Physiological Action of Progesterone in the Nonhuman Primate Oviduct
Abstract
:1. Introduction
2. NHP Oviductal Anatomy
3. The Primate Menstrual Cycle
4. Cytologic Changes in the Oviduct during the Menstrual Cycle
5. Progesterone Receptors
6. Cyclic Regulation of Steroid Responsiveness
7. Progesterone Receptor Modulators
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gray, C.A.; Bartol, F.F.; Tarleton, B.J.; Wiley, A.A.; Johnson, G.A.; Bazer, F.W.; Spencer, T.E. Developmental biology of uterine glands. Biol. Reprod. 2001, 65, 1311–1323. [Google Scholar] [PubMed]
- Saltzman, W.; Tardif, S.D.; Rutherford, J.N. Chapter 13—Hormones and Reproductive Cycles in Primates. In Hormones and Reproduction of Vertebrates; Norris, D.O., Lopez, K.H., Eds.; Academic Press: London, UK, 2011; pp. 291–327. [Google Scholar]
- Cline, J.M.; Soderqvist, G.; Register, T.C.; Williams, J.K.; Adams, M.R.; von Schoultz, B. Assessment of hormonally active agents in the reproductive tract of female nonhuman primates. Toxicol. Pathol. 2001, 29, 84–90. [Google Scholar] [PubMed]
- Brenner, R.M.; Slayden, O.D. Cyclic Changes in the Primate Oviduct and Endometrium, The Physiology of Reproduction, 2nd ed.; Knobil, E., Neill, J.D., Eds.; Raven Press Ltd.: New York, NY, USA, 1994; Volume 2, pp. 541–569. [Google Scholar]
- Hewitt, S.C.; Winuthayanon, W.; Korach, K.S. What’s new in estrogen receptor action in the female reproductive tract. J. Mol. Endocrinol. 2016, 56, R55–R71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, P. Characteristics of membrane progestin receptor alpha (mPRalpha) and progesterone membrane receptor component 1 (PGMRC1) and their roles in mediating rapid progestin actions. Front. Neuroendocrinol. 2008, 29, 292–312. [Google Scholar] [PubMed] [Green Version]
- Barton, B.E.; Herrera, G.G.; Anamthathmakula, P.; Rock, J.K.; Willie, A.; Harris, E.A.; Takemaru, K.I.; Winuthayanon, W. Roles of steroid hormones in oviductal function. Reproduction 2020, 159, R125–R137. [Google Scholar] [CrossRef]
- Binelli, M.; Gonella-Diaza, A.M.; Mesquita, F.S.; Membrive, C.M.B. Sex Steroid-Mediated Control of Oviductal Function in Cattle. Biology 2018, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Akison, L.K.; Boden, M.J.; Kennaway, D.J.; Russell, D.L.; Robker, R.L. Progesterone receptor-dependent regulation of genes in the oviducts of female mice. Physiol. Genom. 2014, 46, 583–592. [Google Scholar] [CrossRef] [Green Version]
- Akison, L.K.; Robker, R.L. The critical roles of progesterone receptor (PGR) in ovulation, oocyte developmental competence and oviductal transport in mammalian reproduction. Reprod. Domest. Anim. 2012, 47, 288–296. [Google Scholar] [CrossRef]
- Brenner, R.M.; Slayden, O.D. The Fallopian Tube Cycle. In Reproductive Endocrinology, Surgery, and Technology; Adashi, E.Y., Rock, J.A., Rosenwaks, Z., Eds.; Lippincott-Raven Publishers: Philadelphia, PA, USA, 1995; Volume 1, pp. 325–339. [Google Scholar]
- Slayden, O.D. Cyclic remodeling of the nonhuman primate endometrium: A model for understanding endometrial receptivity. Semin. Reprod. Med. 2014, 32, 385–391. [Google Scholar] [CrossRef]
- Larsen, B.; Hwang, J. Progesterone interactions with the cervix: Translational implications for term and preterm birth. Infect. Dis. Obstet. Gynecol. 2011, 2011, 353297. [Google Scholar] [CrossRef]
- Slayden, O.D.; Keator, C.S. Role of progesterone in nonhuman primate implantation. Semin. Reprod. Med. 2007, 25, 418–430. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, P.; Forde, N.; Spencer, T. Role of progesterone in embryo development in cattle. Reprod. Fertil. Dev. 2016, 28, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lundeen, S.G.; Slayden, O.; Zhu, Y.; Cohen, J.; Berrodin, T.J.; Bretz, J.; Chippari, S.; Wrobel, J.; Zhang, P.; et al. In vitro and in vivo characterization of a novel nonsteroidal, species-specific progesterone receptor modulator, PRA-910. In Ernst Schering Foundation Symposium Proceedings; Springer: Berlin, Germany, 2007; pp. 171–197. [Google Scholar]
