, S.; Perra, R.; Ruzzittu, G.; Zinellu, E.; Pirina, P.; Carru, C.; et al. The Systemic Inflammation Index on Admission Predicts In-Hospital Mortality in COVID-19 Patients. Molecules 2020, 25, 5725. [Google Scholar] [CrossRef] [PubMed]
- Paliogiannis, P.; Ginesu, G.C.; Tanda, C.; Feo, C.F.; Fancellu, A.; Fois, A.G.; Mangoni, A.A.; Sotgia, S.; Carru, C.; Porcu, A.; et al. Inflammatory cell indexes as preoperative predictors of hospital stay in open elective thoracic surgery. ANZ J. Surg. 2018, 88, 616–620. [Google Scholar] [CrossRef]
- Eissa, M.; Shaarawy, S.; Abdellateif, M.S. The Role of Different Inflammatory Indices in the Diagnosis of COVID-19. Int. J. Gen. Med. 2021, 14, 7843–7853. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, W.; Shi, Z.; Chen, Y.; Ma, J. Positive association between systemic immune-inflammatory index and mortality of cardiogenic shock. Clin. Chim. Acta 2020, 511, 97–103. [Google Scholar] [CrossRef]
- Yatabe, S.; Eto, K.; Haruki, K.; Shiba, H.; Kosuge, M.; Ohkuma, M.; Ito, D.; Takeda, Y.; Sugano, H.; Sasaki, S.; et al. Signification of Systemic Immune-Inflammation Index for prediction of prognosis after resecting in patients with colorectal cancer. Int. J. Colorectal Dis. 2020, 35, 1549–1555. [Google Scholar] [CrossRef]
- Luo, H.; He, L.; Zhang, G.; Yu, J.; Chen, Y.; Yin, H.; Goyal, H.; Zhang, G.-M.; Xiao, Y.; Gu, C.; et al. Normal Reference Intervals of Neutrophil-To-Lymphocyte Ratio, Platelet-To-Lymphocyte Ratio, Lymphocyte-To-Monocyte Ratio, and Systemic Immune Inflammation Index in Healthy Adults: A Large Multi-Center Study from Western China. Clin. Lab. 2019, 65, 65–74. [Google Scholar] [CrossRef]
- Akboga, S.A.; Gokce, A.; Hatipoglu, M.; Beyoglu, M.A.; Inan, K.; Sezen, A.I.; Dal, H.C.; Akkas, Y.; Turan, S.; Kocer, B. The relationship between mortality and inflammatory markers and the systemic immune inflammatory index in patients in the intensive care unit with a pneumothorax as a complication of COVID-19 disease. Ir. J. Med Sci. 2021, 2021, 1–6. [Google Scholar] [CrossRef]
- Nathan, C. Neutrophils and immunity: Challenges and opportunities. Nat. Rev. Immunol. 2006, 6, 173–182. [Google Scholar] [CrossRef]
- Soehnlein, O.; Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 2010, 10, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Döring, Y.; Drechsler, M.; Soehnlein, O.; Weber, C. Neutrophils in atherosclerosis: From mice to man. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ionita, M.G.; Borne, P.V.D.; Catanzariti, L.M.; Moll, F.L.; De Vries, J.-P.P.; Pasterkamp, G.; Vink, A.; De Kleijn, D.P.; De Vries, J.-P.P.M. High Neutrophil Numbers in Human Carotid Atherosclerotic Plaques Are Associated With Characteristics of Rupture-Prone Lesions. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1842–1848. [Google Scholar] [CrossRef] [PubMed]
- Sardu, C.; Massetti, M.; Testa, N.; Di Martino, L.; Castellano, G.; Turriziani, F.; Sasso, F.C.; Torella, M.; De Feo, M.; Santulli, G.; et al. Effects of Sodium-Glucose Transporter 2 Inhibitors (SGLT2-I) in Patients With Ischemic Heart Disease (IHD) Treated by Coronary Artery Bypass Grafting via MiECC: Inflammatory Burden, and Clinical Outcomes at 5 Years of Follow-Up. Front. Pharmacol. 2021, 12, 777083. [Google Scholar] [CrossRef]
