Cyclic-AMP Increases Nuclear Actin Monomer Which Promotes Proteasomal Degradation of RelA/p65 Leading to Anti-Inflammatory Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Smooth Muscle Cell Culture
2.3. Plasmids, Adenoviral Vectors and siRNA
2.4. Ubiquitin Affinity Assay
2.5. Quantitative RT-PCR and Western Blotting
2.6. Western Blotting
2.7. Reporter Gene Assays and Transient Transfection
2.8. Immunocytochemistry
2.9. Cycloheximide Chase Assay
2.10. Statistical Analysis
3. Results
3.1. Nuclear Actin Repressed Genes Are Associated with Inflammatory Gene Ontology Terms and Display Enrichment of NF-κB Binding Elements in Their Promoter Regions
3.2. Elevated cAMP and Nuclear Actin Monomer Inhibit Serum Stimulated mRNA Levels of NF-κB Target Genes
3.3. Elevated cAMP and Nuclear Actin Monomer Repress TNFα-Stimulated Expression of NF-κB-Target Genes
3.4. Elevated cAMP and Nuclear Actin Monomer Inhibit TNFα Induced NF-κB Activity Independently of Nuclear Translocation of RelA/p65
3.5. Elevated cAMP-Mediated Increased Nuclear Actin Monomer Reduced RelA/p65 Levels
3.6. Cyclic-AMP and Nuclear Actin Monomer Promote Proteasomal Degradation of RelA/p65 Protein
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation 2005, 111, 3481–3488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anzai, T. Inflammatory Mechanisms of Cardiovascular Remodeling. Circ. J. 2018, 82, 629–635. [Google Scholar] [CrossRef] [Green Version]
- De Vries, M.R.; Quax, P.H.A. Inflammation in Vein Graft Disease. Front. Cardiovasc. Med. 2018, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Welt, F.G.; Rogers, C. Inflammation and Restenosis in the Stent Era. Arter. Thromb. Vasc. Biol. 2002, 22, 1769–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, M.; Chase, A.J.; Baker, A.H.; Newby, A.C. Inhibition of transcription factor NF-kappa B reduces matrix metalloproteinase-1,-3 and-9 production by vascular smooth muscle cells. Cardiovasc. Res. 2001, 50, 556–565. [Google Scholar] [CrossRef]
- Bond, M.; Fabunmi, R.P.; Baker, A.H.; Newby, A.C. Synergistic upregulation of metalloproteinase-9 by growth factors and inflammatory cytokines: An absolute requirement for transcription factor NF-kappa B. FEBS Lett. 1998, 435, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Ackers-Johnson, M.; Talasila, A.; Sage, A.P.; Long, X.; Bot, I.; Morrell, N.W.; Bennett, M.; Miano, J.M.; Sinha, S. Myocardin Regulates Vascular Smooth Muscle Cell Inflammatory Activation and Disease. Arter. Thromb. Vasc. Biol. 2015, 35, 817–828. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Park, S. Role of vascular smooth muscle cell in the inflammation of atherosclerosis. BMB Rep. 2014, 47, 1–7. [Google Scholar] [CrossRef]
- Alexander, M.R.; Murgai, M.; Moehle, C.W.; Owens, G.K. Interleukin-1β modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-κB-dependent mechanisms. Physiol. Genom. 2012, 44, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Orr, A.; Hastings, N.E.; Blackman, B.R.; Wamhoff, B.R. Complex Regulation and Function of the Inflammatory Smooth Muscle Cell Phenotype in Atherosclerosis. J. Vasc. Res. 2010, 47, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Gomez, D.; Owens, G.K. Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res. 2012, 95, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Campbell, G.R.; Chamley-Campbell, J.H. Smooth muscle phenotypic modulation: Role in atherogenesis. Med. Hypotheses 1981, 7, 729–735. [Google Scholar] [CrossRef]