- Brenner, R.M.; West, N.B. Hormonal regulation of the reproductive tract in female mammals. Annu. Rev. Physiol. 1975, 37, 273–302. [Google Scholar] [CrossRef] [PubMed]
- Stouffer, R.L.; Woodruff, T.K. Nonhuman Primates: A Vital Model for Basic and Applied Research on Female Reproduction, Prenatal Development, and Women’s Health. ILAR J. 2017, 58, 281–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, K.A.; Bales, K.L.; Capitanio, J.P.; Conley, A.; Czoty, P.W.; t Hart, B.A.; Hopkins, W.D.; Hu, S.L.; Miller, L.A.; Nader, M.A.; et al. Why primate models matter. Am. J. Primatol. 2014, 76, 801–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazur, E.C.; Large, M.J.; DeMayo, F.J. Chapter 24—Human Oviduct and Endometrium: Changes over the Menstrual Cycle. In Knobil and Neill’s Physiology of Reproduction, 4th ed.; Plant, T.M., Zeleznik, A.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 1077–1097. [Google Scholar]
- Coy, P.; Garcia-Vazquez, F.A.; Visconti, P.E.; Aviles, M. Roles of the oviduct in mammalian fertilization. Reproduction 2012, 144, 649–660. [Google Scholar] [CrossRef] [Green Version]
- Brenner, R.M.; Resko, J.A.; West, N.B. Cyclic changes in oviductal morphology and residual cytoplasmic estradiol binding capacity induced by sequential estradiol—progesterone treatment of spayed Rhesus monkeys. Endocrinology 1974, 95, 1094–1104. [Google Scholar] [CrossRef]
- Tollner, T.L.; Vandevoort, C.A.; Yudin, A.I.; Treece, C.A.; Overstreet, J.W.; Cherr, G.N. Release of DEFB126 from macaque sperm and completion of capacitation are triggered by conditions that simulate periovulatory oviductal fluid. Mol. Reprod. Dev. 2009, 76, 431–443. [Google Scholar] [CrossRef]
- Tollner, T.L.; Yudin, A.I.; Treece, C.A.; Overstreet, J.W.; Cherr, G.N. Macaque sperm coating protein DEFB126 facilitates sperm penetration of cervical mucus. Hum. Reprod. 2008, 23, 2523–2534. [Google Scholar] [CrossRef] [Green Version]
- Tollner, T.L.; Yudin, A.I.; Tarantal, A.F.; Treece, C.A.; Overstreet, J.W.; Cherr, G.N. Beta-defensin 126 on the surface of macaque sperm mediates attachment of sperm to oviductal epithelia. Biol. Reprod. 2008, 78, 400–412. [Google Scholar] [CrossRef]
- Rajagopal, M.; Tollner, T.L.; Finkbeiner, W.E.; Cherr, G.N.; Widdicombe, J.H. Differentiated structure and function of primary cultures of monkey oviductal epithelium. In Vitro Cell. Dev. Biol. Anim. 2006, 42, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Suarez, S.S.; Pacey, A.A. Sperm transport in the female reproductive tract. Hum. Reprod. Update 2006, 12, 23–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwathmey, T.M.; Croxatto, H.B.; Ortiz, M.E.; Suarez, S.S. Interactions of human sperm with cervical and oviductal epithelium: Implications for reservoir formation. Biol. Reprod. 2003, 68, 265. [Google Scholar]
- Eytan, O.; Jaffa, A.J.; Elad, D. Peristaltic flow in a tapered channel: Application to embryo transport within the uterine cavity. Med. Eng. Phys. 2001, 23, 473–482. [Google Scholar] [CrossRef]
- Ajayi, A.F.; Akhigbe, R.E. Staging of the estrous cycle and induction of estrus in experimental rodents: An update. Fertil. Res. Pract. 2020, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Fabre-Nys, C.; Gelez, H. Sexual behavior in ewes and other domestic ruminants. Horm. Behav. 2007, 52, 18–25. [Google Scholar] [CrossRef]
- Zerani, M.; Polisca, A.; Boiti, C.; Maranesi, M. Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model. Animals 2021, 11, 296. [Google Scholar] [CrossRef]
