Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hard-and-Soft MCR-ALS Modelling
2.2. Data Analysis
3. Results
3.1. Simulated Datasets
3.2. Real Dataset 1: Study of DOX Uptake by A549 Cells In Vitro Using Raman Microspectroscopy
3.3. Real Dataset 2: Study of DOX Uptake by Calu-1 Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kricka, L.J.; Fortina, P. Analytical Ancestry: “Firsts” in Fluorescent Labeling of Nucleosides, Nucleotides, and Nucleic Acids. Clin. Chem. 2009, 55, 670–683. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.P.; Lyng, F.M.; Garcia, A.; Davoren, M.; Byrne, H.J. Mechanistic Studies of in Vitro Cytotoxicity of Poly(Amidoamine) Dendrimers in Mammalian Cells. Toxicol Appl. Pharm. 2010, 248, 259–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, K.M.; Nolan, G.P. Chemical Labeling Strategies for Cell Biology. Nat. Methods 2006, 3, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Denner, P.; Schmalowsky, J.; Prechtl, S. High-Content Analysis in Preclinical Drug Discovery. Comb. Chem. High Throughput Screen. 2008, 11, 216–230. [Google Scholar] [CrossRef] [PubMed]
- Marketsand, M. High Content Screening Market by Product (Cell Imaging & Analysis System, Flow Cytometry, Consumable, Software, Service) Application (Primary & Secondary Screening, Toxicity Studies, Target Identification & Validation), End User-Global Forecast to 2022; Markets and Markets: Hadapsar, India, 2017. [Google Scholar]
- Drug Development: The Journey of a Medicine from Lab to Shelf—The Pharmaceutical Journal. Available online: https://pharmaceutical-journal.com/article/feature/drug-development-the-journey-of-a-medicine-from-lab-to-shelf (accessed on 4 January 2022).
- Bonnier, F.; Knief, P.; Lim, B.; Meade, A.D.; Dorney, J.; Bhattacharya, K.; Lyng, F.M.; Byrne, H.J. Imaging Live Cells Grown on a Three Dimensional Collagen Matrix Using Raman Microspectroscopy. Analyst 2010, 135, 3169–3177. [Google Scholar] [CrossRef] [Green Version]
- Meade, A.D.; Clarke, C.; Draux, F.; Sockalingum, G.D.; Manfait, M.; Lyng, F.M.; Byrne, H.J. Studies of Chemical Fixation Effects in Human Cell Lines Using Raman Microspectroscopy. Anal. Bioanal. Chem. 2010, 396, 1781–1791. [Google Scholar] [CrossRef] [Green Version]
- Efeoglu, E.; Maher, M.A.; Casey, A.; Byrne, H.J. Label-Free, High Content Screening Using Raman Microspectroscopy: The Toxicological Response of Different Cell Lines to Amine-Modified Polystyrene Nanoparticles (PS-NH2). Analyst 2017, 142, 3500–3513. [Google Scholar] [CrossRef]
- Farhane, Z.; Nawaz, H.; Bonnier, F.; Byrne, H.J. In Vitro Label-Free Screening of Chemotherapeutic Drugs Using Raman Microspectroscopy: Towards a New Paradigm of Spectralomics. J. Biophotonics 2018, 11, e201700258. [Google Scholar] [CrossRef] [Green Version]
- Byrne, H.J.; Bonnier, F.; Casey, A.; Maher, M.; McIntyre, J.; Efeoglu, E.; Farhane, Z. Advancing Raman Microspectroscopy for Cellular and Subcellular Analysis: Towards in Vitro High-Content Spectralomic Analysis. Appl. Opt. 2018, 57, E11. [Google Scholar] [CrossRef] [Green Version]
- Byrne, H.J.; Knief, P.; Keating, M.E.; Bonnier, F. Spectral Pre and Post Processing for Infrared and Raman Spectroscopy of Biological Tissues and Cells. Chem. Soc. Rev. 2016, 45, 1865–1878. [Google Scholar] [CrossRef] [Green Version]
- Byrne, H.J.; Bonnier, F.; McIntyre, J.; Parachalil, D.R. Quantitative Analysis of Human Blood Serum Using Vibrational Spectroscopy. Clin. Spectrosc. 2020, 2, 100004. [Google Scholar] [CrossRef]
