Treating Hyperexcitability in Human Cerebral Organoids Resulting from Oxygen-Glucose Deprivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cerebral Organoid Generation and Maintenance
2.2. Immunofluorescence and Microscopy
2.3. Acute Slice Electrophysiology
2.3.1. Acute Slice Preparation
2.3.2. Data Acquisition
2.3.3. Power Spectral Density Analysis and Statistics
2.4. RT-qPCR
2.5. qPCR Data Analysis and Statistics
3. Results
3.1. Immunofluorescence Demonstrates Presence of Neurons
3.2. OGD Is an Effective Hyperexcitable Agent at 4 and 7 Months
3.3. Bumetanide Significantly Reduces OGD-Induced Excitability
3.4. Cannabidiol Reduces OGD-Induced Hyperexcitability at 4 Months
3.5. Transcriptional Profile at 4 and 7 Months through RT-qPCR
3.6. GABAergic Profile at 4 and 7 Months
4. Discussion
5. Limitations
6. Future Directions and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lancaster, M.A.; Renner, M.; Martin, C.-A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral Organoids Model Human Brain Development and Microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Camp, J.G.; Badsha, F.; Florio, M.; Kanton, S.; Gerber, T.; Wilsch-Bräuninger, M.; Lewitus, E.; Sykes, A.; Hevers, W.; Lancaster, M.; et al. Human Cerebral Organoids Recapitulate Gene Expression Programs of Fetal Neocortex Development. Proc. Natl. Acad. Sci. USA 2015, 112, 15672–15677. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, C.A.; Gao, R.; Negraes, P.D.; Gu, J.; Buchanan, J.; Preissl, S.; Wang, A.; Wu, W.; Haddad, G.G.; Chaim, I.A.; et al. Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell 2019, 25, 558–569.e7. [Google Scholar] [CrossRef] [PubMed]
- Logan, S.; Arzua, T.; Yan, Y.; Jiang, C.; Liu, X.; Yu, L.-K.; Liu, Q.-S.; Bai, X. Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles. Cells 2020, 9, 1301. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Jensen, F.E. Modeling Hypoxia-Induced Seizures and Hypoxic Encephalopathy in Developing Brain. In Models of Seizures and Epilepsy; Academic Press: Cambridge, MA, USA, 2017; pp. 697–711. ISBN 978-0-12-804066-9. [Google Scholar]
- Shetty, J. Neonatal Seizures in Hypoxic–Ischaemic Encephalopathy—Risks and Benefits of Anticonvulsant Therapy. Dev. Med. Child Neurol. 2015, 57, 40–43. [Google Scholar] [CrossRef]
- Sowmithra, S.; Jain, N.K.; Datta, I. Evaluating In Vitro Neonatal Hypoxic-Ischemic Injury Using Neural Progenitors Derived from Human Embryonic Stem Cells. Stem Cells Dev. 2020, 29, 929–951. [Google Scholar] [CrossRef]
- Glass, H.C. Hypoxic-Ischemic Encephalopathy and Other Neonatal Encephalopathies. Contin. Lifelong Learn. Neurol. 2018, 24, 57. [Google Scholar] [CrossRef]
- Kang, S.K.; Kadam, S.D. Neonatal Seizures: Impact on Neurodevelopmental Outcomes. Front. Pediatr. 2015, 3, 101. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ari, Y.; Khalilov, I.; Kahle, K.T.; Cherubini, E. The GABA Excitatory/Inhibitory Shift in Brain Maturation and Neurological Disorders. Neuroscientist 2012, 18, 467–486. [Google Scholar] [CrossRef]
- Dzhala, V.I.; Talos, D.M.; Sdrulla, D.A.; Brumback, A.C.; Mathews, G.C.; Benke, T.A.; Delpire, E.; Jensen, F.E.; Staley, K.J. NKCC1 Transporter Facilitates Seizures in the Developing Brain. Nat. Med. 2005, 11, 1205–1213. [Google Scholar] [CrossRef]