- Lacreuse, A.; Chennareddi, L.; Gould, K.G.; Hawkes, K.; Wijayawardana, S.R.; Chen, J.; Easley, K.A.; Herndon, J.G. Menstrual cycles continue into advanced old age in the common chimpanzee (Pan troglodytes). Biol. Reprod. 2008, 79, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Nyachieo, A.; Chai, D.C.; Deprest, J.; Mwenda, J.M.; D’Hooghe, T.M. The baboon as a research model for the study of endometrial biology, uterine receptivity and embryo implantation. Gynecol. Obstet. Investig. 2007, 64, 149–155. [Google Scholar] [CrossRef]
- Brenner, R.M.; Carlisle, K.S.; Hess, D.L.; Sandow, B.A.; West, N.B. Morphology of the oviducts and endometria of cynomolgus macaques during the menstrual cycle. Biol. Reprod. 1983, 29, 1289–1302. [Google Scholar] [CrossRef] [Green Version]
- Carroll, R.L.; Mah, K.; Fanton, J.W.; Maginnis, G.N.; Brenner, R.M.; Slayden, O.D. Assessment of menstruation in the vervet (Cercopithecus aethiops). Am. J. Primatol. 2007, 69, 901–916. [Google Scholar] [CrossRef]
- Bruggemann, S.; Dukelow, W.R. Characteristics of the menstrual cycle in nonhuman primates. III. Times mating in Macaca arctoides. J. Med. Primatol. 1980, 9, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Dukelow, W.R.; Grauwiler, J.; Bruggemann, S. Characteristics of the menstrual cycle in nonhuman primates. I. Similarities and dissimilarities between Macaca fascicularis and Macaca arctoides. J. Med. Primatol. 1979, 8, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Hess, D.L.; Hendrickx, A.G.; Stabenfeldt, G.H. Reproductive and hormonal patterns in the African green monkey (Cercopithecus aethiops). J. Med. Primatol. 1979, 8, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Lanzendorf, S.E.; Zelinski-Wooten, M.B.; Stouffer, R.L.; Wolf, D.P. Maturity at collection and the developmental potential of rhesus monkey oocytes. Biol. Reprod. 1990, 42, 703–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monfort, S.L.; Hess, D.L.; Shideler, S.E.; Samuels, S.J.; Hendrickx, A.G.; Lasley, B.L. Comparison of serum estradiol to urinary estrone conjugates in the rhesus macaque (Macaca mulatta). Biol. Reprod. 1987, 37, 832–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.A.; Stouffer, R.L. Gonadotropin and steroid regulation of matrix metalloproteinases and their endogenous tissue inhibitors in the developed corpus luteum of the rhesus monkey during the menstrual cycle. Biol. Reprod. 2004, 70, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Bethea, C.L.; Mueller, K.; Reddy, A.P.; Kohama, S.G.; Urbanski, H.F. Effects of obesogenic diet and estradiol on dorsal raphe gene expression in old female macaques. PLoS ONE 2017, 12, e0178788. [Google Scholar] [CrossRef] [Green Version]
- Bethea, C.L.; Pau, F.K.; Fox, S.; Hess, D.L.; Berga, S.L.; Cameron, J.L. Sensitivity to stress-induced reproductive dysfunction linked to activity of the serotonin system. Fertil. Steril. 2005, 83, 148–155. [Google Scholar] [CrossRef]
- Bishop, C.V.; Reiter, T.E.; Erikson, D.W.; Hanna, C.B.; Daughtry, B.L.; Chavez, S.L.; Hennebold, J.D.; Stouffer, R.L. Chronically elevated androgen and/or consumption of a Western-style diet impairs oocyte quality and granulosa cell function in the nonhuman primate periovulatory follicle. J. Assist. Reprod. Genet. 2019, 36, 1497–1511. [Google Scholar] [CrossRef]
- Slayden, O.D.; Brenner, R.M. A critical period of progesterone withdrawal precedes menstruation in macaques. Reprod. Biol. Endocrinol. 2006, 4, S6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, R.M. Ciliogenesis during the menstrual cycle in rhesus monkey oviduct. J. Cell Biol. 1967, 35, 16A. [Google Scholar]
- Brenner, R.M.; Resko, J. Artificial oviductal cycles in the rhesus monkey. Biol. Reprod. 1972, 7, 121. [Google Scholar]
