Disruption of Endochondral Ossification and Extracellular Matrix Maturation in an Ex Vivo Rat Femur Organotypic Slice Model Due to Growth Plate Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Culturing of Ex Vivo Organotypic Bone Slice Culture (OTCs)
2.2. Tissue Processing for Histological Evaluation and Analyses
2.3. Live and Dead Staining
2.4. Electron Microscopy
2.5. Histological Stainings
2.6. Hematoxylin and Eosin Staining
2.7. Movat’s Pentachrome Staining
2.8. Safranin O/Fast Green Staining
2.9. Immunohistochemistry
2.10. Data Presentation and Statistical Analyses
3. Results
3.1. Experimental Setup
3.2. Epiphyseal Tissue Architecture Changes Due to Growth Plate Injury
3.3. Injury-Associated Augmented Cartilage Generation and Attenuated Ossification Process
3.4. Stem Cell Infiltration at the Injury Site
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ballock, R.T.; O’Keefe, R.J. The biology of the growth plate. J. Bone Jt. Surg. 2003, 85, 715–726. [Google Scholar] [CrossRef]
- Mizuta, T.; Benson, W.M.; Foster, B.K.; Paterson, D.C.; Morris, L.L. Statistical Analysis of the Incidence of Physeal Injuries. J. Pediatr. Orthop. 1987, 7, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Hafez, M.A. Traumatic injuries of the distal femoral physis. Retrospective study on 151 cases. Injury 2002, 33, 251–255. [Google Scholar] [CrossRef]
- Basener, C.J.; Mehlman, C.T.; DiPasquale, T.G. Growth Disturbance After Distal Femoral Growth Plate Fractures in Children: A Meta-Analysis. J. Orthop. Trauma 2009, 23, 663–667. [Google Scholar] [CrossRef]
- Ogden, J.A. Growth Slowdown and Arrest Lines. J. Pediatr. Orthop. 1984, 4, 409–415. [Google Scholar] [CrossRef]
- Barmada, A.; Gaynor, T.; Mubarak, S.J. Premature Physeal Closure Following Distal Tibia Physeal Fractures. J. Pediatr. Orthop. 2003, 23, 733–739. [Google Scholar] [CrossRef]
- Hayden, P.J.; Harbell, J.W. Special review series on 3D organotypic culture models: Introduction and historical perspective. In Vitro. Cell. Dev. Biol.-Anim. 2021, 57, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Kale, S.; Biermann, S.; Edwards, C.; Tarnowski, C.; Morris, M.; Long, M.W. Three-dimensional cellular development is essential for ex vivo formation of human bone. Nat. Biotechnol. 2000, 18, 954–958. [Google Scholar] [CrossRef] [PubMed]
- Simon, F.; Oberhuber, A.; Schelzig, H. Advantages and Disadvantages of Different Animal Models for Studying Ischemia/Reperfusion Injury of the Spinal Cord. Eur. J. Vasc. Endovasc. Surg. 2015, 49, 744. [Google Scholar] [CrossRef] [Green Version]
- Moran, C.J.; Ramesh, A.; Brama, P.A.J.; O’byrne, J.M.; O’brien, F.J.; Levingstone, T.J. The benefits and limitations of animal models for translational research in cartilage repair. J. Exp. Orthop. 2016, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Gurkan, U.A.; Kishore, V.; Condon, K.W.; Bellido, T.M.; Akkus, O. A Scaffold-Free Multicellular Three-Dimensional In Vitro Model of Osteogenesis. Calcif. Tissue Int. 2011, 88, 388–401. [Google Scholar] [CrossRef] [PubMed]
- Shamir, E.R.; Ewald, A.J. Three-dimensional organotypic culture: Experimental models of mammalian biology and disease. Nat. Rev. Mol. Cell Biol. 2014, 15, 647–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasaiah, S.; Musumeci, G.; Mohan, T.; Castrogiovanni, P.; Absenger-Novak, M.; Zefferer, U.; Mostofi, S.; Rad, E.B.; Grün, N.G.; Weinberg, A.; et al. A 300 μm Organotypic Bone Slice Culture Model for Temporal Investigation of Endochondral Osteogenesis. Tissue Eng. Part C Methods 2019, 25, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Z.; Wang, C.; Bai, H.; Wang, Z.; Liu, Y.; Bao, Y.; Ren, M.; Liu, H.; Wang, J. Enlightenment of Growth Plate Regeneration Based on Cartilage Repair Theory: A Review. Front. Bioeng. Biotechnol. 2021, 9, 654087. [Google Scholar] [CrossRef]