- Sivakumaran, S.; Maguire, J. Bumetanide Reduces Seizure Progression and the Development of Pharmacoresistant Status Epilepticus. Epilepsia 2016, 57, 222–232. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-J.; Yang, X.-L.; Luo, W.-D.; Han, S.; Yin, J.; Liu, W.-H.; He, X.-H.; Peng, B.-W. Bumetanide Reduce the Seizure Susceptibility Induced by Pentylenetetrazol via Inhibition of Aberrant Hippocampal Neurogenesis in Neonatal Rats after Hypoxia-Ischemia. Brain Res. Bull. 2017, 130, 188–199. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, B.K.; Gloss, D.; Devinsky, O. Cannabinoids in Treatment-Resistant Epilepsy: A Review. Epilepsy Behav. 2017, 70, 341–348. [Google Scholar] [CrossRef]
- Hampson, A.J.; Grimaldi, M.; Axelrod, J.; Wink, D. Cannabidiol and (−)Δ9-Tetrahydrocannabinol Are Neuroprotective Antioxidants. Proc. Natl. Acad. Sci. USA 1998, 95, 8268–8273. [Google Scholar] [CrossRef]
- Landucci, E.; Mazzantini, C.; Lana, D.; Davolio, P.L.; Giovannini, M.G.; Pellegrini-Giampietro, D.E. Neuroprotective Effects of Cannabidiol but Not Δ9-Tetrahydrocannabinol in Rat Hippocampal Slices Exposed to Oxygen-Glucose Deprivation: Studies with Cannabis Extracts and Selected Cannabinoids. Int. J. Mol. Sci. 2021, 22, 9773. [Google Scholar] [CrossRef]
- Hayakawa, K.; Mishima, K.; Fujiwara, M. Therapeutic Potential of Non-Psychotropic Cannabidiol in Ischemic Stroke. Pharmaceuticals 2010, 3, 2197–2212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devinsky, O.; Verducci, C.; Thiele, E.A.; Laux, L.C.; Patel, A.D.; Filloux, F.; Szaflarski, J.P.; Wilfong, A.; Clark, G.D.; Park, Y.D.; et al. Open-Label Use of Highly Purified CBD (Epidiolex®) in Patients with CDKL5 Deficiency Disorder and Aicardi, Dup15q, and Doose Syndromes. Epilepsy Behav. 2018, 86, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, F.J.; Lafuente, H.; Carmen Rey-Santano, M.; Mielgo, V.E.; Gastiasoro, E.; Rueda, M.; Pertwee, R.G.; Castillo, A.I.; Romero, J.; Martínez-Orgado, J. Neuroprotective Effects of the Nonpsychoactive Cannabinoid Cannabidiol in Hypoxic-Ischemic Newborn Piglets. Pediatr. Res. 2008, 64, 653–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceprián, M.; Vargas, C.; García-Toscano, L.; Penna, F.; Jiménez-Sánchez, L.; Achicallende, S.; Elezgarai, I.; Grandes, P.; Hind, W.; Pazos, M.R.; et al. Cannabidiol Administration Prevents Hypoxia-Ischemia-Induced Hypomyelination in Newborn Rats. Front. Pharmacol. 2019, 10, 1131. [Google Scholar] [CrossRef] [Green Version]
- Ceprián, M.; Jiménez-Sánchez, L.; Vargas, C.; Barata, L.; Hind, W.; Martínez-Orgado, J. Cannabidiol Reduces Brain Damage and Improves Functional Recovery in a Neonatal Rat Model of Arterial Ischemic Stroke. Neuropharmacology 2017, 116, 151–159. [Google Scholar] [CrossRef]
- Sivitilli, A.A.; Gosio, J.T.; Ghoshal, B.; Evstratova, A.; Trcka, D.; Ghiasi, P.; Hernandez, J.J.; Beaulieu, J.M.; Wrana, J.L.; Attisano, L. Robust Production of Uniform Human Cerebral Organoids from Pluripotent Stem Cells. Life Sci. Alliance 2020, 3, e202000707. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Y.; Dong, X.; Feng, X. Clinical Significance of Electroencephalography Power Spectrum Density and Functional Connection Analysis in Neonates with Hypoxic-Ischemic Encephalopathy. Int. J. Dev. Neurosci. 2021, 81, 142–150. [Google Scholar] [CrossRef]
- Myers, M.H.; Jolly, E.; Li, Y.; de Jongh Curry, A.; Parfenova, H. Power Spectral Density Analysis of Electrocorticogram Recordings during Cerebral Hypothermia in Neonatal Seizures. Ann. Neurosci. 2017, 24, 12–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, A.; Santos, A.C.; Aquilino, M.S.; Sivitilli, A.A.; Attisano, L.; Carlen, P.L. Modelling Hyperexcitability in Human Cerebral Cortical Organoids: Oxygen/Glucose Deprivation Most Effective Stimulant. Heliyon 2023, 9, e14999. [Google Scholar] [CrossRef] [PubMed]