- Verhage, H.G.; Mavrogianis, P.; Fazleabas, A.T. The effects of estradiol (E) and progesterone (P) on the morphological and functional state of the baboon (Papio anubis) oviduct. In Proceedings of the Program and Abstracts of 102nd Annual Meeting of American Association of Anatomists, New Orleans, LA, USA, 9–12 April 1989; p. 119A. [Google Scholar]
- Verhage, H.G.; Murray, M.K.; Boomsma, R.A.; Rehfeldt, P.A.; Jaffe, R.C. The postovulatory cat oviduct and uterus: Correlation of morphological features with progesterone receptor levels. Anat. Rec. 1984, 208, 521–531. [Google Scholar] [CrossRef]
- Steffl, M.; Schweiger, M.; Sugiyama, T.; Amselgruber, W.M. Review of apoptotic and non-apoptotic events in nonciliated cells of the mammalian oviduct. Ann. Anat. 2008, 190, 46–52. [Google Scholar] [CrossRef]
- Brenner, R.M.; Anderson, R.G.W. Endocrine control of ciliogenesis in the primate oviduct. In Handbook of Physiology, Section 7: Endocrinology, The Female Reproductive System, Part 2; Greep, R.O., Astwood, E.B., Eds.; Williams and Wilkins: Baltimore, MD, USA, 1973; Volume 2, pp. 123–140. [Google Scholar]
- Brenner, R.M. Renewal of oviduct cilia during the menstrual cycle of the rhesus monkey. Fertil. Steril. 1969, 20, 599–611. [Google Scholar] [CrossRef]
- Verhage, H.G.; Bareither, M.L.; Jaffe, R.C.; Akbar, M. Cyclic changes in ciliation, secretion and cell height of the oviductal epithelium in women. Am. J. Anat. 1979, 156, 505–521. [Google Scholar] [CrossRef]
- Jansen, R.P. Cyclic changes in the human fallopian tube isthmus and their functional importance. Am. J. Obstet. Gynecol. 1980, 136, 292–308. [Google Scholar] [CrossRef]
- Bavister, B.D. Role of oviductal secretions in embryonic growth in vivo and in vitro. Theriogenology 1988, 29, 143–154. [Google Scholar] [CrossRef]
- Verhage, H.G.; Jaffe, R.C.; Fazleabas, A.T. Steroid-dependent oviduct secretions in the primate. Arch. Biol. Med. Exp. 1991, 24, 301–309. [Google Scholar]
- Verhage, H.G.; Mavrogianis, P.A.; Boomsma, R.A.; Schmidt, A.; Brenner, R.M.; Slayden, O.V.; Jaffe, R.C. Immunologic and molecular characterization of an estrogen-dependent glycoprotein in the rhesus (Macaca mulatta) oviduct. Biol. Reprod. 1997, 57, 525–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Day-Bowman, M.B.; Mavrogianis, P.A.; Reuter, L.M.; Johnson, D.E.; Fazleabas, A.T.; Verhage, H.G. Association of oviduct-specific glycoproteins with human and baboon (Papio anubis) ovarian oocytes and enhancement of human sperm binding to human hemizonae following in vitro incubation. Biol. Reprod. 1996, 54, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Verhage, H.G.; Fazleabas, A.T.; Mavrogianis, P.A.; O’Day-Bowman, M.B.; Donnelly, K.M.; Arias, E.B.; Jaffe, R.C. The baboon oviduct: Characteristics of an oestradiol-dependent oviduct-specific glycoprotein. Hum. Reprod. Update 1997, 3, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slayden, O.D.; Friason, F.K.; Calhoun, A.R.; Bond, K.R. Hormonal regulation of oviductal glycoprotein 1 (OVGP1; MUC9) in the macaque cervix: A novel indicator of progestogen action. Fertil. Steril. 2016, 106, e7. [Google Scholar] [CrossRef]
- Woo, M.M.; Gilks, C.B.; Verhage, H.G.; Longacre, T.A.; Leung, P.C.; Auersperg, N. Oviductal glycoprotein, a new differentiation-based indicator present in early ovarian epithelial neoplasia and cortical inclusion cysts. Gynecol. Oncol. 2004, 93, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Maines-Bandiera, S.; Woo, M.M.; Borugian, M.; Molday, L.L.; Hii, T.; Gilks, B.; Leung, P.C.; Molday, R.S.; Auersperg, N. Oviductal glycoprotein (OVGP1, MUC9): A differentiation-based mucin present in serum of women with ovarian cancer. Int. J. Gynecol. Cancer 2010, 20, 16–22. [Google Scholar] [CrossRef]
- Verhage, H.G.; Mavrogianis, P.A.; Boice, M.L.; Li, W.; Fazleabas, A.T. Oviductal epithelium of the baboon: Hormonal control and the immuno-gold localization of oviduct-specific glycoproteins. Am. J. Anat. 1990, 187, 81–90. [Google Scholar] [CrossRef]