- Plicner, D.; Stoliński, J.; Wąsowicz, M.; Gawęda, B.; Hymczak, H.; Kapelak, B.; Drwiła, R.; Undas, A. Preoperative values of inflammatory markers predict clinical outcomes in patients after CABG, regardless of the use of cardiopulmonary bypass. Indian Heart J. 2016, 68 (Suppl. 3), S10–S15. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, P.G.; Wallach, J.D.; Ioannidis, J.P. Meta-Analysis Comparing Established Risk Prediction Models (EuroSCORE II, STS Score, and ACEF Score) for Perioperative Mortality During Cardiac Surgery. Am. J. Cardiol. 2016, 118, 1574–1582. [Google Scholar] [CrossRef]
- Liu, Z.; He, R.; Wu, C.; Xia, Y. Transfemoral versus Transapical Aortic Implantation for Aortic Stenosis Based on No Significant Difference in Logistic EuroSCORE: A Meta-Analysis. Thorac. Cardiovasc. Surg. 2015, 64, 374–381. [Google Scholar] [CrossRef]
- Guida, P.; Mastro, F.; Scrascia, G.; Whitlock, R.; Paparella, D. Performance of the European System for Cardiac Operative Risk Evaluation II: A meta-analysis of 22 studies involving 145,592 cardiac surgery procedures. J. Thorac. Cardiovasc. Surg. 2014, 148, 3049–3057.e1. [Google Scholar] [CrossRef] [Green Version]
- Parolari, A.; Pesce, L.L.; Trezzi, M.; Loardi, C.; Kassem, S.; Brambillasca, C.; Miguel, B.; Tremoli, E.; Biglioli, P.; Alamanni, F. Performance of EuroSCORE in CABG and off-pump coronary artery bypass grafting: Single institution experience and meta-analysis. Eur. Heart J. 2008, 30, 297–304. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Staburzyńska-Migaj, E.; Pawłowska, M.; Żabicki, B.; Michalak, M.; Filipiak, M.; Grajek, S.; Jemielity, M. EuroSCORE is a Predictor of Postoperative Pericardial Effusion following Heart Transplantation. Ann. Transplant. 2015, 20, 193–197. [Google Scholar] [PubMed]
- Libby, P. Inflammation in Atherosclerosis—No Longer a Theory. Clin. Chem. 2021, 67, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.-H.; Ramji, D.P. A perspective on targeting inflammation and cytokine actions in atherosclerosis. Future Med. Chem. 2020, 12, 613–626. [Google Scholar] [CrossRef]
- Mauricio, D.; Castelblanco, E.; Alonso, N. Cholesterol and Inflammation in Atherosclerosis: An Immune-Metabolic Hypothesis. Nutrients 2020, 12, 2444. [Google Scholar] [CrossRef] [PubMed]
- Kocyigit, D.; Gurses, K.M.; Tokgozoglu, L. Anti-inflammatory therapy in atherosclerosis. Front. Biosci. 2020, 25, 242–269. [Google Scholar] [CrossRef]
- Ministrini, S.; Carbone, F.; Montecucco, F. Updating concepts on atherosclerotic inflammation: From pathophysiology to treatment. Eur. J. Clin. Investig. 2020, 51, e13467. [Google Scholar] [CrossRef] [PubMed]
- Shah, B.; Pillinger, M.; Zhong, H.; Cronstein, B.; Xia, Y.; Lorin, J.D.; Smilowitz, N.R.; Feit, F.; Ratnapala, N.; Keller, N.M.; et al. Effects of Acute Colchicine Administration Prior to Percutaneous Coronary Intervention: COLCHICINE-PCI Randomized Trial. Circ. Cardiovasc. Interv. 2020, 13, e008717. [Google Scholar] [CrossRef]
- King, A.H.; Kwan, S.; Schmaier, A.H.; Kumins, N.H.; Harth, K.C.; Colvard, B.D.; Wong, V.L.; Kashyap, V.S.; Cho, J.S. Elevated neutrophil to lymphocyte ratio is associated with decreased amputation-free survival after femoropopliteal percutaneous revascularization. Int. Angiol. 2021, 40, 442–449. [Google Scholar] [CrossRef]
- Ceyhun, G.; Engin, M. Çağatay The Monocyte/High Density Lipoprotein Cholesterol Ratio (MHR) as an Indicator of the Need for Amputation in Patients With Peripheral Artery Disease Developing Critical Limb Ischemia. Angiology 2021, 72, 268–273. [Google Scholar] [CrossRef]