- Bryan, J.H.D. Differential Staining with a Mixture of Safranin and Fast Green FCF. Stain. Technol. 1955, 30, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.; Ritman, E.; Turner, R. Time course of epiphyseal growth plate fusion in rat tibiae. Bone 2003, 32, 261–267. [Google Scholar] [CrossRef]
- Hunziker, E.B.; Schenk, R.K. Physiological mechanisms adopted by chondrocytes in regulating longitudinal bone growth in rats. J. Physiol. 1989, 414, 55–71. [Google Scholar] [CrossRef] [Green Version]
- Kember, N.F.; Walker, K.V.R. Control of Bone Growth in Rats. Nature 1971, 229, 428–429. [Google Scholar] [CrossRef]
- Coleman, R.M.; Phillips, J.E.; Lin, A.; Schwartz, Z.; Boyan, B.D.; Guldberg, R.E. Characterization of a small animal growth plate injury model using microcomputed tomography. Bone 2010, 46, 1555–1563. [Google Scholar] [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Tiffany, A.S.; Harley, B.A.C. Growing Pains: The Need for Engineered Platforms to Study Growth Plate Biology. Adv. Healthc. Mater. 2022, 11, e2200471. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, J.; Held, A. Role of proteoglycans in osteoarthritis. In Cartilage; Springer: Berlin/Heidelberg, Germany, 2017; pp. 63–80. [Google Scholar]
- Siffert, R.S. The effect of trauma to the epiphysis and growth plate. Skelet. Radiol. 1977, 2, 21–30. [Google Scholar] [CrossRef]
- Yasui, N.; Ono, K.; Konomi, H.; Nagai, Y. Transitions in collagen types during endochondral ossification in human growth cartilage. Clin. Orthop. Relat. Res. 1984, 183, 215–218. [Google Scholar] [CrossRef]
- Myllyharju, J. Extracellular Matrix and Developing Growth Plate. Curr. Osteoporos. Rep. 2014, 12, 439–445. [Google Scholar] [CrossRef]
- Aigner, T. Collagens—Major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv. Drug Deliv. Rev. 2003, 55, 1569–1593. [Google Scholar] [CrossRef]
- Linsenmayer, T.F.; Eavey, R.D.; Schmid, T.M. Type X Collagen: A Hypertrophic Cartilage-Specific Molecule. Pathol. Immunopathol. Res. 1988, 7, 14–19. [Google Scholar] [CrossRef]
- Gudmann, N.; Karsdal, M. Type X Collagen. In Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers; Academic Press: Cambridge, MA, USA, 2016; pp. 73–76. [Google Scholar] [CrossRef]
- Xian, C.J.; Zhou, F.H.; McCarty, R.C.; Foster, B.K. Intramembranous ossification mechanism for bone bridge formation at the growth plate cartilage injury site. J. Orthop. Res. 2004, 22, 417–426. [Google Scholar] [CrossRef]
- Lee, M.A.; Nissen, T.P.; Otsuka, N.Y. Utilization of a Murine Model to Investigate the Molecular Process of Transphyseal Bone Formation. J. Pediatr. Orthop. 2000, 20, 802–806. [Google Scholar] [CrossRef]
- Lian, C.; Wang, X.; Qiu, X.; Wu, Z.; Gao, B.; Liu, L.; Liang, G.; Zhou, H.; Yang, X.; Peng, Y.; et al. Collagen type II suppresses articular chondrocyte hypertrophy and osteoarthritis progression by promoting integrin β1−SMAD1 interaction. Bone Res. 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Lieberman, J.R.; Daluiski, A.; Einhorn, T.A. The role of growth factors in the repair of bone. Biology and clinical applications. J. Bone Joint. Surg. Am. 2002, 84, 1032–1044. [Google Scholar] [CrossRef] [Green Version]
- Wattenbarger, J.M.; Gruber, H.E.; Phieffer, L.S. Physeal Fractures, Part I: Histologic Features of Bone, Cartilage, and Bar Formation in a Small Animal Model. J. Pediatr. Orthop. 2002, 22, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Wattenbarger, J.M.; Marshall, A.; Cox, M.D.; Gruber, H. The Role of the Basement Plate in Physeal Bar Formation. J. Pediatr. Orthop. 2018, 38, e634–e639. [Google Scholar] [CrossRef] [PubMed]