- Wang, C.; Mavrogianis, P.A.; Fazleabas, A.T. Endometriosis is associated with progesterone resistance in the baboon (Papio anubis) oviduct: Evidence based on the localization of oviductal glycoprotein 1 (OVGP1). Biol. Reprod. 2009, 80, 272–278. [Google Scholar] [CrossRef]
- Borman, S.M.; Lawson, M.S.; Sullivan, R.; Chwalisz, K.; Verhage, H.; Zelinski-Wooten, M.B. Sperm transport and oviductal function following chronic low-dose antiprogestin in macaques. Biol. Reprod. 2003, 68, 265. [Google Scholar]
- Kowalik, M.K.; Rekawiecki, R.; Kotwica, J. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract. Reprod. Biol. 2013, 13, 279–289. [Google Scholar] [CrossRef]
- Medina-Laver, Y.; Rodriguez-Varela, C.; Salsano, S.; Labarta, E.; Dominguez, F. What Do We Know about Classical and Non-Classical Progesterone Receptors in the Human Female Reproductive Tract? A Review. Int. J. Mol. Sci. 2021, 22, 11278. [Google Scholar] [CrossRef] [PubMed]
- Scarpin, K.M.; Graham, J.D.; Mote, P.A.; Clarke, C.L. Progesterone action in human tissues: Regulation by progesterone receptor (PR) isoform expression, nuclear positioning and coregulator expression. Nucl. Recept. Signal. 2009, 7, e009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, P.M.; Amato, P.; Soyal, S.M.; DeMayo, F.J.; Conneely, O.M.; O’Malley, B.W.; Lydon, J.P. Progesterone involvement in breast development and tumorigenesis--as revealed by progesterone receptor “knockout” and “knockin” mouse models. Steroids 2003, 68, 779–787. [Google Scholar] [CrossRef]
- Conneely, O.M.; Mulac-Jericevic, B.; DeMayo, F.; Lydon, J.P.; O’Malley, B.W. Reproductive functions of progesterone receptors. Recent Prog. Horm. Res. 2002, 57, 339–355. [Google Scholar] [CrossRef]
- Conneely, O.M.; Mulac-Jericevic, B.; Lydon, J.P.; De Mayo, F.J. Reproductive functions of the progesterone receptor isoforms: Lessons from knock-out mice. Mol. Cell. Endocrinol. 2001, 179, 97–103. [Google Scholar] [CrossRef]
- Lydon, J.P.; Sivaraman, L.; Conneely, O.M. A reappraisal of progesterone action in the mammary gland. J. Mammary Gland Biol. Neoplasia 2000, 5, 325–338. [Google Scholar] [CrossRef]
- Conneely, O.M.; Lydon, J.P.; De Mayo, F.; O’Malley, B.W. Reproductive functions of the progesterone receptor. J. Soc. Gynecol. Investig. 2000, 7, S25–S32. [Google Scholar] [CrossRef]
- Hall, J.M.; McDonnell, D.P. Coregulators in nuclear estrogen receptor action: From concept to therapeutic targeting. Mol. Interv. 2005, 5, 343–357. [Google Scholar] [CrossRef]
- Wu, R.C.; Smith, C.L.; O’Malley, B.W. Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr. Rev. 2005, 26, 393–399. [Google Scholar] [CrossRef]
- DeFranco, D.B. Navigating Steroid Hormone Receptors through the Nuclear Compartment. Mol. Endocrinol. 2002, 16, 1449–1455. [Google Scholar] [CrossRef]
- Dinh, D.T.; Breen, J.; Akison, L.K.; DeMayo, F.J.; Brown, H.M.; Robker, R.L.; Russell, D.L. Tissue-specific progesterone receptor-chromatin binding and the regulation of progesterone-dependent gene expression. Sci. Rep. 2019, 9, 11966. [Google Scholar] [CrossRef] [PubMed]
- Mulac-Jericevic, B.; Conneely, O.M. Reproductive tissue selective actions of progesterone receptors. Reproduction 2004, 128, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conneely, O.M.; Mulac-Jericevic, B.; Lydon, J.P. Progesterone-dependent regulation of female reproductive activity by two distinct progesterone receptor isoforms. Steroids 2003, 68, 771–778. [Google Scholar] [CrossRef]
- Mulac-Jericevic, B.; Mullinax, R.A.; DeMayo, F.J.; Lydon, J.P.; Conneely, O. Subgroup of reproductive functions of progesterone mediated by progesterone receptor-B isoform. Science 2000, 289, 1751–1754. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.P.; Wardell, S.E.; Boonyaratanakornkit, V. Progesterone receptor interacting coregulatory proteins and cross talk with cell signaling pathways. J. Steroid Biochem. Mol. Biol. 2002, 83, 173–186. [Google Scholar] [CrossRef]