- Hastings, N.E.; Feaver, R.E.; Lee, M.Y.; Wamhoff, B.R.; Blackman, B.R. Human IL-8 Regulates Smooth Muscle Cell VCAM-1 Expression in Response to Endothelial Cells Exposed to Atheroprone Flow. Arter. Thromb. Vasc. Biol. 2009, 29, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Landry, D.B.; Couper, L.L.; Bryant, S.R.; Lindner, V. Activation of the NF-kappa B and I kappa B system in smooth muscle cells after rat arterial injury. Induction of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Am. J. Pathol. 1997, 151, 1085–1095. [Google Scholar]
- Choi, B.; Choi, M.; Park, C.; Lee, E.K.; Kang, D.H.; Lee, D.J.; Yeom, J.Y.; Jung, Y.; Kim, J.; Lee, S.; et al. Cytosolic Hsp60 orchestrates the survival and inflammatory responses of vascular smooth muscle cells in injured aortic vessels. Cardiovasc. Res. 2015, 106, 498–508. [Google Scholar] [CrossRef]
- Mallavia, B.; Recio, C.; Oguiza, A.; Ortiz-Muñoz, G.; Lazaro, I.; Lopez-Parra, V.; Lopez-Franco, O.; Schindler, S.; Depping, R.; Egido, J.; et al. Peptide Inhibitor of NF-κB Translocation Ameliorates Experimental Atherosclerosis. Am. J. Pathol. 2013, 182, 1910–1921. [Google Scholar] [CrossRef]
- Feldman, L.J.; Mazighi, M.; Scheuble, A.; Deux, J.-F.; De Benedetti, E.; Badier-Commander, C.; Brambilla, E.; Henin, M.; Steg, P.G.; Jacob, M.-P. Differential expression of matrix metalloproteinases after stent implantation and balloon angioplasty in the hypercholesterolemic rabbit. Circulation 2001, 103, 3117–3122. [Google Scholar] [CrossRef]
- Zhang, Q.; Lenardo, M.J.; Baltimore, D. 30 Years of NF-κB: A Blossoming of Relevance to Human Pathobiology. Cell 2017, 168, 37–57. [Google Scholar] [CrossRef] [Green Version]
- Baeuerle, P.A.; Baltimore, D. IkB: A specific Inhibitor of the NF-kB transcription factor. Science 1988, 242, 540–545. [Google Scholar] [CrossRef]
- Yurdagul, A.; Sulzmaier, F.J.; Chen, X.L.; Pattillo, C.B.; Schlaepfer, D.D.; Orr, A.W. Oxidized LDL induces FAK-dependent RSK signaling to drive NF-κB activation and VCAM-1 expression. J. Cell Sci. 2016, 129, 1580–1591. [Google Scholar] [CrossRef] [Green Version]
- Valenty, L.M.; Longo, C.M.; Horzempa, C.; Ambesi, A.; McKeown-Longo, P.J. TLR4 Ligands Selectively Synergize to Induce Expression of IL-8. Adv. Wound Care 2017, 6, 309–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qwarnstrom, E.E.; Ostberg, C.O.; Turk, G.L.; Richardson, C.A.; Bomsztyk, K. Fibronectin attachment activates the NF-kappa-B p50/p65 hetterodimer in fibroblasts and smooth-muscle cells. Int. J. Biol. Chem. 1994, 269, 30765–30768. [Google Scholar] [CrossRef]
- Gerlo, S.; Kooijman, R.; Beck, I.M.; Kolmus, K.; Spooren, A.; Haegeman, G. Cyclic AMP: A selective modulator of NF-κB action. Cell. Mol. Life Sci. 2011, 68, 3823–3841. [Google Scholar] [CrossRef]
- Ollivier, V.; Parry, G.C.N.; Cobb, R.R.; de Prost, D.; Mackman, N. Elevated Cyclic AMP Inhibits NF-κB-mediated Transcription in Human Monocytic Cells and Endothelial Cells. J. Biol. Chem. 1996, 271, 20828–20835. [Google Scholar] [CrossRef] [Green Version]