- Guclu, K.; Celik, M. Prognostic Value of Inflammation Parameters in Patients With Non-ST Elevation Acute Coronary Syndromes. Angiology 2020, 71, 825–830. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, J.; Cao, D.; Han, L. Correlation of neutrophil-to-lymphocyte ratio with the prognosis of non-ST-segment elevation in patients with acute coronary syndrome undergoing selective percutaneous coronary intervention. J. Int. Med. Res. 2020, 48, 300060520959510. [Google Scholar] [CrossRef]
- Butt, K.; D’Souza, J.; Yuan, C.; Jayakumaran, J.; Nguyen, M.; Butt, H.I.; Abusaada, K. Correlation of the Neutrophil-to-Lymphocyte Ratio (NLR) and Platelet-to-Lymphocyte Ratio (PLR) with Contrast-Induced Nephropathy in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Interventions. Cureus 2020, 12, 11879. [Google Scholar] [CrossRef] [PubMed]
- Zengin, A.; Karaca, M.; Aruğaslan, E.; Yıldırım, E.; Karataş, M.B.; Çanga, Y.; Emre, A.; Tayyareci, G. Performance of neutrophil to lymphocyte ratio for the prediction of long-term morbidity and mortality in coronary slow flow phenomenon patients presented with non-ST segment elevation acute coronary syndrome. J. Cardiovasc. Thorac. Res. 2021, 13, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Seaoud, E.; Mohamed, A.A.H.A.; Elkot, M.A. The Role of the Platelet/Lymphocyte Ratio and Neutrophil/Lymphocyte Ratio in Predicting High-Risk Heart Score in Patients Admitted with Non-ST Elevation Acute Coronary Syndrome. Pulse 2020, 8, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Y.; Zhao, Q.; Liu, Z.S.; Zhang, C.Y.; Yang, J.; Meng, K. Relationship between monocyte/lymphocyte ratio and non-culprit plaque vulnerability in patients with acute coronary syndrome: An optical coherence tomography study. Medicine 2020, 99, e21562–e21668. [Google Scholar] [CrossRef]
- Perros, A.J.; Esguerra-Lallen, A.; Rooks, K.; Chong, F.; Engkilde-Pedersen, S.; Faddy, H.M.; Hewlett, E.; Naidoo, R.; Tung, J.P.; Fraser, J.F.; et al. Coronary artery bypass grafting is associated with immunoparalysis of monocytes and dendritic cells. J. Cell. Mol. Med. 2020, 24, 4791–4803. [Google Scholar] [CrossRef]
- Dagher, O.; Mury, P.; Noly, P.-E.; Fortier, A.; Lettre, G.; Thorin, E.; Carrier, M. Design of a Randomized Placebo-Controlled Trial to Evaluate the Anti-inflammatory and Senolytic Effects of Quercetin in Patients Undergoing Coronary Artery Bypass Graft Surgery. Front. Cardiovasc. Med. 2021, 8, 741542. [Google Scholar] [CrossRef] [PubMed]
- Gürbüz, O.; Kumtepe, G.; Ozkan, H.; Karal, I.H.; Velioğlu, Y.; Ercan, A.; Yüksel, A.; Ener, S. Predictive Value of Neutrophil-Lymphocyte Ratio for Long-Term Cardiovascular Event Following Coronary Artery Bypass Grafting. Braz. J. Cardiovasc. Surg. 2020, 35, 274–284. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, H. Prognostic prediction of systemic immune-inflammation index for patients with gynecological and breast cancers: A meta-analysis. World J. Surg. Oncol. 2020, 18, 197–208. [Google Scholar] [CrossRef]
