The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies
Abstract
:1. Introduction
2. The Structure of c-Abl and Its Role in Neurodegenerative Diseases
Status | Detected in Patients and Cell or Animal Models | Reference |
---|---|---|
Increased c-Abl expression |
| [11,15,23,24] [38,39] [9,40] [9] [41] [23,31] [42] [43] [44] [45] |
Increased c-Abl activity |
| [32,34,46,47] [48] [12] [47] [49] [50] [28] [30] [11] [41] [51] [52] [33] |
c-Abl deficiency |
| [37] [40] [46] |
3. The Role of c-Abl in Brain Injuries
4. The Effects of c-Abl Activity on Neuronal Cells
4.1. Synaptic Plasticity
4.2. Cytoskeletal Dynamics and Cell Migration
5. Direct Association of c-Abl with Amyloid Proteins
6. Gene Expression and DNA Damage Response
7. c-Abl and Autophagy
8. c-Abl and Mitochondria
9. c-Abl and Apoptosis
10. Inflammatory Processes Regulation in Neurodegeneration
11. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abushouk, A.I.; Negida, A.; Elshenawy, R.A.; Zein, H.; Hammad, A.M.; Menshawy, A.; Mohamed, W.M.Y. C-Abl Inhibition; A Novel Therapeutic Target for Parkinson’s Disease. CNS Neurol. Disord. Drug Targets 2018, 17, 14–21. [Google Scholar] [CrossRef] [PubMed]
- La Barbera, L.; Vedele, F.; Nobili, A.; Krashia, P.; Spoleti, E.; Latagliata, E.C.; Cutuli, D.; Cauzzi, E.; Marino, R.; Viscomi, M.T.; et al. Nilotinib Restores Memory Function by Preventing Dopaminergic Neuron Degeneration in a Mouse Model of Alzheimer’s Disease. Prog. Neurobiol. 2021, 202, 102031. [Google Scholar] [CrossRef] [PubMed]
- Rojas, F.; Gonzalez, D.; Cortes, N.; Ampuero, E.; Hernández, D.E.; Fritz, E.; Abarzua, S.; Martinez, A.; Elorza, A.A.; Alvarez, A.; et al. Reactive Oxygen Species Trigger Motoneuron Death in Non-Cell-Autonomous Models of ALS through Activation of c-Abl Signaling. Front. Cell. Neurosci. 2015, 9, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vargas, L.M.; Cerpa, W.; Muñoz, F.J.; Zanlungo, S.; Alvarez, A.R. Amyloid-β Oligomers Synaptotoxicity: The Emerging Role of EphA4/c-Abl Signaling in Alzheimer’s Disease. Biochim. Biophys. Acta Mol. basis Dis. 2018, 1864, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Fagiani, F.; Lanni, C.; Racchi, M.; Govoni, S. Targeting Dementias through Cancer Kinases Inhibition. Alzheimer’s Dement. 2020, 6, e12044. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, S.; Dasmeh, P.; Furniss, S.; Shakhnovich, E. Phosphorylation Sites Are Evolutionary Checkpoints against Liquid-Solid Transition in Protein Condensates. Proc. Natl. Acad. Sci. USA 2023, 120, e2215828120. [Google Scholar] [CrossRef]
- Albanese, S.K.; Parton, D.L.; Işık, M.; Rodríguez-Laureano, L.; Hanson, S.M.; Behr, J.M.; Gradia, S.; Jeans, C.; Levinson, N.M.; Seeliger, M.A.; et al. An Open Library of Human Kinase Domain Constructs for Automated Bacterial Expression. Biochemistry 2018, 57, 4675–4689. [Google Scholar] [CrossRef] [Green Version]
- Maness, P.F. Nonreceptor Protein Tyrosine Kinases Associated with Neuronal Development. Dev. Neurosci. 1992, 14, 257–270. [Google Scholar] [CrossRef]
- Lopez-Cuina, M.; Guerin, P.A.; Canron, M.-H.; Delamarre, A.; Dehay, B.; Bezard, E.; Meissner, W.G.; Fernagut, P.-O. Nilotinib Fails to Prevent Synucleinopathy and Cell Loss in a Mouse Model of Multiple System Atrophy. Mov. Disord. 2020, 35, 1163–1172. [Google Scholar] [CrossRef]