- Ostrowska, K.M.; Garcia, A.; Meade, A.D.; Malkin, A.; Okewumi, I.; O’Leary, J.J.; Martin, C.; Byrne, H.J.; Lyng, F.M. Correlation of P16INK4A Expression and HPV Copy Number with Cellular FTIR Spectroscopic Signatures of Cervical Cancer Cells. Analyst 2011, 136, 1365–1373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meade, A.D.; Byrne, H.J.; Lyng, F.M. Spectroscopic and Chemometric Approaches to Radiobiological Analyses. Mutat. Res. Rev. Mutat. Res. 2010, 704, 108–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Gonzalez, U.; Casey, A.; Byrne, H.J. Monitoring the biochemical changes occurring to human keratinocytes exposed to solar radiation by Raman spectroscopy. J. Biophotonics 2021, 14, e202000337. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, H.; Bonnier, F.; Meade, A.D.; Lyng, F.M.; Byrne, H.J. Comparison of Subcellular Responses for the Evaluation and Prediction of the Chemotherapeutic Response to Cisplatin in Lung Adenocarcinoma Using Raman Spectroscopy. Analyst 2011, 136, 2450–2463. [Google Scholar] [CrossRef] [Green Version]
- Keating, M.E.; Nawaz, H.; Bonnier, F.; Byrne, H.J. Multivariate Statistical Methodologies Applied in Biomedical Raman Spectroscopy: Assessing the Validity of Partial Least Squares Regression Using Simulated Model Datasets. Analyst 2015, 140, 2482–2492. [Google Scholar] [CrossRef] [Green Version]
- Jaumot, J.; Gargallo, R.; De Juan, A.; Tauler, R. Software Description A Graphical User-Friendly Interface for MCR-ALS: A New Tool for Multivariate Curve Resolution in MATLAB. Chemom. Intell. Lab. Syst. 2005, 76, 101–110. [Google Scholar] [CrossRef]
- Felten, J.; Hall, H.; Jaumot, J.; Tauler, R.; De Juan, A.; Gorzsás, A. Vibrational Spectroscopic Image Analysis of Biological Material Using Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS). Nat. Protoc. 2015, 10, 217–240. [Google Scholar] [CrossRef]
- Singular Value Decomposition—MATLAB & Simulink—MathWorks United Kingdom. Available online: https://uk.mathworks.com/help/symbolic/singular-value-decomposition.html (accessed on 5 March 2022).
- Maleš, P.; Brkljača, Z.; Crnolatac, I.; Bakarić, D. Application of MCR-ALS with EFA on FT-IR Spectra of Lipid Bilayers in the Assessment of Phase Transition Temperatures: Potential for Discernment of Coupled Events. Colloids Surf. B Biointerfaces 2021, 201, 111645. [Google Scholar] [CrossRef]
- Farhane, Z.; Bonnier, F.; Byrne, H.J. Monitoring Doxorubicin Cellular Uptake and Trafficking Using in Vitro Raman Microspectroscopy: Short and Long Time Exposure Effects on Lung Cancer Cell Lines. Anal. Bioanal. Chem. 2017, 409, 1333–1346. [Google Scholar] [CrossRef]
- Byrne, H.J.; Bonnier, F.; Farhane, Z. Two-Dimensional Correlation Analysis of Raman Microspectroscopy of Subcellular Interactions of Drugs in Vitro. J. Biophotonics 2019, 12, e201800328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhane, Z.; Bonnier, F.; Howe, O.; Casey, A.; Byrne, H.J. Doxorubicin Kinetics and Effects on Lung Cancer Cell Lines Using in Vitro Raman Micro-Spectroscopy: Binding Signatures, Drug Resistance and DNA Repair. J. Biophotonics 2018, 11, e201700060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhane, Z.; Bonnier, F.; Maher, M.A.; Bryant, J.; Casey, A.; Byrne, H.J. Differentiating Responses of Lung Cancer Cell Lines to Doxorubicin Exposure: In Vitro Raman Micro Spectroscopy, Oxidative Stress and Bcl-2 Protein Expression. J. Biophotonics 2017, 10, 151–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steuer, R.; Junker, B.H. Computational Models of Metabolism: Stability and Regulation in Metabolic Networks. Adv. Chem. Phys. 2008, 142, 105–251. [Google Scholar] [CrossRef]
- Gerdtzen, Z.P. Modeling Metabolic Networks for Mammalian Cell Systems: General Considerations, Modeling Strategies, and Available Tools. Adv. Biochem. Eng. Biotechnol. 2012, 127, 71–108. [Google Scholar]