- Horne, A.W.; King, A.E.; Shaw, E.; McDonald, S.E.; Williams, A.R.; Saunders, P.T.; Critchley, H.O. Attenuated sex steroid receptor expression in fallopian tube of women with ectopic pregnancy. J. Clin. Endocrinol. Metab. 2009, 94, 5146–5154. [Google Scholar] [CrossRef] [Green Version]
- Gellersen, B.; Fernandes, M.S.; Brosens, J.J. Non-genomic progesterone actions in female reproduction. Hum. Reprod. Update. 2009, 15, 119–138. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Hanna, R.N.; Schaaf, M.J.; Spaink, H.P.; Thomas, P. Candidates for membrane progestin receptors--past approaches and future challenges. Comp. Biochem. Physiol. Part. C Toxicol. Pharmacol. 2008, 148, 381–389. [Google Scholar] [CrossRef]
- Bramley, T. Non-genomic progesterone receptors in the mammalian ovary: Some unresolved issues. Reproduction 2003, 125, 3–15. [Google Scholar] [CrossRef]
- Nakahari, T.; Nishimura, A.; Shimamoto, C.; Sakai, A.; Kuwabara, H.; Nakano, T.; Tanaka, S.; Kohda, Y.; Matsumura, H.; Mori, H. The regulation of ciliary beat frequency by ovarian steroids in the guinea pig Fallopian tube: Interactions between oestradiol and progesterone. Biomed. Res. 2011, 32, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, A.; Sakuma, K.; Shimamoto, C.; Ito, S.; Nakano, T.; Daikoku, E.; Ohmichi, M.; Ushiroyama, T.; Ueki, M.; Kuwabara, H.; et al. Ciliary beat frequency controlled by oestradiol and progesterone during ovarian cycle in guinea-pig Fallopian tube. Exp. Physiol. 2010, 95, 819–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nutu, M.; Weijdegard, B.; Thomas, P.; Bergh, C.; Thurin-Kjellberg, A.; Pang, Y.; Billig, H.; Larsson, D.G. Membrane progesterone receptor gamma: Tissue distribution and expression in ciliated cells in the fallopian tube. Mol. Reprod. Dev. 2007, 74, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Losel, R.; Breiter, S.; Seyfert, M.; Wehling, M.; Falkenstein, E. Classic and non-classic progesterone receptors are both expressed in human spermatozoa. Horm. Metab. Res. 2005, 37, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Bond, J.; Thomas, P. Identification, classification, and partial characterization of genes in humans and other vertebrates homologous to a fish membrane progestin receptor. Proc. Natl. Acad. Sci. USA 2003, 100, 2237–2242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Rice, C.D.; Pang, Y.; Pace, M.; Thomas, P. Cloning, expression, and characterization of a membrane progestin receptor and evidence it is an intermediary in meiotic maturation of fish oocytes. Proc. Natl. Acad. Sci. USA 2003, 100, 2231–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levina, I.S.; Kuznetsov, Y.V.; Shchelkunova, T.A.; Zavarzin, I.V. Selective ligands of membrane progesterone receptors as a key to studying their biological functions in vitro and in vivo. J. Steroid. Biochem. Mol. Biol. 2021, 207, 105827. [Google Scholar] [CrossRef]
- Pollow, K.; Inthraphuvasak, J.; Manz, B.; Grill, H.J.; Pollow, B. A comparison of cytoplasmic and nuclear estradiol and progesterone receptors in human fallopian tube and endometrial tissue. Fertil. Steril. 1981, 36, 615–622. [Google Scholar] [CrossRef]
- Brenner, R.M.; West, N.B.; McClellan, M.C. Localization and regulation of estrogen and progestin receptors in the macaque oviduct. Arch. Biol. Med. Exp. 1991, 24, 283–293. [Google Scholar]
- Nutu, M.; Weijdegard, B.; Thomas, P.; Thurin-Kjellberg, A.; Billig, H.; Larsson, D.G. Distribution and hormonal regulation of membrane progesterone receptors beta and gamma in ciliated epithelial cells of mouse and human fallopian tubes. Reprod. Biol. Endocrinol. 2009, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, P.; Chabbert-Buffet, N.; Fauser, B.C. Selective progesterone receptor modulators in reproductive medicine: Pharmacology, clinical efficacy and safety. Fertil. Steril. 2011, 96, 1175–1189. [Google Scholar] [CrossRef]