- Aoki, C.; Hattori, Y.; Tomizawa, A.; Jojima, T.; Kasai, K. Anti-inflammatory role of cilostazol in vascular smooth muscle cells in vitro and in vivo. J. Atheroscler. Thromb. 2010, 17, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Aizawa, T.; Wei, H.; Miano, J.M.; Abe, J.-I.; Berk, B.C.; Yan, C. Role of Phosphodiesterase 3 in NO/cGMP-Mediated Antiinflammatory Effects in Vascular Smooth Muscle Cells. Circ. Res. 2003, 93, 406–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eigler, A.; Siegmund, B.; Emmerich, U.; Baumann, K.H.; Hartmann, G.; Endres, S. Anti-inflammatory activities of cAMP-elevating agents: Enhancement of IL-10 synthesis and concurrent suppression of TNF production. J. Leukocyte Biol. 1998, 63, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Grieshammer, T.; Chuvpilo, S.; Kneitz, B.; Lohoff, M.; Schimpl, A.; Franza, B.; Serfling, E. RelA/p65 is a molecular target for the immunosuppressive action of protein kinase A. EMBO J. 1995, 14, 1991–2004. [Google Scholar] [CrossRef]
- Zhong, H.; SuYang, H.; Erdjument-Bromage, H.; Tempst, P.; Ghosh, S. The Transcriptional Activity of NF-κB Is Regulated by the IκB-Associated PKAc Subunit through a Cyclic AMP–Independent Mechanism. Cell 1997, 89, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Bond, M.; Wu, Y.-J.; Sala-Newby, G.B.; Newby, A.C. Rho GTPase, Rac1, regulates Skp2 levels, vascular smooth muscle cell proliferation, and intima formation in vitro and in vivo. Cardiovasc. Res. 2008, 80, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Hewer, R.C.; Sala-Newby, G.B.; Wu, Y.-J.; Newby, A.C.; Bond, M. PKA and Epac synergistically inhibit smooth muscle cell proliferation. J. Mol. Cell. Cardiol. 2011, 50, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.E.; Duggirala, A.; Hindmarch, C.C.; Hewer, R.C.; Cui, M.-Z.; Newby, A.C.; Bond, M. Inhibition of Egr1 expression underlies the anti-mitogenic effects of cAMP in vascular smooth muscle cells. J. Mol. Cell. Cardiol. 2014, 72, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Kimura, T.E.; Duggirala, A.; Smith, M.C.; White, S.; Sala-Newby, G.B.; Newby, A.C.; Bond, M. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP. J. Mol. Cell. Cardiol. 2015, 90, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.C.; Hudson, C.A.; Kimura, T.E.; White, S.J.; Sala-Newby, G.B.; Newby, A.C.; Bond, M. Divergent Regulation of Actin Dynamics and Megakaryoblastic Leukemia-1 and -2 (Mkl1/2) by cAMP in Endothelial and Smooth Muscle Cells. Sci. Rep. 2017, 7, 3681. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.J.; Bond, M.; Shu, K.T.; Tseng, S.W.; Newby, A.C.; Yeh, H.I. S-phase kinase-associated protein-2 regulates vascular smooth muscle cell migration via p21Cip1-Cdc42/Rac1, but not p27Kip1-RhoA signalling. Eur. Heart J. 2011, 32, 1005. [Google Scholar]
- Vartiainen, M.K.; Guettler, S.; Larijani, B.; Treisman, R. Nuclear Actin Regulates Dynamic Subcellular Localization and Activity of the SRF Cofactor MAL. Science 2007, 316, 1749–1752. [Google Scholar] [CrossRef] [Green Version]
- McNeill, M.C.; Wray, J.; Sala-Newby, G.B.; Hindmarch, C.C.; Smith, S.A.; Ebrahimighaei, R.; Newby, A.C.; Bond, M. Nuclear actin regulates cell proliferation and migration via inhibition of SRF and TEAD. Biochim. Biophys. Acta 2020, 1867, 118691. [Google Scholar] [CrossRef]
- Uglow, E.B.; Slater, S.; Sala-Newby, G.B.; Aguilera-Garcia, C.M.; Angelini, G.D.; Newby, A.C.; George, S.J. Dismantling of Cadherin-Mediated Cell-Cell Contacts Modulates Smooth Muscle Cell Proliferation. Circ. Res. 2003, 92, 1314–1321. [Google Scholar] [CrossRef] [Green Version]
- Baarlink, C.; Wang, H.; Grosse, R. Nuclear Actin Network Assembly by Formins Regulates the SRF Coactivator MAL. Science 2013, 340, 864–867. [Google Scholar] [CrossRef]
- Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 2002, 29, 23–39. [Google Scholar] [CrossRef]