- Boydston-White, S.; Romeo, M.; Chernenko, T.; Regina, A.; Miljković, M.; Diem, M. Cell-Cycle-Dependent Variations in FTIR Micro-Spectra of Single Proliferating HeLa Cells: Principal Component and Artificial Neural Network Analysis. Biochim. Et Biophys. Acta Biomembr. 2006, 1758, 908–914. [Google Scholar] [CrossRef] [Green Version]
- Matthäus, C.; Boydston-White, S.; Miljković, M.; Romeo, M.; Diem, M. Raman and Infrared Microspectral Imaging of Mitotic Cells. Appl. Spectrosc. 2006, 60, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Short, K.W.; Carpenter, S.; Freyer, J.P.; Mourant, J.R. Raman Spectroscopy Detects Biochemical Changes Due to Proliferation in Mammalian Cell Cultures. Biophys. J. 2005, 88, 4274–4288. [Google Scholar] [CrossRef] [Green Version]
- Ami, D.; Neri, T.; Natalello, A.; Mereghetti, P.; Doglia, S.M.; Zanoni, M.; Zuccotti, M.; Garagna, S.; Redi, C.A. Embryonic Stem Cell Differentiation Studied by FT-IR Spectroscopy. Biochim. Et Biophys. Acta Mol. Cell Res. 2008, 1783, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Notingher, I.; Bisson, I.; Bishop, A.E.; Randle, W.L.; Polak, J.M.P.; Hench, L.L. In Situ Spectral Monitoring of MRNA Translation in Embryonic Stem Cells during Differentiation in Vitro. Anal. Chem. 2004, 76, 3185–3193. [Google Scholar] [CrossRef]
- Pavillon, N.; Hobro, A.J.; Akira, S.; Smith, N.I. Noninvasive Detection of Macrophage Activation with Single-Cell Resolution through Machine Learning. Proc. Natl. Acad. Sci. USA 2018, 115, E2676–E2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meade, A.D.; Lyng, F.M.; Knief, P.; Byrne, H.J. Growth Substrate Induced Functional Changes Elucidated by FTIR and Raman Spectroscopy in In-Vitro Cultured Human Keratinocytes. Anal. Bioanal. Chem. 2007, 387, 1717–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasparri, F.; Muzio, M. Monitoring of Apoptosis of HL60 Cells by Fourier-Transform Infrared Spectroscopy. Biochem. J. 2003, 369, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.Z.; Jia, L.; Kelsey, S.M.; Newland, A.C.; Mantsch, H.H. Quantitative Determination of Apoptosis on Leukemia Cells by Infrared Spectroscopy. Apoptosis 2001, 6, 269–278. [Google Scholar] [CrossRef]
- Szafraniec, E.; Majzner, K.; Farhane, Z.; Byrne, H.J.; Lukawska, M.; Oszczapowicz, I.; Chlopicki, S.; Baranska, M. Spectroscopic Studies of Anthracyclines: Structural Characterization and in Vitro Tracking. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 169, 152–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farhane, Z.; Bonnier, F.; Casey, A.; Byrne, H.J. Raman Micro Spectroscopy for in Vitro Drug Screening: Subcellular Localisation and Interactions of Doxorubicin. Analyst 2015, 140, 4212–4223. [Google Scholar] [CrossRef] [Green Version]
- Farhane, Z.; Bonnier, F.; Byrne, H.J. An in Vitro Study of the Interaction of the Chemotherapeutic Drug Actinomycin D with Lung Cancer Cell Lines Using Raman Micro-Spectroscopy. J. Biophotonics 2018, 11, e201700112. [Google Scholar] [CrossRef] [Green Version]
- Efeoglu, E.; Keating, M.; McIntyre, J.; Casey, A.; Byrne, H.J. Determination of Nanoparticle Localisation within Subcellular Organelles in Vitro Using Raman Spectroscopy. Anal. Methods 2015, 7, 10000–10017. [Google Scholar] [CrossRef] [Green Version]
- Efeoglu, E.; Casey, A.; Byrne, H.J. In Vitro Monitoring of Time and Dose Dependent Cytotoxicity of Aminated Nanoparticles Using Raman Spectroscopy. Analyst 2016, 141, 5417–5431. [Google Scholar] [CrossRef] [Green Version]
- Efeoglu, E.; Casey, A.; Byrne, H.J. Determination of Spectral Markers of Cytotoxicity and Genotoxicity Using in Vitro Raman Microspectroscopy: Cellular Responses to Polyamidoamine Dendrimer Exposure. Analyst 2017, 142, 3848–3856. [Google Scholar] [CrossRef] [Green Version]