- Foliaki, S.T.; Schwarz, B.; Groveman, B.R.; Walters, R.O.; Ferreira, N.C.; Orrù, C.D.; Smith, A.; Wood, A.; Schmit, O.M.; Freitag, P.; et al. Neuronal Excitatory-to-Inhibitory Balance Is Altered in Cerebral Organoid Models of Genetic Neurological Diseases. Mol. Brain 2021, 14, 156. [Google Scholar] [CrossRef]
- Saleem, A. Investigation of Human Cerebral Organoids as an Enhanced Platform for Developmental Epilepsy Modelling. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2021. [Google Scholar]
- Fisher, R.S.; Scharfman, H.E.; de Curtis, M. How Can We Identify Ictal and Interictal Abnormal Activity. In Issues in Clinical Epileptology: A View from the Bench; Scharfman, H.E., Buckmaster, P.S., Eds.; Advances in Experimental Medicine and Biology; Springer: Dordrecht, The Netherlands, 2014; Volume 813, pp. 3–23. ISBN 978-94-017-8913-4. [Google Scholar]
- De Stefano, P.; Carboni, M.; Marquis, R.; Spinelli, L.; Seeck, M.; Vulliemoz, S. Increased Delta Power as a Scalp Marker of Epileptic Activity: A Simultaneous Scalp and Intracranial Electroencephalography Study. Eur. J. Neurol. 2022, 29, 26–35. [Google Scholar] [CrossRef]
- Zayachkivsky, A.; Lehmkuhle, M.J.; Ekstrand, J.J.; Dudek, F.E. Ischemic Injury Suppresses Hypoxia-Induced Electrographic Seizures and the Background EEG in a Rat Model of Perinatal Hypoxic-Ischemic Encephalopathy. J. Neurophysiol. 2015, 114, 2753–2763. [Google Scholar] [CrossRef] [Green Version]
- Lafuente, H.; Alvarez, F.J.; Pazos, M.R.; Alvarez, A.; Rey-Santano, M.C.; Mielgo, V.; Murgia-Esteve, X.; Hilario, E.; Martinez-Orgado, J. Cannabidiol Reduces Brain Damage and Improves Functional Recovery after Acute Hypoxia-Ischemia in Newborn Pigs. Pediatr. Res. 2011, 70, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Sampath, D.; White, A.M.; Raol, Y.H. Characterization of Neonatal Seizures in an Animal Model of Hypoxic-Ischemic Encephalopathy. Epilepsia 2014, 55, 985–993. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.-E.; Li, W.-B.; Qiao, M.-Y.; Cui, H.-T.; Zhao, L.-Z.; Chen, Q.-X.; Miao, J.-K. Comparative Efficacy of Anti-Epileptic Drugs for Neonatal Seizures: A Network Meta-Analysis. Pediatr. Neonatol. 2021, 62, 598–605. [Google Scholar] [CrossRef]
- Samarasinghe, R.A.; Miranda, O.A.; Buth, J.E.; Mitchell, S.; Ferando, I.; Watanabe, M.; Allison, T.F.; Kurdian, A.; Fotion, N.N.; Gandal, M.J.; et al. Identification of Neural Oscillations and Epileptiform Changes in Human Brain Organoids. Nat. Neurosci. 2021, 24, 1488–1500. [Google Scholar] [CrossRef]
- Cheah, P.-S.; Mason, J.O.; Ling, K.H. Challenges and Future Perspectives for 3D Cerebral Organoids as a Model for Complex Brain Disorders. Neurosci. Res. Notes 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Lai, B.F.L.; Lu, R.X.Z.; Davenport Huyer, L.; Kakinoki, S.; Yazbeck, J.; Wang, E.Y.; Wu, Q.; Zhang, B.; Radisic, M. A Well Plate–Based Multiplexed Platform for Incorporation of Organoids into an Organ-on-a-Chip System with a Perfusable Vasculature. Nat. Protoc. 2021, 16, 2158–2189. [Google Scholar] [CrossRef]
- Wang, E.Y.; Kuzmanov, U.; Smith, J.B.; Dou, W.; Rafatian, N.; Lai, B.F.L.; Lu, R.X.Z.; Wu, Q.; Yazbeck, J.; Zhang, X.-O.; et al. An Organ-on-a-Chip Model for Pre-Clinical Drug Evaluation in Progressive Non-Genetic Cardiomyopathy. J. Mol. Cell. Cardiol. 2021, 160, 97–110. [Google Scholar] [CrossRef]
- Shi, Y.; Sun, L.; Wang, M.; Liu, J.; Zhong, S.; Li, R.; Li, P.; Guo, L.; Fang, A.; Chen, R.; et al. Vascularized Human Cortical Organoids (VOrganoids) Model Cortical Development in Vivo. PLoS Biol. 2020, 18, e3000705. [Google Scholar] [CrossRef]
