Methylthiosulfonate-Based Cysteine Modifiers as Alternative Inhibitors of Mercurial-Sensitive Aquaporins
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Methanethiosulfonate Reagents Inhibit AQP1 via Cys189 Modification
3.2. Acetylcysteine and Dithiothreitol Undo the AQP1 Cys189-Modification by BMTS
3.3. BMTS Blocks Water and Glycerol Permeability of Native Erythrocytes
3.4. Inhibition of Yeast-Expressed AQP9 Water and Glycerol Permeability by BMTS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savage, D.F.; Stroud, R.M. Structural basis of aquaporin inhibition by mercury. J. Mol. Biol. 2007, 368, 607–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naccache, P.; Sha’afi, R.I. Effect of PCMBS on water transfer across biological membranes. J. Cell. Physiol. 1974, 83, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Preston, G.M.; Carroll, T.P.; Guggino, W.B.; Agre, P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 1992, 256, 385–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, K.; Tanaka, Y.; Morishita, Y. Evolutionary overview of aquaporin superfamily. Adv. Exp. Med. Biol. 2023, 1398, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Walz, T.; Hirai, T.; Murata, K.; Heymann, J.B.; Mitsuoka, K.; Fujiyoshi, Y.; Smith, B.L.; Agre, P.; Engel, A. The three-dimensional structure of aquaporin-1. Nature 1997, 387, 624–627. [Google Scholar] [CrossRef]
- Fu, D.; Libson, A.; Miercke, L.J.; Weitzman, C.; Nollert, P.; Krucinski, J.; Stroud, R.M. Structure of a glycerol-conducting channel and the basis for its selectivity. Science 2000, 290, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Beitz, E. Aquaporins with selectivity for unconventional permeants. Cell. Mol. Life Sci. 2007, 64, 2413–2421. [Google Scholar] [CrossRef]
- Wu, B.; Steinbronn, C.; Alsterfjord, M.; Zeuthen, T.; Beitz, E. Concerted action of two cation filters in the aquaporin water channel. EMBO J. 2009, 28, 2188–2194. [Google Scholar] [CrossRef] [Green Version]
- Geistlinger, K.; Schmidt, J.D.R.; Beitz, E. Lactic acid permeability of aquaporin-9 enables cytoplasmic lactate accumulation via an ion trap. Life 2022, 12, 120. [Google Scholar] [CrossRef]
- Beitz, E.; Wu, B.; Holm, L.M.; Schultz, J.E.; Zeuthen, T. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proc. Natl. Acad. Sci. USA 2006, 103, 269–274. [Google Scholar] [CrossRef] [Green Version]
- Preston, G.M.; Jung, J.S.; Guggino, W.B.; Agre, P. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J. Biol. Chem. 1993, 268, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.B.; Uchida, S.; Naruse, S.; Kuwahara, M.; Ishibashi, K.; Marumo, F.; Hayakawa, T.; Sasaki, S. Cloning and functional expression of rAOP9L a new member of aquaporin family from rat liver. IUBMB Life 1999, 47, 309–318. [Google Scholar] [CrossRef]
- Sui, H.; Han, B.G.; Lee, J.K.; Walian, P.; Jap, B.K. Structural basis of water-specific transport through the AQP1 water channel. Nature 2001, 414, 872–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verkman, A.S.; Anderson, M.O.; Papadopoulos, M.C. Aquaporins: Important but elusive drug targets. Nat. Rev. Drug Discov. 2014, 13, 259–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beitz, E.; Golldack, A.; Rothert, M.; Von Bülow, J. Challenges and achievements in the therapeutic modulation of aquaporin functionality. Pharmacol. Ther. 2015, 155, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.P.; Ciancetta, A.; De Almeida, A.; Marrone, A.; Re, N.; Soveral, G.; Casini, A. Aquaporin inhibition by gold(III) compounds: New insights. ChemMedChem 2013, 8, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Florio, M.; Engfors, A.; Gena, P.; Larsson, J.; Massaro, A.; Timpka, S.; Reimer, M.K.; Kjellbom, P.; Beitz, E.; Johanson, U.; et al. Characterization of the aquaporin-9 inhibitor RG100204 in vitro and in db/db mice. Cells 2022, 11, 3118. [Google Scholar] [CrossRef]
- Lazowski, K.W.; Li, J.; Delporte, C.; Baum, B.J. Evidence for the presence of a Hg-inhibitable water-permeability pathway and aquaporin 1 in A5 salivary epithelial cells. J. Cell. Physiol. 1995, 164, 613–619. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Fushimi, K.; Sasaki, S.; Marumo, F. Structure of aquaporin-2 vasopressin water channel. J. Biol. Chem. 1996, 271, 5171–5176. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.B.; Verkman, A.S. Selected cysteine point mutations confer mercurial sensitivity to the mercurial-insensitive water channel MIWC/AQP-4. Biochemistry 1996, 35, 538–544. [Google Scholar] [CrossRef]
- Kuwahara, M.; Asai, T.; Sato, K.; Shinbo, I.; Terada, Y.; Marumo, F.; Sasaki, S. Functional characterization of a water channel of the nematode Caenorhabditis elegans. Biochim. Biophys. Acta (BBA) Gene Struct. Expr. 2000, 1517, 107–112. [Google Scholar] [CrossRef]
- Ikeda, M.; Beitz, E.; Kozono, D.; Guggino, W.B.; Agre, P.; Yasui, M. Characterization of aquaporin-6 as a nitrate channel in mammalian cells. Requirement of pore-lining residue threonine 63. J. Biol. Chem. 2002, 277, 39873–39879. [Google Scholar] [CrossRef] [Green Version]