- Efeoglu, E.; Maher, M.A.; Casey, A.; Byrne, H.J. Toxicological Assessment of Nanomaterials: The Role of in Vitro Raman Microspectroscopic Analysis. Anal. Bioanal. Chem. 2018, 410, 1631–1646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Guaita, D.; Quintas, G.; Farhane, Z.; Tauler, R.; Byrne, H.J. Data Mining Raman Microspectroscopic Responses of Cells to Drugs in Vitro Using Multivariate Curve Resolution-Alternating Least Squares. Talanta 2020, 208, 120386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Guaita, D.; Chrabaszcz, K.; Malek, K.; Byrne, H.J. Multimodal Vibrational Studies of Drug Uptake in Vitro: Is the Whole Greater than the Sum of Their Parts? J. Biophotonics 2020, 13, 13. [Google Scholar] [CrossRef]
- Maher, M.A.; Naha, P.C.; Mukherjee, S.P.; Byrne, H.J. Numerical Simulations of in Vitro Nanoparticle Toxicity—The Case of Poly(Amido Amine) Dendrimers. Toxicol. Vitr. 2014, 28, 1449–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, S.P.; Byrne, H.J. Polyamidoamine Dendrimer Nanoparticle Cytotoxicity, Oxidative Stress, Caspase Activation and Inflammatory Response: Experimental Observation and Numerical Simulation. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 202–211. [Google Scholar] [CrossRef]
- Souto, G.D.; Farhane, Z.; Casey, A.; Efeoglu, E.; McIntyre, J.; Byrne, H.J. Evaluation of Cytotoxicity Profile and Intracellular Localisation of Doxorubicin-Loaded Chitosan Nanoparticles. Anal. Bioanal. Chem. 2016, 408, 5443–5455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, H.J.; Maher, M.A. Numerically Modelling Time and Dose Dependent Cytotoxicity. Comput. Toxicol. 2019, 12, 12. [Google Scholar] [CrossRef] [Green Version]
- Funahashi, A.; Matsuoka, Y.; Jouraku, A.; Morohashi, M.; Kikuchi, N.; Kitano, H. CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks. Proc. IEEE 2008, 96, 1254–1265. [Google Scholar] [CrossRef]
- Hucka, M.; Finney, A.; Sauro, H.M.; Bolouri, H.; Doyle, J.C.; Kitano, H.; Arkin, A.P.; Bornstein, B.J.; Bray, D.; Cornish-Bowden, A.; et al. The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models. Bioinformatics 2003, 19, 524–531. [Google Scholar] [CrossRef]
- Moodie, S.; Le Novère, N.; Demir, E.; Mi, H.; Villéger, A. Systems Biology Graphical Notation: Process Description Language Level 1 Version 1.3. J. Integr. Bioinform. 2015, 12, 263. [Google Scholar] [CrossRef]
- Van Hemert, J.L.; Dickerson, J.A. PathwayAccess: CellDesigner plugins for pathway databases. Bioinform. 2010, 26, 2345–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oki, N.O.; Farcal, L.; Abdelaziz, A.; Florean, O.; Doktorova, T.Y.; Exner, T.; Kohonen, P.; Grafström, R.; Hardy, B. Integrated Analysis of in Vitro Data and the Adverse Outcome Pathway Framework for Prioritization and Regulatory Applications: An Exploratory Case Study Using Publicly Available Data on Piperonyl Butoxide and Liver Models. Toxicol. Vitr. 2019, 54, 23–32. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Guaita, D.; Quintás, G.; Farhane, Z.; Tauler, R.; Byrne, H.J. Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints. Cells 2022, 11, 1555. https://doi.org/10.3390/cells11091555
Pérez-Guaita D, Quintás G, Farhane Z, Tauler R, Byrne HJ. Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints. Cells. 2022; 11(9):1555. https://doi.org/10.3390/cells11091555
Chicago/Turabian StylePérez-Guaita, David, Guillermo Quintás, Zeineb Farhane, Romá Tauler, and Hugh J. Byrne. 2022. "Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints" Cells 11, no. 9: 1555. https://doi.org/10.3390/cells11091555
APA StylePérez-Guaita, D., Quintás, G., Farhane, Z., Tauler, R., & Byrne, H. J. (2022). Combining Pharmacokinetics and Vibrational Spectroscopy: MCR-ALS Hard-and-Soft Modelling of Drug Uptake In Vitro Using Tailored Kinetic Constraints. Cells, 11(9), 1555. https://doi.org/10.3390/cells11091555