- Hung, A.Y.; Schwarzschild, M.A. Approaches to Disease Modification for Parkinson’s Disease: Clinical Trials and Lessons Learned. Neurother. J. Am. Soc. Exp. Neurother. 2020, 17, 1393–1405. [Google Scholar] [CrossRef]
- Gonfloni, S.; Maiani, E.; Di Bartolomeo, C.; Diederich, M.; Cesareni, G. Oxidative Stress, DNA Damage, and c-Abl Signaling: At the Crossroad in Neurodegenerative Diseases? Int. J. Cell Biol. 2012, 2012, 683097. [Google Scholar] [CrossRef] [Green Version]
- Motaln, H.; Čerček, U.; Yamoah, A.; Tripathi, P.; Aronica, E.; Goswami, A.; Rogelj, B. Abl Kinase-Mediated FUS Tyr526 Phosphorylation Alters Nucleocytoplasmic FUS Localization in FTLD-FUS. Brain 2023, awad130. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, R.; Ishigaki, S.; Katsuno, M.; Kawai, K.; Sone, J.; Huang, Z.; Adachi, H.; Tanaka, F.; Urano, F.; Sobue, G. C-Abl Inhibition Delays Motor Neuron Degeneration in the G93A Mouse, an Animal Model of Amyotrophic Lateral Sclerosis. PLoS ONE 2012, 7, e46185. [Google Scholar] [CrossRef]
- Feng, L.; Sun, Z.-G.; Liu, Q.-W.; Ma, T.; Xu, Z.-P.; Feng, Z.-G.; Yuan, W.-X.; Zhang, H.; Xu, L.-H. Propofol Inhibits the Expression of Abelson Nonreceptor Tyrosine Kinase without Affecting Learning or Memory Function in Neonatal Rats. Brain Behav. 2020, 10, e01810. [Google Scholar] [CrossRef]
- Brahmachari, S.; Karuppagounder, S.S.; Ge, P.; Lee, S.; Dawson, V.L.; Dawson, T.M.; Ko, H.S. C-Abl and Parkinson’s Disease: Mechanisms and Therapeutic Potential. J. Parkinsons. Dis. 2017, 7, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Chen, H.; Ma, J.; He, Q.; Huang, Q.; Liu, Q.; Li, M.; Yuan, Z. C-Abl-P38α Signaling Plays an Important Role in MPTP-Induced Neuronal Death. Cell Death Differ. 2016, 23, 542–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imam, S.Z.; Trickler, W.; Kimura, S.; Binienda, Z.K.; Paule, M.G.; Slikker, W.J.; Li, S.; Clark, R.A.; Ali, S.F. Neuroprotective Efficacy of a New Brain-Penetrating C-Abl Inhibitor in a Murine Parkinson’s Disease Model. PLoS ONE 2013, 8, e65129. [Google Scholar] [CrossRef] [Green Version]
- Karuppagounder, S.S.; Wang, H.; Kelly, T.; Rush, R.; Nguyen, R.; Bisen, S.; Yamashita, Y.; Sloan, N.; Dang, B.; Sigmon, A.; et al. The C-Abl Inhibitor IkT-148009 Suppresses Neurodegeneration in Mouse Models of Heritable and Sporadic Parkinson’s Disease. Sci. Transl. Med. 2023, 15, eabp9352. [Google Scholar] [CrossRef]
- Marín, T.; Valls, C.; Jerez, C.; Huerta, T.; Elgueta, D.; Vidal, R.L.; Alvarez, A.R.; Cancino, G.I. The C-Abl/P73 Pathway Induces Neurodegeneration in a Parkinson’s Disease Model. IBRO Neurosci. Rep. 2022, 13, 378–387. [Google Scholar] [CrossRef]
- Lei, X.G.; Cheng, W.-H.; McClung, J.P. Metabolic Regulation and Function of Glutathione Peroxidase-1. Annu. Rev. Nutr. 2007, 27, 41–61. [Google Scholar] [CrossRef]
- Leonberg, A.K.; Chai, Y.-C. The Functional Role of Cysteine Residues for C-Abl Kinase Activity. Mol. Cell. Biochem. 2007, 304, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Leng, Y.; Huang, W.; Liu, X.; Kufe, D. Glutathione Peroxidase 1 Is Regulated by the C-Abl and Arg Tyrosine Kinases. J. Biol. Chem. 2003, 278, 39609–39614. [Google Scholar] [CrossRef] [Green Version]