- Yang, Y.-L.; Wu, C.-H.; Hsu, P.-F.; Chen, S.-C.; Huang, S.-S.; Chan, W.L.; Lin, S.-J.; Chou, C.-Y.; Chen, J.-W.; Pan, J.-P.; et al. Systemic immune-inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. Eur. J. Clin. Investig. 2020, 50, e13230. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Xia, S.; Lu, L.; Dai, T.; Li, A.; Chen, Y.; Gao, E. Prognostic value of the systemic inflammation response index (SIRI) before and after surgery in operable breast cancer patients. Cancer Biomark. 2020, 28, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Nishimori, H.; Fukutomi, T.; Yamaguchi, T.; Orihashi, K. Dynamics of Oxidative Stress Evoked by Myocardial Ischemia Reperfusion After Off-Pump Coronary Artery Bypass Grafting Elucidated by Bilirubin Oxidation. Circ. J. 2017, 81, 1678–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbanowicz, T.; Olasińska-Wiśniewska, A.; Michalak, M.; Rodzki, M.; Witkowska, A.; Straburzyńska-Migaj, E.; Perek, B.; Jemielity, M. The Prognostic Significance of Neutrophil to Lymphocyte Ratio (NLR), Monocyte to Lymphocyte Ratio (MLR) and Platelet to Lymphocyte Ratio (PLR) on Long-Term Survival in Off-Pump Coronary Artery Bypass Grafting (OPCAB) Procedures. Biology 2021, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Diem, S.; Schmid, S.; Krapf, M.; Flatz, L.; Born, D.; Jochum, W.; Templeton, A.J.; Früh, M. Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab. Lung Cancer 2017, 111, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Hajibandeh, S.; Hajibandeh, S.; Hobbs, N.; Mansour, M. Neutrophil-to-lymphocyte ratio predicts acute appendicitis and distinguishes between complicated and uncomplicated appendicitis: A systematic review and meta-analysis. Am. J. Surg. 2020, 219, 154–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydın, C.; Engin, M. The Value of Inflammation Indexes in Predicting Patency of Saphenous Vein Grafts in Patients With Coronary Artery Bypass Graft Surgery. Cureus 2021, 13, e16646–e16655. [Google Scholar] [CrossRef]
- Li, W.; Ma, G.; Deng, Y.; Chen, W.; Liu, Z.; Chen, F.; Wu, Q. Systemic Immune-Inflammation Index Is a Prognostic Factor for Breast Cancer Patients After Curative Resection. Front. Oncol. 2021, 11, 570208–570218. [Google Scholar] [CrossRef] [PubMed]
- Chien, T.-M.; Li, C.-C.; Lu, Y.-M.; Chou, Y.-H.; Chang, H.-W.; Wu, W.-J. The Predictive Value of Systemic Immune-Inflammation Index on Bladder Recurrence on Upper Tract Urothelial Carcinoma Outcomes after Radical Nephroureterectomy. J. Clin. Med. 2021, 10, 5273. [Google Scholar] [CrossRef]
- Tang, Y.; Zeng, X.; Feng, Y.; Chen, Q.; Liu, Z.; Luo, H.; Zha, L.; Yu, Z. Association of Systemic Immune-Inflammation Index With Short-Term Mortality of Congestive Heart Failure: A Retrospective Cohort Study. Front. Cardiovasc. Med. 2021, 8, 753133–8753148. [Google Scholar] [CrossRef]
- Szymanska, P.; Rozalski, M.; Wilczynski, M.; Golanski, J. Systemic immune-inflammation index (SII) and neutrophil to lymphocyte ratio (NLR) are useful markers for assessing effects of anti-inflammatory diet in patients before coronary artery bypass grafting. Rocz. Panstw. Zakl. Hig. 2021, 72, 327–335. [Google Scholar] [CrossRef]
- Adali, M.K.; Buber, I.; Kilic, O.; Turkoz, A.; Yilmaz, S. Ticagrelor improves systemic immune-inflammation index in acute coronary syndrome patients. Acta Cardiol. 2021, 2021, 15385. [Google Scholar] [CrossRef]
- Zinellu, A.; Collu, C.; Nasser, M.; Paliogiannis, P.; Mellino, S.; Zinellu, E.; Traclet, J.; Ahmad, K.; Mangoni, A.A.; Carru, C.; et al. The Aggregate Index of Systemic Inflammation (AISI): A Novel Prognostic Biomarker in Idiopathic Pulmonary Fibrosis. J. Clin. Med. 2021, 10, 4134. [Google Scholar] [CrossRef] [PubMed]