- Dopie, J.; Skarp, K.-P.; Rajakylä, E.K.; Tanhuanpää, K.; Vartiainen, M.K. Active maintenance of nuclear actin by importin 9 supports transcription. Proc. Natl. Acad. Sci. USA 2012, 109, E544–E552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stüven, T.; Hartmann, E.; Görlich, D. Exportin 6: A novel nuclear export receptor that is specific for profilin·actin complexes. EMBO J. 2003, 22, 5928–5940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Chen, Z.J. Regulation of NF-κB by ubiquitination. Curr. Opin. Immunol. 2013, 25, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.; Mitxitorena, I.; Carmody, R.J. The Ubiquitination of NF-κB Subunits in the Control of Transcription. Cells 2016, 5, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, E.Y.; Hrdlickova, R.; Nehyba, J.; Longo, D.L.; Bose, H.R.; Li, C.C.H. Degradation of proto-oncoprotein c-Rel by the ubiquitin-proteasome pathway. Int. J. Biol. Chem. 1999, 274, 14514. [Google Scholar] [CrossRef]
- Li, H.; Wittwer, T.; Weber, A.; Schneider, H.; Moreno, R.; Maine, G.N.; Kracht, M.; Schmitz, M.L.; Burstein, E. Regulation of NF-κB activity by competition between RelA acetylation and ubiquitination. Oncogene 2011, 31, 611–623. [Google Scholar] [CrossRef] [Green Version]
- Saccani, S.; Marazzi, I.; Beg, A.A.; Natoli, G. Degradation of Promoter-bound p65/RelA Is Essential for the Prompt Termination of the Nuclear Factor κB Response. J. Exp. Med. 2004, 200, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.R.; Willoughby, D.A. The role of cAMP regulation in controlling inflammation. Clin. Exp. Immunol. 1995, 101, 387–389. [Google Scholar] [CrossRef]
- Bourne, H.R.; Weinstein, Y.; Melmon, K.L.; Lichtenstein, L.M.; Henney, C.S.; Shearer, G.M. Modulation of Inflammation and Immunity by Cyclic AMP. Science 1974, 184, 19–28. [Google Scholar] [CrossRef]
- Minguet, S.; Huber, M.; Rosenkranz, L.; Schamel, W.W.A.; Reth, M.; Brummer, T. Adenosine and cAMP are potent inhibitors of the NF-?B pathway downstream of immunoreceptors. Eur. J. Immunol. 2004, 35, 31–41. [Google Scholar] [CrossRef]
- Parnell, E.; Smith, B.O.; Palmer, T.M.; Terrin, A.; Zaccolo, M.; Yarwood, S.J. Regulation of the inflammatory response of vascular endothelial cells by EPAC1. Br. J. Pharmacol. 2012, 166, 434–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiejak, J.; Dunlop, J.; Yarwood, S.J. The role of c-Jun in controlling the EPAC1-dependent induction of the SOCS3 gene in HUVECs. FEBS Lett. 2014, 588, 1556–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, C.; Korade, Z.; Carter, B.D. Protein Kinase A-Induced Phosphorylation of the p65 Subunit of Nuclear Factor- B Promotes Schwann Cell Differentiation into a Myelinating Phenotype. J. Neurosci. 2008, 28, 3738–3746. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Voll, R.E.; Ghosh, S. Phosphorylation of NF-κB p65 by PKA Stimulates Transcriptional Activity by Promoting a Novel Bivalent Interaction with the Coactivator CBP/p300. Mol. Cell 1998, 1, 661–671. [Google Scholar] [CrossRef]
- Hong, G.; Zhang, B.; Harbrecht, B.G. Cyclic AMP Inhibits IL-1β Plus IFNγ-Induced NF-κB Translocation in Hepatocytes by a PKA Independent Mechanism. J. Surg. Res. 2010, 159, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Rothenberg, E. Interleukin 2 transcription factors as molecular targets of cAMP inhibition: Delayed inhibition kinetics and combinatorial transcription roles. J. Exp. Med. 1994, 179, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Wall, E.A.; Zavzavadjian, J.R.; Chang, M.S.; Randhawa, B.; Zhu, X.; Hsueh, R.C.; Liu, J.; Driver, A.; Bao, X.R.; Sternweis, P.C.; et al. Suppression of LPS-Induced TNF-α Production in Macrophages by cAMP Is Mediated by PKA-AKAP95-p105. Sci. Signal. 2009, 2, ra28. [Google Scholar] [CrossRef] [Green Version]