- Schlatterer, S.D.; Tremblay, M.A.; Acker, C.M.; Davies, P. Neuronal C-Abl Overexpression Leads to Neuronal Loss and Neuroinflammation in the Mouse Forebrain. J. Alzheimers. Dis. 2011, 25, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Lindholm, D.; Pham, D.D.; Cascone, A.; Eriksson, O.; Wennerberg, K.; Saarma, M. C-Abl Inhibitors Enable Insights into the Pathophysiology and Neuroprotection in Parkinson’s Disease. Front. Aging Neurosci. 2016, 8, 254. [Google Scholar] [CrossRef] [Green Version]
- Kadlec, L.; Pendergast, A.M. The Amphiphysin-like Protein 1 (ALP1) Interacts Functionally with the CABL Tyrosine Kinase and May Play a Role in Cytoskeletal Regulation. Proc. Natl. Acad. Sci. USA 1997, 94, 12390–12395. [Google Scholar] [CrossRef] [PubMed]
- Estrada, L.D.; Zanlungo, S.M.; Alvarez, A.R. C-Abl Tyrosine Kinase Signaling: A New Player in AD Tau Pathology. Curr. Alzheimer Res. 2011, 8, 643–651. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.-G.; Xing, X.; Wu, R.; Zhou, L.; Zhang, Y.; Yuan, F.; Wang, S.; Yuan, Z. C-Abl-Induced Olig2 Phosphorylation Regulates the Proliferation of Oligodendrocyte Precursor Cells. Glia 2022, 70, 1084–1099. [Google Scholar] [CrossRef]
- Fu, J.; Mu, G.; Qiu, L.; Zhao, J.; Ou, C. C-Abl-P38α Signaling Pathway Mediates Dopamine Neuron Loss in Trigeminal Neuralgia. Mol. Pain 2020, 16, 1744806920930855. [Google Scholar] [CrossRef]
- Dash, D.; Goyal, V. Anticancer Drugs for Parkinson’s Disease: Is It a Ray of Hope or Only Hype? Ann. Indian Acad. Neurol. 2019, 22, 13–16. [Google Scholar] [CrossRef]
- Karim, M.R.; Liao, E.E.; Kim, J.; Meints, J.; Martinez, H.M.; Pletnikova, O.; Troncoso, J.C.; Lee, M.K. α-Synucleinopathy Associated c-Abl Activation Causes P53-Dependent Autophagy Impairment. Mol. Neurodegener. 2020, 15, 27. [Google Scholar] [CrossRef] [Green Version]
- Schlatterer, S.D.; Acker, C.M.; Davies, P. C-Abl in Neurodegenerative Disease. J. Mol. Neurosci. 2011, 45, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.-H.; Wu, Y.-F.; Wang, X.-M.; Han, Y.-Z. The C-Abl Inhibitor in Parkinson Disease. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2017, 38, 547–552. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, J.; Wu, X.; Gui, C.; Mao, K.; Zou, F.; Li, W. Role of C-Abl-GSK3β Signaling in MPP+-Induced Autophagy-Lysosomal Dysfunction. Toxicol. Sci. 2018, 165, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Karuppagounder, S.S.; Brahmachari, S.; Lee, Y.; Dawson, V.L.; Dawson, T.M.; Ko, H.S. The C-Abl Inhibitor, Nilotinib, Protects Dopaminergic Neurons in a Preclinical Animal Model of Parkinson’s Disease. Sci. Rep. 2014, 4, 4874. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, S.; Park, Y.J.; Yun, S.P.; Kwon, S.-H.; Kim, D.; Kim, D.Y.; Shin, J.S.; Cho, D.J.; Lee, G.Y.; et al. The C-Abl Inhibitor, Radotinib HCl, Is Neuroprotective in a Preclinical Parkinson’s Disease Mouse Model. Hum. Mol. Genet. 2018, 27, 2344–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebron, M.L.; Lonskaya, I.; Olopade, P.; Selby, S.T.; Pagan, F.; Moussa, C.E.-H. Tyrosine Kinase Inhibition Regulates Early Systemic Immune Changes and Modulates the Neuroimmune Response in α-Synucleinopathy. J. Clin. Cell. Immunol. 