- Balk, R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence 2014, 5, 20–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaukonen, K.-M.; Bailey, M.; Pilcher, D.; Cooper, D.J.; Bellomo, R. Systemic Inflammatory Response Syndrome Criteria in Defining Severe Sepsis. N. Engl. J. Med. 2015, 372, 1629–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koirala, U.; Thapa, P.B.; Joshi, M.R.; Singh, D.R.; Sharma, S.K. Systemic Inflammatory Response Syndrome following Gastrointestinal Surgery. J. Nepal Med. Assoc. 2017, 56, 221–225. [Google Scholar] [CrossRef]
- Hagen, M.; Sembill, J.A.; Sprügel, M.I.; Gerner, S.T.; Madžar, D.; Lücking, H.; Hölter, P.; Schwab, S.; Huttner, H.B.; Kuramatsu, J.B. Systemic inflammatory response syndrome and long-term outcome after intracerebral hemorrhage. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e588. [Google Scholar] [CrossRef] [Green Version]
- Chaikittisilpa, N.; Krishnamoorthy, V.; Lele, A.V.; Qiu, Q.; Vavilala, M.S. Characterizing the relationship between systemic inflammatory response syndrome and early cardiac dysfunction in traumatic brain injury. J. Neurosci. Res. 2018, 96, 661–670. [Google Scholar] [CrossRef]
- Jin, Z.; Hao, D.; Song, Y.; Zhuang, L.; Wang, Q.; Yu, X. Systemic inflammatory response index as an independent risk factor for ischemic stroke in patients with rheumatoid arthritis: A retrospective study based on propensity score matching. Clin. Rheumatol. 2021, 40, 3919–3927. [Google Scholar] [CrossRef]
- Kobayashi, H.; Okuma, T.; Okajima, K.; Ishibashi, Y.; Zhang, L.; Hirai, T.; Ohki, T.; Ikegami, M.; Sawada, R.; Shinoda, Y.; et al. Systemic inflammation response index (SIRI) as a predictive factor for overall survival in advanced soft tissue sarcoma treated with eribulin. J. Orthop. Sci. 2020, 20, 30346–30358. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Y.; Zhang, H.; Wang, X.; Dong, L.; Yan, Z.; She, L.; Wang, X.; Wei, M.; Tang, C. Prognostic value of the systemic inflammation response index in patients with aneurismal subarachnoid hemorrhage and a Nomogram model construction. Br. J. Neurosurg. 2020, 2020, 1–7. [Google Scholar] [CrossRef]
- Margraf, A.; Ludwig, N.; Zarbock, A.; Rossaint, J. Systemic Inflammatory Response Syndrome After Surgery: Mechanisms and Protection. Anesth. Analg. 2020, 131, 1693–1707. [Google Scholar] [CrossRef]
- Lehmann, S.; Dieterlen, M.T.; Flister, A.; Klaeske, K.; Jawad, K.; Garbade, J.; Borger, M.A.; Kostelka, M. Differences of early immunological responses in on-pump versus off-pump cardiac surgery. Perfusion 2019, 34, 399–407. [Google Scholar] [CrossRef]
- Liew, P.X.; Kubes, P. The Neutrophil’s Role During Health and Disease. Physiol. Rev. 2019, 99, 1223–1248. [Google Scholar] [CrossRef]
- Castanheira, F.V.S.; Kubes, P. Neutrophils and NETs in modulating acute and chronic inflammation. Blood 2019, 133, 2178–2185. [Google Scholar] [CrossRef]
- Chan, M.W.Y.; Viswanathan, S. Recent progress on developing exogenous monocyte/macrophage-based therapies for inflammatory and degenerative diseases. Cytotherapy 2019, 21, 393–415. [Google Scholar] [CrossRef]
- Kapellos, T.S.; Bonaguro, L.; Gemünd, I.; Reusch, N.; Saglam, A.; Hinkley, E.R.; Schultze, J.L. Human Monocyte Subsets and Phenotypes in Major Chronic Inflammatory Diseases. Front. Immunol. 2019, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Weber, C.; Noels, H. Atherosclerosis: Current pathogenesis and therapeutic options. Nat. Med. 2011, 17, 1410–1422. [Google Scholar] [CrossRef]
- Bekkering, S.; Quintin, J.; Joosten, L.A.; van der Meer, J.W.; Netea, M.G.; Riksen, N.P. Oxidized Low-Density Lipoprotein Induces Long-Term Proinflammatory Cytokine Production and Foam Cell Formation via Epigenetic Reprogramming of Monocytes. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1731–1738. [Google Scholar] [CrossRef]
