Expression of Caspase-3 in Circulating Innate Lymphoid Cells Subtypes Is Altered by Treatment with Metformin and Fluvastatin in High-Fat Diet Fed C57BL/6 Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Animal Handling
2.2. Study Design and Measurement of Basic Metabolic Parameters
2.3. Measurement of Haematological Indices and Lipid Profiles
2.4. Measurement of Caspase-3 Expression on ILC Subtypes
2.5. Statistical Analysis
3. Results
3.1. Impact of HFD-Feeding on Basic Metabolic Parameters
3.2. Impact of Treatment with Metformin and Fluvastatin on Basic Metabolic Parameters
3.3. Impact of HFD and Treatment with Metformin and Fluvastatin on Lipid Profiles
3.4. Impact of HFD and Treatment with Metformin and Fluvastatin on Basic Haematological Indices
3.5. Impact of HFD and Treatment with Metformin and Fluvastatin on the Expression of Caspase-3 on ILCs
3.6. Impact of HFD and Treatment with Metformin and Fluvastatin on the Expression of Caspase-3 on ILCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eckel, R.H.; Wassef, M.; Chait, A.; Sobel, B.; Barrett, E.; King, G.; Lopes-Virella, M.; Reusch, J.; Ruderman, N.; Steiner, G.; et al. Prevention Conference Vi: Diabetes and Cardiovascular Disease: Writing Group Ii: Pathogenesis of Atherosclerosis in Diabetes. Circulation 2002, 105, e138–e143. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). The Top Ten Leading Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 10 February 2022).
- Kenny, H.C.; Abel, E.D. Heart failure in type 2 diabetes mellitus. Circ. Res. 2019, 124, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Lackey, D.E.; Olefsky, J.M. Regulation of metabolism by the innate immune system. Nat. Rev. Endocrinol. 2016, 12, 15–28. [Google Scholar] [CrossRef]
- Nyambuya, T.M.; Dludla, P.V.; Mxinwa, V.; Nkambule, B.B. T-cell activation and cardiovascular risk in adults with type 2 diabetes mellitus: A systematic review and meta-analysis. Clin. Immunol. 2020, 210, 108313. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, T.E.; Rapp, M.; Fan, X.; Weizman, O.E.; Bhardwaj, P.; Adams, N.M.; Walzer, T.; Dannenberg, A.J.; Sun, J.C. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 2016, 45, 428–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wensveen, F.M.; Valentić, S.; Šestan, M.; Turk Wensveen, T.; Polić, B. The “Big Bang” in obese fat: Events initiating obesity-induced adipose tissue inflammation. Eur. J. Immunol. 2015, 45, 2446–2456. [Google Scholar] [CrossRef] [PubMed]
- Maazi, H.; Akbari, O. Type two innate lymphoid cells: The Janus cells in health and disease. Immunol. Rev. 2017, 278, 192–206. [Google Scholar] [CrossRef]
- Chiossone, L.; Dumas, P.Y.; Vienne, M.; Vivier, E. Natural killer cells and other innate lymphoid cells in cancer. Nat. Rev. Immunol. 2018, 18, 671–688. [Google Scholar] [CrossRef]
- Vacca, P.; Munari, E.; Tumino, N.; Moretta, F.; Pietra, G.; Vitale, M.; Del Zotto, G.; Mariotti, F.R.; Mingari, M.C.; Moretta, L. Human natural killer cells and other innate lymphoid cells in cancer: Friends or foes? Immunol. Lett. 2018, 201, 14–19. [Google Scholar] [CrossRef]