2014, 5, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutierrez, D.A.; Vargas, L.M.; Chandia-Cristi, A.; de la Fuente, C.; Leal, N.; Alvarez, A.R. C-Abl Deficiency Provides Synaptic Resiliency Against Aβ-Oligomers. Front. Cell. Neurosci. 2019, 13, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebron, M.L.; Lonskaya, I.; Moussa, C.E.-H. Nilotinib Reverses Loss of Dopamine Neurons and Improves Motor Behavior via Autophagic Degradation of α-Synuclein in Parkinson’s Disease Models. Hum. Mol. Genet. 2013, 22, 3315–3328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahul-Mellier, A.-L.; Fauvet, B.; Gysbers, A.; Dikiy, I.; Oueslati, A.; Georgeon, S.; Lamontanara, A.J.; Bisquertt, A.; Eliezer, D.; Masliah, E.; et al. C-Abl Phosphorylates α-Synuclein and Regulates Its Degradation: Implication for α-Synuclein Clearance and Contribution to the Pathogenesis of Parkinson’s Disease. Hum. Mol. Genet. 2014, 23, 2858–2879. [Google Scholar] [CrossRef] [Green Version]
- Brahmachari, S.; Ge, P.; Lee, S.H.; Kim, D.; Karuppagounder, S.S.; Kumar, M.; Mao, X.; Shin, J.H.; Lee, Y.; Pletnikova, O.; et al. Activation of Tyrosine Kinase C-Abl Contributes to α-Synuclein-Induced Neurodegeneration. J. Clin. Investig. 2016, 126, 2970–2988. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Wang, Z.; Tang, B.; Fang, M.; Li, J.; Chen, G.; Wang, X. Altered Expression of C-Abl in Patients with Epilepsy and in a Rat Model. Synapse 2014, 68, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.M.; Walsh, C.A. Genes That Regulate Neuronal Migration in the Cerebral Cortex. Epilepsy Res. 1999, 36, 143–154. [Google Scholar] [CrossRef]
- Yáñez, M.J.; Belbin, O.; Estrada, L.D.; Leal, N.; Contreras, P.S.; Lleó, A.; Burgos, P.V.; Zanlungo, S.; Alvarez, A.R. C-Abl Links APP-BACE1 Interaction Promoting APP Amyloidogenic Processing in Niemann-Pick Type C Disease. Biochim. Biophys. Acta 2016, 1862, 2158–2167. [Google Scholar] [CrossRef] [PubMed]
- Montecino, F.; González, N.; Blanco, N.; Ramírez, M.J.; González-Martín, A.; Alvarez, A.R.; Olguín, H. C-Abl Kinase Is Required for Satellite Cell Function Through Pax7 Regulation. Front. Cell Dev. Biol. 2021, 9, 606403. [Google Scholar] [CrossRef] [PubMed]
- Perez de Arce, K.; Varela-Nallar, L.; Farias, O.; Cifuentes, A.; Bull, P.; Couch, B.A.; Koleske, A.J.; Inestrosa, N.C.; Alvarez, A.R. Synaptic Clustering of PSD-95 Is Regulated by c-Abl through Tyrosine Phosphorylation. J. Neurosci. 2010, 30, 3728–3738. [Google Scholar] [CrossRef] [Green Version]
- Ko, H.S.; Lee, Y.; Shin, J.-H.; Karuppagounder, S.S.; Gadad, B.S.; Koleske, A.J.; Pletnikova, O.; Troncoso, J.C.; Dawson, V.L.; Dawson, T.M. Phosphorylation by the C-Abl Protein Tyrosine Kinase Inhibits Parkin’s Ubiquitination and Protective Function. Proc. Natl. Acad. Sci. USA 2010, 107, 16691–16696. [Google Scholar] [CrossRef] [PubMed]
- Imam, S.Z.; Zhou, Q.; Yamamoto, A.; Valente, A.J.; Ali, S.F.; Bains, M.; Roberts, J.L.; Kahle, P.J.; Clark, R.A.; Li, S. Novel Regulation of Parkin Function through C-Abl-Mediated Tyrosine Phosphorylation: Implications for Parkinson’s Disease. J. Neurosci. 2011, 31, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Lebouvier, T.; Scales, T.M.E.; Williamson, R.; Noble, W.; Duyckaerts, C.; Hanger, D.P.; Reynolds, C.H.; Anderton, B.H.; Derkinderen, P. The Microtubule-Associated Protein Tau Is Also Phosphorylated on Tyrosine. J. Alzheimers. Dis. 2009, 18, 1–9. [Google Scholar] [CrossRef]