- Wiskott, A. Familiarer, angeborener Morbus Welhofii? Monatsschr. Kinderheilkd 1937, 68, 212–216. [Google Scholar]
- Ebrahimighaei, R.; McNeill, M.C.; Smith, S.A.; Wray, J.P.; Ford, K.L.; Newby, A.C.; Bond, M. Elevated cyclic-AMP represses expression of exchange protein activated by cAMP (EPAC1) by inhibiting YAP-TEAD activity and HDAC-mediated histone deacetylation. Biochim. Biophys. Acta 2019, 1866, 1634–1649. [Google Scholar] [CrossRef]
- Paco, S.; Hummel, M.; Plá, V.; Sumoy, L.; Aguado, F. Cyclic AMP signaling restricts activation and promotes maturation and antioxidant defenses in astrocytes. BMC Genom. 2016, 17, 304. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, T.; Kawamura, H.; Tanaka, Y. Extraction of a protein resembling actin from the cell nucleus of the calf thymus. J. Biochem. 1963, 54, 298–300. [Google Scholar] [CrossRef] [PubMed]
- Kelpsch, D.J.; Tootle, T.L. Nuclear Actin: From Discovery to Function. Anat. Rec. 2018, 301, 1999–2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papa, R.; Penco, F.; Volpi, S.; Gattorno, M. Actin Remodeling Defects Leading to Autoinflammation and Immune Dysregulation. Front. Immunol. 2021, 11, 3335. [Google Scholar] [CrossRef] [PubMed]
- Moulding, D.; Record, J.; Malinova, D.; Thrasher, A.J. Actin cytoskeletal defects in immunodeficiency. Immunol. Rev. 2013, 256, 282–299. [Google Scholar] [CrossRef] [Green Version]
- Aldrich, R.A.; Steineberg, A.G.; Campbell, D.C. Pedigree demonstrating a sex-linked recessive condition characterized by draining ears, eczematoid dermatitis and bloody diarrhea. Pediatrics 1954, 13, 133–139. [Google Scholar] [CrossRef]
- Thrasher, A.J. Wasp in immune-system organization and function. Nat. Rev. Immunol. 2002, 2, 635–646. [Google Scholar] [CrossRef]
- Hochrainer, K.; Racchumi, G.; Zhang, S.; Iadecola, C.; Anrather, J. Monoubiquitination of nuclear RelA negatively regulates NF-κB activity independent of proteasomal degradation. Cell. Mol. Life Sci. 2012, 69, 2057–2073. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hawkins, J.W.; McNeill, M.C.; Ebrahimighaei, R.; Mellor, H.H.; Newby, A.C.; Bond, M. Cyclic-AMP Increases Nuclear Actin Monomer Which Promotes Proteasomal Degradation of RelA/p65 Leading to Anti-Inflammatory Effects. Cells 2022, 11, 1414. https://doi.org/10.3390/cells11091414
Hawkins JW, McNeill MC, Ebrahimighaei R, Mellor HH, Newby AC, Bond M. Cyclic-AMP Increases Nuclear Actin Monomer Which Promotes Proteasomal Degradation of RelA/p65 Leading to Anti-Inflammatory Effects. Cells. 2022; 11(9):1414. https://doi.org/10.3390/cells11091414
Chicago/Turabian StyleHawkins, Joseph W., Madeleine C. McNeill, Reza Ebrahimighaei, Harry H. Mellor, Andrew C. Newby, and Mark Bond. 2022. "Cyclic-AMP Increases Nuclear Actin Monomer Which Promotes Proteasomal Degradation of RelA/p65 Leading to Anti-Inflammatory Effects" Cells 11, no. 9: 1414. https://doi.org/10.3390/cells11091414
APA StyleHawkins, J. W., McNeill, M. C., Ebrahimighaei, R., Mellor, H. H., Newby, A. C., & Bond, M. (2022). Cyclic-AMP Increases Nuclear Actin Monomer Which Promotes Proteasomal Degradation of RelA/p65 Leading to Anti-Inflammatory Effects. Cells, 11(9), 1414. https://doi.org/10.3390/cells11091414