- Noack, M.; Miossec, P. Importance of lymphocyte-stromal cell interactions in autoimmune and inflammatory rheumatic diseases. Nat. Rev. Rheumatol. 2021, 17, 550–564. [Google Scholar] [CrossRef]
- Cronkite, D.A.; Strutt, T.M. The Regulation of Inflammation by Innate and Adaptive Lymphocytes. J. Immunol. Res. 2018, 2018, 1467538. [Google Scholar] [CrossRef] [PubMed]
- Murad, L.D.; Silva, T.Q.; Schilithz, A.O.C.; Monteiro, M.C.; Murad, L.B.; Fialho, E. Body Mass Index Alters the Predictive Value of the Neutrophil-to-Lymphocyte Ratio and Systemic Inflammation Response Index in Laryngeal Squamous Cell Carcinoma Patients. Nutr. Cancer 2021, 7, 1–9. [Google Scholar] [CrossRef]
- Liu, X.; Ge, H.; Feng, X.; Hang, J.; Zhang, F.; Jin, X.; Bao, H.; Zhou, M.; Han, F.; Li, S.; et al. The Combination of Hemogram Indexes to Predict Exacerbation in Stable Chronic Obstructive Pulmonary Disease. Front. Med. 2020, 7, 572435. [Google Scholar] [CrossRef] [PubMed]
- Soehnlein, O. Multiple Roles for Neutrophils in Atherosclerosis. Circ. Res. 2012, 110, 875–888. [Google Scholar] [CrossRef] [Green Version]
- van der Valk, F.M.; Bekkering, S.; Kroon, J.; Yeang, C.; Van den Bossche, J.; van Buul, J.D.; Ravandi, A.; Nederveen, A.J.; Verberne, H.J.; Scipione, C.; et al. Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans. Circulation 2016, 134, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Netea, M.G.; Quintin, J.; Van Der Meer, J.W. Trained Immunity: A Memory for Innate Host Defense. Cell Host Microbe 2011, 9, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Munjal, A.; Khandia, R. Atherosclerosis: Orchestrating cells and biomolecules involved in its activation and inhibition. Adv. Protein Chem. Struct. Biol. 2020, 120, 85–122. [Google Scholar]
- Mehu, M.; Narasimhulu, C.A.; Singla, D.K. Inflammatory Cells in Atherosclerosis. Antioxidants 2022, 11, 233. [Google Scholar] [CrossRef]
- Ammirati, E.; Moroni, F.; Magnoni, M.; Camici, P.G. The role of T and B cells in human atherosclerosis and atherothrombosis. Clin. Exp. Immunol. 2015, 179, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Silvestre-Roig, C.; Braster, Q.; Ortega-Gomez, A.; Soehnlein, O. Neutrophils as regulators of cardiovascular inflammation. Nat. Rev. Cardiol. 2020, 17, 327–340. [Google Scholar] [CrossRef]
- Mawhin, M.-A.; Tilly, P.; Zirka, G.; Charles, A.-L.; Slimani, F.; Vonesch, J.-L.; Michel, J.-B.; Bäck, M.; Norel, X.; Fabre, J.-E. Neutrophils recruited by leukotriene B4 induce features of plaque destabilization during endotoxaemia. Cardiovasc. Res. 2018, 114, 1656–1666. [Google Scholar] [CrossRef] [PubMed]
- Fracassi, F.; Niccoli, G.; Cosentino, N.; Eligini, S.; Fiorelli, S.; Fabbiocchi, F.; Vetrugno, V.; Refaat, H.; Montone, R.A.; Marenzi, G.; et al. Human monocyte-derived macrophages: Pathogenetic role in plaque rupture associated to systemic inflammation. Int. J. Cardiol. 2021, 325, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Profumo, E.; Buttari, B.; Tosti, M.E.; Tagliani, A.; Capoano, R.; D’Amati, G.; Businaro, R.; Salvati, B.; Riganò, R. Plaque-infiltrating T lymphocytes in patients with carotid atherosclerosis: An insight into the cellular mechanisms associated to plaque destabilization. J. Cardiovasc. Surg. 2012, 54, 349–357. [Google Scholar]