- Yañez, M.J.; Campos, F.; Marín, T.; Klein, A.D.; Futerman, A.H.; Alvarez, A.R.; Zanlungo, S. C-Abl Activates RIPK3 Signaling in Gaucher Disease. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166089. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, Q.; Zhang, P.; Sun, L.; Peng, C.; Yuan, Z.; Cheng, J. C-Abl-Mediated Drp1 Phosphorylation Promotes Oxidative Stress-Induced Mitochondrial Fragmentation and Neuronal Cell Death. Cell Death Dis. 2017, 8, e3117. [Google Scholar] [CrossRef] [Green Version]
- Yan, C.; Yu, H.; Liu, Y.; Wu, P.; Wang, C.; Zhao, H.; Yang, K.; Shao, Q.; Zhong, Y.; Zhao, W.; et al. C-Abl Tyrosine Kinase-Mediated Neuronal Apoptosis in Subarachnoid Hemorrhage by Modulating the LRP-1-Dependent Akt/GSK3β Survival Pathway. J. Mol. Neurosci. 2021, 71, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Zuñiga, M.; Contreras, P.S.; Estrada, L.D.; Chamorro, D.; Villagra, A.; Zanlungo, S.; Seto, E.; Alvarez, A.R. C-Abl Stabilizes HDAC2 Levels by Tyrosine Phosphorylation Repressing Neuronal Gene Expression in Alzheimer’s Disease. Mol. Cell 2014, 56, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Imamura, K.; Izumi, Y.; Watanabe, A.; Tsukita, K.; Woltjen, K.; Yamamoto, T.; Hotta, A.; Kondo, T.; Kitaoka, S.; Ohta, A.; et al. The Src/c-Abl Pathway Is a Potential Therapeutic Target in Amyotrophic Lateral Sclerosis. Sci. Transl. Med. 2017, 9, eaaf3962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Yin, J.; Zhou, L.; Yan, F.; He, Q.; Huang, L.; Peng, S.; Jia, J.; Cheng, J.; Chen, H.; et al. Hippo/MST1 Signaling Mediates Microglial Activation Following Acute Cerebral Ischemia-Reperfusion Injury. Brain. Behav. Immun. 2016, 55, 236–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zechel, J.L.; Gamboa, J.L.; Peterson, A.G.; Puchowicz, M.A.; Selman, W.R.; Lust, W.D. Neuronal Migration Is Transiently Delayed by Prenatal Exposure to Intermittent Hypoxia. Birth Defects Res. B Dev. Reprod. Toxicol. 2005, 74, 287–299. [Google Scholar] [CrossRef]
- Michaelevski, I.; Segal-Ruder, Y.; Rozenbaum, M.; Medzihradszky, K.F.; Shalem, O.; Coppola, G.; Horn-Saban, S.; Ben-Yaakov, K.; Dagan, S.Y.; Rishal, I.; et al. Signaling to Transcription Networks in the Neuronal Retrograde Injury Response. Sci. Signal. 2010, 3, ra53. [Google Scholar] [CrossRef] [Green Version]
- Imam, S.Z.; Lantz-McPeak, S.M.; Cuevas, E.; Rosas-Hernandez, H.; Liachenko, S.; Zhang, Y.; Sarkar, S.; Ramu, J.; Robinson, B.L.; Jones, Y.; et al. Iron Oxide Nanoparticles Induce Dopaminergic Damage: In Vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage. Mol. Neurobiol. 2015, 52, 913–926. [Google Scholar] [CrossRef]
- Vargas, L.M.; Leal, N.; Estrada, L.D.; González, A.; Serrano, F.; Araya, K.; Gysling, K.; Inestrosa, N.C.; Pasquale, E.B.; Alvarez, A.R. EphA4 Activation of C-Abl Mediates Synaptic Loss and LTP Blockade Caused by Amyloid-β Oligomers. PLoS ONE 2014, 9, e92309. [Google Scholar] [CrossRef] [Green Version]
- Olabarria, M.; Pasini, S.; Corona, C.; Robador, P.; Song, C.; Patel, H.; Lefort, R. Dysfunction of the Ubiquitin Ligase E3A Ube3A/E6-AP Contributes to Synaptic Pathology in Alzheimer’s Disease. Commun. Biol. 2019, 2, 111. [Google Scholar] [CrossRef] [Green Version]