- Beitz, E.; Pavlovic-Djuranovic, S.; Yasui, M.; Agre, P.; Schultz, J.E. Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis. Proc. Natl. Acad. Sci. USA 2004, 101, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Von Bülow, J.; Müller-Lucks, A.; Kai, L.; Bernhard, F.; Beitz, E. Functional characterization of a novel aquaporin from Dictyostelium discoideum amoebae implies a unique gating mechanism. J. Biol. Chem. 2012, 287, 7487–7494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, L.A.; Zhang, H.; Abraham, N.; Sun, L.; Fleming, J.T.; Buechner, M.; Hall, D.H.; Gobel, V. Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux. Nat. Cell Biol. 2013, 15, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Maltaneri, R.E.; Schiappacasse, A.; Chamorro, M.E.; Nesse, A.B.; Vittori, D.C. Aquaporin-1 plays a key role in erythropoietin-induced endothelial cell migration. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118569. [Google Scholar] [CrossRef] [PubMed]
- Basu, N.; Bastiansz, A.; Dórea, J.G.; Fujimura, M.; Horvat, M.; Shroff, E.; Weihe, P.; Zastenskaya, I. Our evolved understanding of the human health risks of mercury. AMBIO 2023, 52, 877–896. [Google Scholar] [CrossRef]
- Krenc, D.; Song, J.; Almasalmeh, A.; Wu, B.; Beitz, E. The arginine-facing amino acid residue of the rat aquaporin 1 constriction determines solute selectivity according to its size and lipophilicity. Mol. Membr. Biol. 2014, 31, 228–238. [Google Scholar] [CrossRef]
- Rothert, M.; Rönfeldt, D.; Beitz, E. Electrostatic attraction of weak monoacid anions increases probability for protonation and passage through aquaporins. J. Biol. Chem. 2017, 292, 9358–9364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares-Silva, I.; Paiva, S.; Diallinas, G.; Casal, M. The conserved sequence NXX[S/T]HX[S/T]QDXXXT of the lactate/pyruvate:H(+) symporter subfamily defines the function of the substrate translocation pathway. Mol. Membr. Biol. 2007, 24, 464–474. [Google Scholar] [CrossRef] [PubMed]
- Gietz, R.D.; Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2007, 2, 31–34. [Google Scholar] [CrossRef]
- Denker, B.M.; Smith, B.L.; Kuhajda, F.P.; Agre, P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 1988, 263, 15634–15642. [Google Scholar] [CrossRef] [PubMed]
- Roudier, N.; Verbavatz, J.M.; Maurel, C.; Ripoche, P.; Tacnet, F. Evidence for the presence of aquaporin-3 in human red blood cells. J. Biol. Chem. 1998, 273, 8407–8412. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Promeneur, D.; Rojek, A.; Kumar, N.; Frøkiaer, J.; Nielsen, S.; King, L.S.; Agre, P.; Carbrey, J.M. Aquaporin 9 is the major pathway for glycerol uptake by mouse erythrocytes, with implications for malarial virulence. Proc. Natl. Acad. Sci. USA 2007, 104, 12560–12564. [Google Scholar] [CrossRef] [Green Version]
- Gibb, H.; O’Leary, K.G. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environ. Health Perspect. 2014, 122, 667–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenyon, G.L.; Bruice, T.W. Novel sulfhydryl reagents. Methods Enzymol. 1977, 47, 407–430. [Google Scholar] [CrossRef]
- Köpnick, A.L.; Geistlinger, K.; Beitz, E. Cysteine 159 delineates a hinge region of the alternating access monocarboxylate transporter 1 and is targeted by cysteine-modifying inhibitors. FEBS J. 2021, 288, 6052–6062. [Google Scholar] [CrossRef]
- Hansen, M.; Kun, J.F.; Schultz, J.E.; Beitz, E. A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites. J. Biol. Chem. 2002, 277, 4874–4882. [Google Scholar] [CrossRef] [Green Version]
- Holmgren, M.; Liu, Y.; Xu, Y.; Yellen, G. On the use of thiol-modifying agents to determine channel topology. Neuropharmacology 1996, 35, 797–804. [Google Scholar] [CrossRef]
- Chen, J.G.; Liu-Chen, S.; Rudnick, G. External cysteine residues in the serotonin transporter. Biochemistry 1997, 36, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.M.; Birdsell, D.N.; Yool, A.J. The activity of human aquaporin 1 as a cGMP-gated cation channel is regulated by tyrosine phosphorylation in the carboxyl-terminal domain. Mol. Pharmacol. 2012, 81, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeuken, K.; Jaeger, E.; Matthews, E.; Beitz, E. Methylthiosulfonate-Based Cysteine Modifiers as Alternative Inhibitors of Mercurial-Sensitive Aquaporins. Cells 2023, 12, 1742. https://doi.org/10.3390/cells12131742
Jeuken K, Jaeger E, Matthews E, Beitz E. Methylthiosulfonate-Based Cysteine Modifiers as Alternative Inhibitors of Mercurial-Sensitive Aquaporins. Cells. 2023; 12(13):1742. https://doi.org/10.3390/cells12131742
Chicago/Turabian StyleJeuken, Katrin, Emmi Jaeger, Emily Matthews, and Eric Beitz. 2023. "Methylthiosulfonate-Based Cysteine Modifiers as Alternative Inhibitors of Mercurial-Sensitive Aquaporins" Cells 12, no. 13: 1742. https://doi.org/10.3390/cells12131742
APA StyleJeuken, K., Jaeger, E., Matthews, E., & Beitz, E. (2023). Methylthiosulfonate-Based Cysteine Modifiers as Alternative Inhibitors of Mercurial-Sensitive Aquaporins. Cells, 12(13), 1742. https://doi.org/10.3390/cells12131742