- Akesson, C.; Uvebrant, K.; Oderup, C.; Lynch, K.; Harris, R.A.; Lernmark, A.; Agardh, C.D.; Cilio, C.M. Altered natural killer (NK) cell frequency and phenotype in latent autoimmune diabetes in adults (LADA) prior to insulin deficiency. Clin. Exp. Immunol. 2010, 161, 48–56. [Google Scholar] [CrossRef]
- Mxinwa, V.; Dludla, P.V.; Nyambuya, T.M.; Mokgalaboni, K.; Mazibuko-Mbeje, S.E.; Nkambule, B.B. Natural killer cell levels in adults living with type 2 diabetes: A systematic review and meta-analysis of clinical studies. BMC Immunol. 2020, 21, 51. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Hashimoto, Y.; Mori, J.; Yamaguchi, M.; Majima, S.; Senmaru, T.; Ushigome, E.; Nakanishi, N.; Asano, M.; Yamazaki, M.; et al. ILC2s Improve Glucose Metabolism Through the Control of Saturated Fatty Acid Absorption Within Visceral Fat. Front. Immunol. 2021, 12, 669629. [Google Scholar] [CrossRef] [PubMed]
- Kløverpris, H.N.; Kazer, S.W.; Mjösberg, J.; Mabuka, J.M.; Wellmann, A.; Ndhlovu, Z.; Yadon, M.C.; Nhamoyebonde, S.; Muenchhoff, M.; Simoni, Y.; et al. Innate lymphoid cells are depleted irreversibly during acute HIV-1 infection in the absence of viral suppression. Immunity 2016, 44, 391–405. [Google Scholar] [CrossRef] [Green Version]
- Szudy-Szczyrek, A.; Ahern, S.; Kozioł, M.; Majowicz, D.; Szczyrek, M.; Krawczyk, J.; Hus, M. Therapeutic potential of innate lymphoid cells for multiple myeloma therapy. Cancers 2021, 13, 4806. [Google Scholar] [CrossRef] [PubMed]
- Conde de la Rosa, L.; Vrenken, T.E.; Buist-Homan, M.; Faber, K.N.; Moshage, H. Metformin protects primary rat hepatocytes against oxidative stress-induced apoptosis. Pharmacol. Res. Perspect. 2015, 3, e00125. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, P.; Del Guerra, S.; Marselli, L.; Lupi, R.; Masini, M.; Pollera, M.; Bugliani, M.; Boggi, U.; Vistoli, F.; Mosca, F.; et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J. Clin. Endocrinol. Metab. 2004, 89, 5535–5541. [Google Scholar] [CrossRef] [Green Version]
- Van Stee, M.F.; de Graaf, A.A.; Groen, A.K. Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc. Diabetol. 2018, 17, 94. [Google Scholar] [CrossRef] [Green Version]
- Davidson, M.B.; Peters, A.L. An overview of metformin in the treatment of type 2 diabetes mellitus. Am. J. Med. 1997, 102, 99–110. [Google Scholar] [CrossRef]
- Nyambuya, T.M.; Dludla, P.V.; Mxinwa, V.; Mokgalaboni, K.; Ngcobo, S.R.; Tiano, L.; Nkambule, B.B. The impact of metformin and aspirin on T-cell mediated inflammation: A systematic review of in vitro and in vivo findings. Life Sci. 2020, 255, 117854. [Google Scholar] [CrossRef]
- Mokgalaboni, K.; Dludla, P.V.; Mkandla, Z.; Mutize, T.; Nyambuya, T.M.; Mxinwa, V.; Nkambule, B.B. Differential expression of glycoprotein IV on monocyte subsets following high-fat diet feeding and the impact of short-term low-dose aspirin treatment. Metabol. Open 2020, 7, 100047. [Google Scholar] [CrossRef]
- Mxinwa, V.; Dludla, P.V.; Nyambuya, T.M.; Nkambule, B.B. Circulating innate lymphoid cell subtypes and altered cytokine profiles following an atherogenic high-fat diet. Innate Immun. 2021, 27, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Klose, C.S.N.; Artis, D. Innate lymphoid cells control signaling circuits to regulate tissue-specific immunity. Cell Res. 2020, 30, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Nyambuya, T.M.; Dludla, P.V.; Mxinwa, V.; Nkambule, B.B. The pleotropic effects of fluvastatin on complement-mediated T-cell activation in hypercholesterolemia. Biomed. Pharmacother. 2021, 143, 112224. [Google Scholar] [CrossRef] [PubMed]