- Oh, D.; Han, S.; Seo, J.; Lee, J.-R.; Choi, J.; Groffen, J.; Kim, K.; Cho, Y.S.; Choi, H.-S.; Shin, H.; et al. Regulation of Synaptic Rac1 Activity, Long-Term Potentiation Maintenance, and Learning and Memory by BCR and ABR Rac GTPase-Activating Proteins. J. Neurosci. 2010, 30, 14134–14144. [Google Scholar] [CrossRef] [Green Version]
- Estrada, L.D.; Chamorro, D.; Yañez, M.J.; Gonzalez, M.; Leal, N.; von Bernhardi, R.; Dulcey, A.E.; Marugan, J.; Ferrer, M.; Soto, C.; et al. Reduction of Blood Amyloid-β Oligomers in Alzheimer’s Disease Transgenic Mice by c-Abl Kinase Inhibition. J. Alzheimers. Dis. 2016, 54, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Cancino, G.I.; Perez de Arce, K.; Castro, P.U.; Toledo, E.M.; von Bernhardi, R.; Alvarez, A.R. C-Abl Tyrosine Kinase Modulates Tau Pathology and Cdk5 Phosphorylation in AD Transgenic Mice. Neurobiol. Aging 2011, 32, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Cancino, G.I.; Toledo, E.M.; Leal, N.R.; Hernandez, D.E.; Yévenes, L.F.; Inestrosa, N.C.; Alvarez, A.R. STI571 Prevents Apoptosis, Tau Phosphorylation and Behavioural Impairments Induced by Alzheimer’s Beta-Amyloid Deposits. Brain 2008, 131, 2425–2442. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, A.R.; Sandoval, P.C.; Leal, N.R.; Castro, P.U.; Kosik, K.S. Activation of the Neuronal C-Abl Tyrosine Kinase by Amyloid-Beta-Peptide and Reactive Oxygen Species. Neurobiol. Dis. 2004, 17, 326–336. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, D.; Hu, P.; Wu, J.; Liu, W.; Zhao, Y.; Cao, M.; Fang, Y.; Bi, W.; Zheng, Z.; et al. The C-Abl-MST1 Signaling Pathway Mediates Oxidative Stress-Induced Neuronal Cell Death. J. Neurosci. 2011, 31, 9611–9619. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-J.; Seo, B.-R.; Choi, E.-J.; Koh, J.-Y. The Role of Reciprocal Activation of CAbl and Mst1 in the Oxidative Death of Cultured Astrocytes. Glia 2014, 62, 639–648. [Google Scholar] [CrossRef]
- Alvarez, A.R.; Klein, A.; Castro, J.; Cancino, G.I.; Amigo, J.; Mosqueira, M.; Vargas, L.M.; Yévenes, L.F.; Bronfman, F.C.; Zanlungo, S. Imatinib Therapy Blocks Cerebellar Apoptosis and Improves Neurological Symptoms in a Mouse Model of Niemann-Pick Type C Disease. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2008, 22, 3617–3627. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Sun, L.; Wang, J.; Fu, W.; Fu, Y.; Wang, J.; Tong, Y.; Pan, B. STI571 Protects Neuronal Cells from Neurotoxic Prion Protein Fragment-Induced Apoptosis. Neuropharmacology 2015, 93, 191–198. [Google Scholar] [CrossRef]
- Chen, T.-C.; Lai, Y.-K.; Yu, C.-K.; Juang, J.-L. Enterovirus 71 Triggering of Neuronal Apoptosis through Activation of Abl-Cdk5 Signalling. Cell. Microbiol. 2007, 9, 2676–2688. [Google Scholar] [CrossRef]
- Zhou, X.; Cheng, J.; Chen, Z.; Li, H.; Chen, S.; Xu, F.; Fan, R.; Zhuang, J.; Sun, T. Role of C-Abl in Ang II-Induced Aortic Dissection Formation: Potential Regulatory Efficacy on Phenotypic Transformation and Apoptosis of VSMCs. Life Sci. 2020, 256, 117882. [Google Scholar] [CrossRef]