- Yu, F.; Hunziker, W.; Choudhury, D. Engineering Microfluidic Organoid-on-a-Chip Platforms. Micromachines 2019, 10, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelava, I.; Lancaster, M.A. Stem Cell Models of Human Brain Development. Cell Stem Cell 2016, 18, 736–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giandomenico, S.L.; Mierau, S.B.; Gibbons, G.M.; Wenger, L.M.D.; Masullo, L.; Sit, T.; Sutcliffe, M.; Boulanger, J.; Tripodi, M.; Derivery, E.; et al. Cerebral Organoids at the Air-Liquid Interface Generate Diverse Nerve Tracts with Functional Output. Nat. Neurosci. 2019, 22, 669–679. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Su, Y.; Adam, C.D.; Deutschmann, A.U.; Pather, S.R.; Goldberg, E.M.; Su, K.; Li, S.; Lu, L.; Jacob, F.; et al. Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell 2020, 26, 766–781.e9. [Google Scholar] [CrossRef]
- Hinz, L.; Torrella Barrufet, J.; Heine, V.M. KCC2 expression levels are reduced in post mortem brain tissue of Rett syndrome patients. Acta Neuropathol. Commun. 2019, 7, 196. [Google Scholar] [CrossRef]
- Matsui, T.K.; Matsubayashi, M.; Sakaguchi, Y.M.; Hayashi, R.K.; Zheng, C.; Sugie, K.; Hasegawa, M.; Nakagawa, T.; Mori, E. Six-month cultured cerebral organoids from human ES cells contain matured neural cells. Neurosci. Lett. 2018, 670, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Bhandage, A.K.; Bazov, I.; Kononenko, O.; Bakalkin, G.; Korpi, E.R.; Birnir, B. Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics. Front. Cell. Neurosci. 2014, 8, 288. [Google Scholar] [CrossRef] [PubMed]
- Ormel, P.R.; Vieira de Sá, R.; van Bodegraven, E.J.; Karst, H.; Harschnitz, O.; Sneeboer, M.A.M.; Johansen, L.E.; van Dijk, R.E.; Scheefhals, N.; Berdenis van Berlekom, A.; et al. Microglia innately develop within cerebral organoids. Nat. Commun. 2018, 9, 4167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Frequency | 7-Month Average Baseline-OGD + Bumetanide PSD Percent Difference | 4-Month Average Baseline-OGD + Bumetanide PSD Percent Difference | p-Value |
---|---|---|---|
Delta (1–3.9 Hz) | 433.6 | 1103.6 | 0.26 |
Theta (4–7.9 Hz) | 424.3 | 1652.0 | 0.25 |
Alpha (8–12.9 Hz) | 393.4 | 1056.5 | 0.23 |
Beta (13–29.9 Hz) | 321.0 | 877.2 | 0.21 |
Gamma (30–79.9 Hz) | 159.6 | 479.1 | 0.14 |
High-Frequency Oscillations (80–119.9 Hz) | 62.8 | 231.6 | 0.09 |
Very High-Frequency Oscillations (120–999.9 Hz) | 6.4 | 30.2 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.C.; Nader, G.; El Soufi El Sabbagh, D.; Urban, K.; Attisano, L.; Carlen, P.L. Treating Hyperexcitability in Human Cerebral Organoids Resulting from Oxygen-Glucose Deprivation. Cells 2023, 12, 1949. https://doi.org/10.3390/cells12151949
Santos AC, Nader G, El Soufi El Sabbagh D, Urban K, Attisano L, Carlen PL. Treating Hyperexcitability in Human Cerebral Organoids Resulting from Oxygen-Glucose Deprivation. Cells. 2023; 12(15):1949. https://doi.org/10.3390/cells12151949
Chicago/Turabian StyleSantos, Alexandra C., George Nader, Dana El Soufi El Sabbagh, Karolina Urban, Liliana Attisano, and Peter L. Carlen. 2023. "Treating Hyperexcitability in Human Cerebral Organoids Resulting from Oxygen-Glucose Deprivation" Cells 12, no. 15: 1949. https://doi.org/10.3390/cells12151949
APA StyleSantos, A. C., Nader, G., El Soufi El Sabbagh, D., Urban, K., Attisano, L., & Carlen, P. L. (2023). Treating Hyperexcitability in Human Cerebral Organoids Resulting from Oxygen-Glucose Deprivation. Cells, 12(15), 1949. https://doi.org/10.3390/cells12151949