- Bailey, C.J. Metformin: Historical overview. Diabetologia 2017, 60, 1566–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, J.Z.; Murakami, H.; Yamato, K.; Tanabe, J.; Matsui, J.; Tamasawa, N.; Suda, T. Effects of fluvastatin in type 2 diabetic patients with hyperlipidemia: Reduction in cholesterol oxidation products and VCAM-1. J. Atheroscler. Thromb. 2004, 11, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef]
- Nebeck, K.; Gelaye, B.; Lemma, S.; Berhane, Y.; Bekele, T.; Khali, A.; Haddis, Y.; Williams, M.A. Hematological parameters and metabolic syndrome: Findings from an occupational cohort in Ethiopia. Diabetes Metab. Syndr. 2012, 6, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Hua, Y.; Li, X.; Arslan, I.M.; Zhang, W.; Meng, G. Distinct types of cell death and the implication in diabetic cardiomyopathy. Front. Pharmacol. 2020, 11, 42. [Google Scholar] [CrossRef]
- Tomita, T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn. J. Basic. Med. Sci. 2016, 16, 162–179. [Google Scholar] [CrossRef] [Green Version]
- Porter, A.G.; Jänicke, R.U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999, 6, 99–104. [Google Scholar] [CrossRef]
- Liadis, N.; Murakami, K.; Eweida, M.; Elford, A.R.; Sheu, L.; Gaisano, H.Y.; Hakem, R.; Ohashi, P.S.; Woo, M. Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol. Cell Biol. 2005, 25, 3620–3629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salimi, M.; Wang, R.; Yao, X.; Li, X.; Wang, X.; Hu, Y.; Chang, X.; Fan, P.; Dong, T.; Ogg, G. Activated innate lymphoid cell populations accumulate in human tumour tissues. BMC Cancer 2018, 18, 341. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, O.; Attman, P.O.; Knight-Gibson, C.; Mulec, H.; Weiss, L.; Alaupovic, P. Fluvastatin improves lipid abnormalities in patients with moderate to advanced chronic renal insufficiency. Am. J. Kidney Dis. 2002, 39, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Nofer, J.R.; Levkau, B.; Wolinska, I.; Junker, R.; Fobker, M.; von Eckardstein, A.; Seedorf, U.; Assmann, G. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J. Biol. Chem. 2001, 276, 34480–34485. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.; Yan, P.K.; Chen, J.X.; Zhu, B.Y.; Lei, X.Y.; Yin, W.D.; Liao, D.F. High density lipoprotein 3 inhibits oxidized low density lipoprotein-induced apoptosis via promoting cholesterol efflux in RAW264.7 cells. Acta Pharmacol. Sin. 2006, 27, 151–157. [Google Scholar] [CrossRef] [Green Version]
LFD (n = 7) | HFD (n = 7) | MET (n = 7) | FLUV (n = 7) | p-Value | |
---|---|---|---|---|---|
Changes in BW (g) | 25.42 ± 0.48 | 29.71 ± 0.29 aaa | 22.00 ± 0.53 bbb | 21.71 ± 0.47 bbb | 0.001 |
Metabolic profile | |||||
FPG (mmol/L) | 4.40 ± 0.39 | 6.37 ± 0.75 aa | 4.07 ± 1.18 bb | 5.20 ± 01.34 | 0.01 |
AUC (mmol/L×120 min) | 826.9 ± 79.53 | 959.4 ± 75.34 aa | 803.8 ± 68.29 bb | 810.9 ± 85.41 bb | 0.001 |
Insulin (µU/L) | 10.75 ± 2.67 | 10.42 ± 1.12 | 10.06 ± 1.00 | 12.19 ± 5.89 | 0.54 |