- Komissarov, A.; Potashnikova, D.; Freeman, M.L.; Gontarenko, V.; Maytesyan, D.; Lederman, M.M.; Vasilieva, E.; Margolis, L. Driving T cells to human atherosclerotic plaques: CCL3/CCR5 and CX3CL1/CX3CR1 migration axes. Eur. J. Immunol. 2021, 51, 1857–1859. [Google Scholar] [CrossRef] [PubMed]
- Roig, C.S.; Daemen, M.; Lutgens, E.; Soehnlein, O.; Hartwig, H. Neutrophils in atherosclerosis. Hämostaseologie 2015, 35, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Liu, G.; Pan, Y.; Li, Y. Development and validation of immune inflammation–based index for predicting the clinical outcome in patients with nasopharyngeal carcinoma. J. Cell. Mol. Med. 2020, 24, 8326–8349. [Google Scholar] [CrossRef]
- Takenaka, Y.; Oya, R.; Kitamiura, T.; Ashida, N.; Shimizu, K.; Takemura, K.; Yamamoto, Y.; Uno, A. Prognostic role of neutrophil-to-lymphocyte ratio in head and neck cancer: A meta-analysis. Head Neck 2018, 40, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Diao, J.; Qi, C.; Jin, J.; Li, L.; Gao, X.; Gong, L.; Wu, W. Predictive value of neutrophil to lymphocyte ratio in patients with acute ST segment elevation myocardial infarction after percutaneous coronary intervention: A meta-analysis. BMC Cardiovasc. Disord. 2018, 18, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Lowry, S.F. The Evolution of an Inflammatory Response. Surg. Infect. 2009, 10, 419–425. [Google Scholar] [CrossRef]
- Jakab, L. A szervezeti önvédelem módja: A gyulladás The way of self-defence of the organism: Inflammation. Orv. Hetil. 2013, 154, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
Survivors No. = 487 (90%) | Non-Survivors No. = 51 (10%) | p | |
---|---|---|---|
Demographical data | |||
Sex (M/F) | 371 (77%)/116 (23%) | 42 (82%)/9 (18%) | 0.589 |
Age (years) | 64 (60–71) | 67 (62–72) | 0.161 |
Co-morbidities | |||
Arterial hypertension (n (%)) | 379 ((71%) | 40 (78%) | 0.109 |
Diabetes mellitus (n (%)) | 175 (33%) | 16 (31%) | 0.676 |
Hypercholesterolemia (n (%)) | 298 (55%) | 29 (57%) | 0.173 |
COPD (n (%)) | 47 (9%) | 12 (24%) | <0.001 * |
PAD (n (%)) | 80 (15%) | 16 (31%) | <0.001 * |
Kidney failure (n (%)) | 29 (6%) | 3 (6%) | 0.768 |
Laboratory tests: | |||
WBC × 109/L (median (Q1–Q3)) | 7.8 (6.4–9.3) | 7.5 (6.4–8.9) | 0.388 |
Lymphocytes × 109/L (median (Q1–Q3)) | 1.8 (1.4–2.2) | 1.7 (1.3–2.0) | 0.092 |
Neutrophils × 109/L (median (Q1–Q3)) | 5 (4–6.3) | 5.1 (4.2–6.1) | 0.886 |
NLR (median (Q1–Q3)) | 2.8 (2–3.7) | 2.8 (2.1–4.0) | 0.235 |
Hb × 109/L (median (Q1–Q3)) | 8.7 (8.2–9.2) | 8.6 (7.9–9.3) | 0.658 |
Platelets × 103/μL (median (Q1–Q3)) | 225 (190–267) | 230 (202–261) | 0.456 |
Monocytes × 109/L (median (Q1–Q3)) | 0.5 (0.4–0.6) | 0.5 (0.3–0.6) | 0.877 |
MLR (median (Q1–Q3)) | 0.3 (0.2–0.4) | 0.3 (0.2–0.4) | 0.113 |
MCHC (mmol/L) (median (Q1–Q3)) | 21.3 (20.8–21.7) | 21 (20.6–21.1) | 0.037 |
PLR (median (Q1–Q3)) | 125 (98–163) | 140 (114–167) | 0.027 * |
Troponin I (ng/mL) (median (Q1–Q3)) | 0.01 (0.01–0.02) | 0.02 (0.01–0.03) | 0.13 |
Creatinine (mg/dL) (median (Q1–Q3)) | 85 (72–102) | 99 (67–132) | 0.044 * |
SIRI (median (Q1–Q3) | 1.3 (0.8–1.9) | 1.3 (0.9–2.1) | 0.261 |
SII (median (Q1–Q3)) | 618 (424–903) | 668 (445–982) | 0.174 |
AISI (median (Q1–Q3)) | 273 (172–440) | 308 (185–489) | 0.199 |
Survivors No. = 487 | Non-Survivors No. = 51 | p | |
---|---|---|---|
Neutrophils × 109/L (median (Q1–Q3)) | 4.9 (3.7–6.4) | 5.7 (4.7–7.4) | 0.003 |
NLR (median (Q1–Q3)) | 2.5 (1.8–3.4) | 3.4 (2.3–5.6) | <0.001 |