- Benagiano, G.; Bastianelli, C.; Farris, M.; Brosens, I. Selective progesterone receptor modulators: An update. Expert. Opin. Pharmacother. 2014, 15, 1403–1415. [Google Scholar] [CrossRef] [PubMed]
- Driak, D.; Sehnal, B.; Svandova, I. Selective progesterone receptor modulators and their therapeutical use. Ceska. Gynekol. 2013, 78, 175–181. [Google Scholar] [PubMed]
- Bhathena, R. Progesterone receptor modulators. J. Fam. Plann. Reprod. Health Care 2010, 36, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slayden, O.D.; Critchley, H.; Carroll, R.; Tsong, Y.; Citruk-Ware, R.; Brenner, R. Low dose mifepristone suppresses breakthrough bleeding induced by Levonorgestrel intrauterine devices in rhesus macaques. In Proceedings of the 54th Annual Society for Study of Gynecologic Investigation Annual Meeting, Reno, NV, USA, 14–17 March 2007; p. 338. [Google Scholar]
- Zhao, X.; Tang, X.; Ma, T.; Ding, M.; Bian, L.; Chen, D.; Li, Y.; Wang, L.; Zhuang, Y.; Xie, M.; et al. Levonorgestrel Inhibits Human Endometrial Cell Proliferation through the Upregulation of Gap Junctional Intercellular Communication via the Nuclear Translocation of Ser255 Phosphorylated Cx43. Biomed. Res. Int. 2015, 2015, 758684. [Google Scholar] [CrossRef] [PubMed]
- Maybin, J.A.; Critchley, H.O. Medical management of heavy menstrual bleeding. Womens Health 2016, 12, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kelder, J.; Azevedo, R.; Pang, Y.; de Vlieg, J.; Dong, J.; Thomas, P. Comparison between steroid binding to membrane progesterone receptor alpha (mPRalpha) and to nuclear progesterone receptor: Correlation with physicochemical properties assessed by comparative molecular field analysis and identification of mPRalpha-specific agonists. Steroids 2010, 75, 314–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottino, M.C.; Cerliani, J.P.; Rojas, P.; Giulianelli, S.; Soldati, R.; Mondillo, C.; Gorostiaga, M.A.; Pignataro, O.P.; Calvo, J.C.; Gutkind, J.S.; et al. Classical membrane progesterone receptors in murine mammary carcinomas: Agonistic effects of progestins and RU-486 mediating rapid non-genomic effects. Breast Cancer Res. Treat. 2011, 126, 621–636. [Google Scholar] [CrossRef]
- Slayden, O.D.; Brenner, R.M. RU 486 action after estrogen priming in the endometrium and oviducts of rhesus monkeys (Macaca mulatta). J. Clin. Endocrinol. Metab. 1994, 78, 440–448. [Google Scholar]
- Slayden, O.D.; Hirst, J.J.; Brenner, R.M. Estrogen action in the reproductive tract of rhesus monkeys during antiprogestin treatment. Endocrinology 1993, 132, 1845–1856. [Google Scholar] [CrossRef]
- Zelinski-Wooten, M.B.; Chwalisz, K.; Iliff, S.A.; Niemeyer, C.L.; Eaton, G.G.; Loriaux, D.L.; Slayden, O.D.; Brenner, R.M.; Stouffer, R.L. A chronic, low-dose regimen of the antiprogestin ZK 137 316 prevents pregnancy in rhesus monkeys. Hum. Reprod. 1998, 13, 2132–2138. [Google Scholar] [CrossRef] [Green Version]
- Zelinski-Wooten, M.B.; Slayden, O.D.; Chwalisz, K.; Hess, D.L.; Brenner, R.M.; Stouffer, R.L. Chronic treatment of female rhesus monkeys with low doses of the antiprogestin ZK 137 316: Establishment of a regimen that permits normal menstrual cyclicity. Hum. Reprod. 1998, 13, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Nayak, N.R.; Slayden, O.D.; Mah, K.; Chwalisz, K.; Brenner, R.M. Antiprogestin-releasing intrauterine devices: A novel approach to endometrial contraception. Contraception 2007, 75, S104–S111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, R.M.; Slayden, O.D.; Nath, A.; Tsong, Y.Y.; Sitruk-Ware, R. Intrauterine administration of CDB-2914 (Ulipristal) suppresses the endometrium of rhesus macaques. Contraception 2010, 81, 336–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slayden, O.D.; Zelinski-Wooten, M.B.; Chwalisz, K.; Stouffer, R.L.; Brenner, R.M. Chronic treatment of cycling rhesus monkeys with low doses of the antiprogestin ZK 137 316: Morphometric assessment of the uterus and oviduct. Hum. Reprod. 