- Gruber, H.E.; Phieffer, L.S.; Wattenbarger, J.M. Physeal Fractures, Part II: Fate of Interposed Periosteum in a Physeal Fracture. J. Pediatr. Orthop. 2002, 22, 710–716. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.L.; Zhang, S.; Tan, S.S.H.; Cheow, Y.A.; Lai, R.C.; Lim, S.K.; Hui, J.H.P.; Toh, W.S. Mesenchymal Stem Cell Exosomes Promote Growth Plate Repair and Reduce Limb-Length Discrepancy in Young Rats. J. Bone Jt. Surg. 2022, 104, 1098–1106. [Google Scholar] [CrossRef]
- James, C.G.; Stanton, L.-A.; Agoston, H.; Ulici, V.; Underhill, T.M.; Beier, F. Genome-Wide Analyses of Gene Expression during Mouse Endochondral Ossification. PLoS ONE 2010, 5, e8693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marenzana, M.; Arnett, T.R. The Key Role of the Blood Supply to Bone. Bone Res. 2013, 1, 203–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frade, B.B.; Dias, R.B.; Piperni, S.G.; Bonfim, D.C. The role of macrophages in fracture healing: A narrative review of the recent updates and therapeutic perspectives. Stem Cell Investig. 2023, 10, 4. [Google Scholar] [CrossRef]
- Flevas, D.A.; Papageorgiou, M.G.; Drakopoulos, P.; Lambrou, G.I.; Papageorgiou, M. The Role of Immune System Cells in Fracture Healing: Review of the Literature and Current Concepts. Cureus 2021, 13, e14703. [Google Scholar] [CrossRef]
- Chung, R.; Cool, J.C.; Scherer, M.A.; Foster, B.K.; Xian, C.J. Roles of neutrophil-mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. J. Leukoc. Biol. 2006, 80, 1272–1280. [Google Scholar] [CrossRef]
- Shapiro, F.; Holtrop, M.E.; Glimcher, M.J. Organization and cellular biology of the perichondrial ossification groove of ranvier: A morphological study in rabbits. J. Bone Jt. Surg. 1977, 59, 703–723. [Google Scholar] [CrossRef]
- Karlsson, C.; Thornemo, M.; Henriksson, H.B.; Lindahl, A. Identification of a stem cell niche in the zone of Ranvier within the knee joint. J. Anat. 2009, 215, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Shiromoto, Y.; Niki, Y.; Kikuchi, T.; Yoshihara, Y.; Oguma, T.; Nemoto, K.; Chiba, K.; Kanaji, A.; Matsumoto, M.; Nakamura, M. Increased migratory activity and cartilage regeneration by superficial-zone chondrocytes in enzymatically treated cartilage explants. BMC Musculoskelet. Disord. 2022, 23, 256. [Google Scholar] [CrossRef] [PubMed]
Primary Antibody | Company | Host | HIER | H2O2 Block | Protein Block | Dilution |
---|---|---|---|---|---|---|
Acan | Abcam (ab36861) | rabbit | EDTA | 30 min | 35 min | 1:300 |
Col2α1 | Invitrogen (MA5-12789) | mouse | Sodium citrate | 25 min | 25 min | 1:100 |
ColX | Invitrogen (14-9771-82) | mouse | EDTA | 10 min | 25 min | 1:100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etschmaier, V.; Üçal, M.; Lohberger, B.; Absenger-Novak, M.; Kolb, D.; Weinberg, A.; Schäfer, U. Disruption of Endochondral Ossification and Extracellular Matrix Maturation in an Ex Vivo Rat Femur Organotypic Slice Model Due to Growth Plate Injury. Cells 2023, 12, 1687. https://doi.org/10.3390/cells12131687
Etschmaier V, Üçal M, Lohberger B, Absenger-Novak M, Kolb D, Weinberg A, Schäfer U. Disruption of Endochondral Ossification and Extracellular Matrix Maturation in an Ex Vivo Rat Femur Organotypic Slice Model Due to Growth Plate Injury. Cells. 2023; 12(13):1687. https://doi.org/10.3390/cells12131687
Chicago/Turabian StyleEtschmaier, Vanessa, Muammer Üçal, Birgit Lohberger, Markus Absenger-Novak, Dagmar Kolb, Annelie Weinberg, and Ute Schäfer. 2023. "Disruption of Endochondral Ossification and Extracellular Matrix Maturation in an Ex Vivo Rat Femur Organotypic Slice Model Due to Growth Plate Injury" Cells 12, no. 13: 1687. https://doi.org/10.3390/cells12131687
APA StyleEtschmaier, V., Üçal, M., Lohberger, B., Absenger-Novak, M., Kolb, D., Weinberg, A., & Schäfer, U. (2023). Disruption of Endochondral Ossification and Extracellular Matrix Maturation in an Ex Vivo Rat Femur Organotypic Slice Model Due to Growth Plate Injury. Cells, 12(13), 1687. https://doi.org/10.3390/cells12131687