Lipid profiles | |||||
TC (µg/µL) | 0.08 ± 0.02 | 0.12 ± 0.02 | 0.03 ± 0.01 bb | 0.03 ± 0.003 bb | 0.001 |
LDL-c (µg/µL) | 0.05 ± 0.01 | 0.12 ± 0.01 aaa | 0.05 ± 0.01 bbb | 0.06 ± 0.02 bbb | 0.001 |
HDL-c (µg/µL) | 0.04 ± 0.01 | 0.06 ± 0.01 | 0.04 ± 0.01 | 0.06 ± 0.01 | 0.0298 |
Haematological parameters | |||||
RBC (106/µL) | 5.63 ± 0.83 | 8.47 ± 0.92 aaa | 7.09 ± 0.86 b | 6.52 ± 0.97 bb | 0.001 |
WCC (103/µL) | 2.06 ± 0.32 | 7.89 ± 0.89 a | 6.43 ± 0.46 b | 5.82 ± 1.38 bb | 0.001 |
Lymphocyte | 82.51 ± 1.74 | 88.57 ± 2.03 a | 84.97 ± 5.4 | 90.41 ± 0.83 aa | 0.01 |
Platelet counts (103/µL) | 516 ± 504.90 | 793.1 ± 207.5 | 1022.0 ± 437.0 | 574.3 ± 369.7 | 0.1086 |
LFD | HFD | MET | FLUV | p-Value | |
---|---|---|---|---|---|
%ILC1 caspase-3 | 21 (6.59) | 47 (11.08) aa | 44 (12.19) aa | 34 (9.17) | 0.01 |
%ILC2 caspase-3 | 6 (4.37) | 18 (5.42) | 21 (12.79) | 29 (11.01) aa | 0.01 |
%ILC3 caspase-3 | 22 (4.37) | 32 (5.02) a | 36 (6.35) aa | 24 (5.22) c | 0.01 |
HFD (n = 7) | MET (n = 7) | FLUV (n = 7) | ||||
---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | |
ILC1 | ||||||
Weight | 0.39 | 0.4667 | −0.36 | 0.4838 | 0.22 | 0.6781 |
Glucose | −0.63 | 0.1824 | 0.38 | 0.4595 | −0.02 | 0.9720 |
HDL-c | −0.56 | 0.2453 | −0.82 | 0.05 | 0.07 | 0.8980 |
LDL | −0.56 | 0.2453 | 0.34 | 0.5074 | 0.71 | 0.139 |
TC | −0.10 | 0.8578 | −0.49 | 0.3239 | −0.48 | 0.372 |
ILC2 | ||||||
Weight | 0.63 | 0.1764 | −0.52 | 0.2873 | 0.56 | 0.2490 |
Glucose | −0.53 | 0.2804 | 0.71 | 0.1150 | 0.44 | 0.3863 |
HDL-c | −0.42 | 0.4106 | 0.08 | 0.8774 | 0.62 | 0.1873 |
LDL | 0.66 | 0.1508 | 0.62 | 0.1881 | 0.52 | 0.2925 |
TC | −0.15 | 0.8167 | −0.37 | 0.4747 | 0.15 | 0.7758 |
ILC3 | ||||||
Weight | 0.75 | 0.0886 | −0.77 | 0.0707 | −0.20 | 0.7064 |
Glucose | −0.11 | 0.8307 | −0.09 | 0.8644 | −0.70 | 0.1207 |
HDL-c | −0.20 | 0.7047 | 0.70 | 0.1183 | 0.14 | 0.7915 |
LDL | 0.27 | 0.6107 | 0.53 | 0.2847 | 0.13 | 0.8032 |
TC | 0.20 | 0.7004 | −0.39 | 0.4455 | −0.97 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mxinwa, V.; Nkambule, B.B.; Nyambuya, T.M.; Dludla, P.V. Expression of Caspase-3 in Circulating Innate Lymphoid Cells Subtypes Is Altered by Treatment with Metformin and Fluvastatin in High-Fat Diet Fed C57BL/6 Mice. Cells 2022, 11, 1430. https://doi.org/10.3390/cells11091430
Mxinwa V, Nkambule BB, Nyambuya TM, Dludla PV. Expression of Caspase-3 in Circulating Innate Lymphoid Cells Subtypes Is Altered by Treatment with Metformin and Fluvastatin in High-Fat Diet Fed C57BL/6 Mice. Cells. 2022; 11(9):1430. https://doi.org/10.3390/cells11091430
Chicago/Turabian StyleMxinwa, Vuyolwethu, Bongani B. Nkambule, Tawanda M. Nyambuya, and Phiwayinkosi V. Dludla. 2022. "Expression of Caspase-3 in Circulating Innate Lymphoid Cells Subtypes Is Altered by Treatment with Metformin and Fluvastatin in High-Fat Diet Fed C57BL/6 Mice" Cells 11, no. 9: 1430. https://doi.org/10.3390/cells11091430
APA StyleMxinwa, V., Nkambule, B. B., Nyambuya, T. M., & Dludla, P. V. (2022). Expression of Caspase-3 in Circulating Innate Lymphoid Cells Subtypes Is Altered by Treatment with Metformin and Fluvastatin in High-Fat Diet Fed C57BL/6 Mice. Cells, 11(9), 1430. https://doi.org/10.3390/cells11091430