1998, 13, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Borman, S.M.; Schwinof, K.M.; Niemeyer, C.; Chwalisz, K.; Stouffer, R.L.; Zelinski-Wooten, M.B. Low-dose antiprogestin treatment prevents pregnancy in rhesus monkeys and is reversible after 1 year of treatment. Hum. Reprod. 2003, 18, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.W.; Liao, S.B.; Yeung, W.S.; Ng, E.H.; O, W.S.; Ho, P.C. Ulipristal acetate resembles mifepristone in modulating human fallopian tube function. Hum. Reprod. 2014, 29, 2156–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berry, A.; Hall, J.V. The complexity of interactions between female sex hormones and Chlamydia trachomatis infections. Curr. Clin. Microbiol. Rep. 2019, 6, 67–75. [Google Scholar] [CrossRef]
Oviduct Stage | Uterine Cycle Stage | Description |
---|---|---|
Full Regression | Late Luteal/Pre-Menstrual | The epithelium is cuboidal with few ciliated or secretory cells. The epithelial cell nuclei appear shrunken. |
Pre-Ciliogenic | Menstruation | This state is marked by epithelial cellular hypertrophy and mitotic activity. Epithelial cell nuclei swell, smoothing the nuclear contours. |
Ciliogenic | Early Follicular | Cellular hypertrophy and mitotic activity continue. Histologically distinct light and dark cells can be identified, and cilia basal bodies are apparent in the apical cytoplasm of the light hypertrophied cells. |
Ciliogenic Ciliated | Mid-Follicular | Mitotic activity has slowed; abundant ciliated cells and secretory cells are present. The word “ciliogenic” was placed first in the name of this phase to emphasize that ciliogenic cells predominate. |
Ciliated Ciliogenic | Late Follicular | The majority of cells have become ciliated, but secretory cells have become much more prominent and have developed bulbous tips. The word “ciliated” was placed first in the name of this phase to emphasize that ciliated cells predominate over ciliogenic ones. |
Ciliated Secretory | Periovulatory | Approximately 50% of the epithelial cells are ciliated. The remaining epithelial cells are secretory with prominent bulbous tips. There is minimal mitotic activity. |
Pre-Regression | Early Luteal | This phase is similar to the ciliated secretory state. There is a striking increase in epithelial apoptotic cells, and macrophages are phagocytosing the apoptotic cells. |
Regression | Mid-Luteal | The epithelium secretion is reduced, and the epithelium is undergoing deciliation. EM studies reveal ciliated cells to be pinching off their tips. Epithelial cell nuclei now appear shriveled. At the end of the luteal phase, the epithelium appears deciliated and cuboidal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slayden, O.D.; Luo, F.; Bishop, C.V. Physiological Action of Progesterone in the Nonhuman Primate Oviduct. Cells 2022, 11, 1534. https://doi.org/10.3390/cells11091534
Slayden OD, Luo F, Bishop CV. Physiological Action of Progesterone in the Nonhuman Primate Oviduct. Cells. 2022; 11(9):1534. https://doi.org/10.3390/cells11091534
Chicago/Turabian StyleSlayden, Ov D., Fangzhou Luo, and Cecily V. Bishop. 2022. "Physiological Action of Progesterone in the Nonhuman Primate Oviduct" Cells 11, no. 9: 1534. https://doi.org/10.3390/cells11091534
APA StyleSlayden, O. D., Luo, F., & Bishop, C. V. (2022). Physiological Action of Progesterone in the Nonhuman Primate Oviduct. Cells, 11(9), 1534. https://doi.org/10.3390/cells11091534