Platelets × 103/ μL (median (Q1–Q3)) | 274 (227–338) | 321 (243–409) | 0.009 |
PLR (median (Q1–Q3)) | 147 (227–338) | 171 (140–237) | <0.001 |
SIRI (median (Q1–Q3)) | 4.1 (2.6–6.2) | 5.5 (3.6–7.5) | 0.012 |
SII (median (Q1–Q3)) | 699 (483–1053) | 1074 (565–1590) | <0.001 |
AISI (median (Q1–Q3)) | 607 (370–1019) | 989 (599–1604) | <0.001 |
Parameter | HR | 95% CI | p-Value |
---|---|---|---|
Demographical and clinical: | |||
COPD | 2.51 | 1.29–4.88 | 0.007 |
Stroke | 4.8 | 2.53–9.10 | <0.001 |
PAD | 2.96 | 1.62–5.39 | <0.001 |
Preoperative parameters: | |||
PLR | 1 | 1.00–1.01 | 0.032 |
Creatinine | 2.59 | 1.04–6.51 | 0.042 |
Postoperative parameters: | |||
Neutrophils | 1.12 | 1.07–1.17 | <0.001 |
Neutrophils > 4.3 × 109/L | 3.68 | 1.56–8.68 | 0.003 |
NLR | 1.16 | 1.10–1.22 | <0.001 |
NLR > 3.5 | 2.74 | 1.54–4.88 | 0.001 |
Platelets | 1.05 | 1.00–1.01 | 0.002 |
PLR | 1.01 | 1.00–1.01 | 0.001 |
SIRI > 5.4 | 2.05 | 1.10–3.83 | 0.025 |
SII | 1 | 1.00–1.00 | <0.001 |
SII > 953 | 3.26 | 1.81–5.88 | <0.001 |
AISI | 1 | 1.00–1.00 | <0.001 |
AISI > 663 | 2.82 | 1.48–5.39 | 0.002 |
MLR | 2.2 | 1.08–4.49 | 0.03 |
Echocardiographic: | |||
LVEF | 0.928 | 0.90–0.95 | <0.001 |
LVEF below 45% | 4.41 | 2.43–8.03 | <0.001 |
Parameter | HR | 95% CI | p-Value |
---|---|---|---|
Demographical and clinical: | |||
COPD | 10.58 | 2.42–46.36 | 0.002 |
Stroke | 19.25 | 5.54–66.94 | <0.001 |
PAD | 3.78 | 1.28–11.15 | 0.016 |
Laboratory parameters: | |||
preoperative PLR | 0.98 | 0.96–0.99 | 0.001 |
postoperative Hb | 3.27 | 1.09–2.79 | 0.018 |
Neutrophils > 4.3 × 109/L | 13.44 | 1.05–3.68 | 0.037 |
postoperative SIRI > 5.4 | 0.29 | 0.09–0.92 | 0.036 |
postoperative NLR > 3.5 | 2.21 | 1.48–3.32 | <0.001 |
postoperative creatinine | 1.02 | 1.01–10.4 | 0.003 |
Variable | AUC | SE | 95% CI | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|
1. Neutrophils > 4.3 + preoperative factors | 0.787 | 0.0355 | 0.748 to 0.822 | 78.72 | 65.49 |
2. NLR > 3.5 + preoperative factors | 0.767 | 0.0388 | 0.728 to 0.804 | 61.7 | 81.86 |
3. SIRI > 5.4 + preoperative factors | 0.783 | 0.0396 | 0.739 to 0.823 | 75.61 | 67.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urbanowicz, T.; Michalak, M.; Olasińska-Wiśniewska, A.; Rodzki, M.; Witkowska, A.; Gąsecka, A.; Buczkowski, P.; Perek, B.; Jemielity, M. Neutrophil Counts, Neutrophil-to-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery. Cells 2022, 11, 1124. https://doi.org/10.3390/cells11071124
Urbanowicz T, Michalak M, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Gąsecka A, Buczkowski P, Perek B, Jemielity M. Neutrophil Counts, Neutrophil-to-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery. Cells. 2022; 11(7):1124. https://doi.org/10.3390/cells11071124
Chicago/Turabian StyleUrbanowicz, Tomasz, Michał Michalak, Anna Olasińska-Wiśniewska, Michał Rodzki, Anna Witkowska, Aleksandra Gąsecka, Piotr Buczkowski, Bartłomiej Perek, and Marek Jemielity. 2022. "Neutrophil Counts, Neutrophil-to-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery" Cells 11, no. 7: 1124. https://doi.org/10.3390/cells11071124
APA StyleUrbanowicz, T., Michalak, M., Olasińska-Wiśniewska, A., Rodzki, M., Witkowska, A., Gąsecka, A., Buczkowski, P., Perek, B., & Jemielity, M. (2022). Neutrophil Counts, Neutrophil-to-Lymphocyte Ratio, and Systemic Inflammatory Response Index (SIRI) Predict Mortality after Off-Pump Coronary Artery Bypass Surgery. Cells, 11(7), 1124. https://doi.org/10.3390/cells11071124