- Yang, F.-C.; Chen, S.; Clegg, T.; Li, X.; Morgan, T.; Estwick, S.A.; Yuan, J.; Khalaf, W.; Burgin, S.; Travers, J.; et al. Nf1+/− Mast Cells Induce Neurofibroma like Phenotypes through Secreted TGF-Beta Signaling. Hum. Mol. Genet. 2006, 15, 2421–2437. [Google Scholar] [CrossRef] [Green Version]
- Contreras, P.S.; Tapia, P.J.; González-Hódar, L.; Peluso, I.; Soldati, C.; Napolitano, G.; Matarese, M.; Las Heras, M.; Valls, C.; Martinez, A.; et al. C-Abl Inhibition Activates TFEB and Promotes Cellular Clearance in a Lysosomal Disorder. iScience 2020, 23, 101691. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-L.; Chen, T.-F.; Chiu, M.-J.; Way, T.-D.; Lin, J.-K. Epigallocatechin Gallate (EGCG) Suppresses Beta-Amyloid-Induced Neurotoxicity through Inhibiting c-Abl/FE65 Nuclear Translocation and GSK3 Beta Activation. Neurobiol. Aging 2009, 30, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Won, S.J.; Wang, J.; Fong, R.; Butler, N.J.M.; Moss, A.; Wong, C.; Pan, J.; Sanchez, J.; Huynh, A.; et al. α-Synuclein Aggregates Induce c-Abl Activation and Dopaminergic Neuronal Loss by a Feed-Forward Redox Stress Mechanism. Prog. Neurobiol. 2021, 202, 102070. [Google Scholar] [CrossRef] [PubMed]
- Ettcheto, M.; Sánchez-López, E.; Pons, L.; Busquets, O.; Olloquequi, J.; Beas-Zarate, C.; Pallas, M.; García, M.L.; Auladell, C.; Folch, J.; et al. Dexibuprofen Prevents Neurodegeneration and Cognitive Decline in APPswe/PS1dE9 through Multiple Signaling Pathways. Redox Biol. 2017, 13, 345–352. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Song, Y.; Li, S.; Ma, Z.; Deng, X.; Fu, Q.; Qu, R.; Ma, S. Levo-Tetrahydropalmatine Attenuates Neuron Apoptosis Induced by Cerebral Ischemia-Reperfusion Injury: Involvement of c-Abl Activation. J. Mol. Neurosci. 2018, 65, 391–399. [Google Scholar] [CrossRef]
- Contreras, P.S.; Gonzalez-Zuñiga, M.; González-Hódar, L.; Yáñez, M.J.; Dulcey, A.; Marugan, J.; Seto, E.; Alvarez, A.R.; Zanlungo, S. Neuronal Gene Repression in Niemann-Pick Type C Models Is Mediated by the c-Abl/HDAC2 Signaling Pathway. Biochim. Biophys. Acta 2016, 1859, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Sn, S.; Pandurangi, J.; Murumalla, R.; Dj, V.; Garimella, L.; Acharya, A.; Rai, S.; Paul, A.; Yarreiphang, H.; Pillai, M.S.; et al. Small Molecule Modulator of Aggrephagy Regulates Neuroinflammation to Curb Pathogenesis of Neurodegeneration. EBioMedicine 2019, 50, 260–273. [Google Scholar] [CrossRef] [Green Version]
- Stavoe, A.K.H.; Nelson, J.C.; Martínez-Velázquez, L.A.; Klein, M.; Samuel, A.D.T.; Colón-Ramos, D.A. Synaptic Vesicle Clustering Requires a Distinct MIG-10/Lamellipodin Isoform and ABI-1 Downstream from Netrin. Genes Dev. 2012, 26, 2206–2221. [Google Scholar] [CrossRef] [Green Version]
- Dikiy, I.; Fauvet, B.; Jovičić, A.; Mahul-Mellier, A.-L.; Desobry, C.; El-Turk, F.; Gitler, A.D.; Lashuel, H.A.; Eliezer, D. Semisynthetic and In Vitro Phosphorylation of Alpha-Synuclein at Y39 Promotes Functional Partly Helical Membrane-Bound States Resembling Those Induced by PD Mutations. ACS Chem. Biol. 2016, 11, 2428–2437. [Google Scholar] [CrossRef] [Green Version]
- Dajas-Bailador, F.; Jones, E.V.; Whitmarsh, A.J. The JIP1 Scaffold Protein Regulates Axonal Development in Cortical Neurons. Curr. Biol. 2008, 18, 221–226. [Google Scholar] [CrossRef]
- Zukerberg, L.R.; Patrick, G.N.; Nikolic, M.; Humbert, S.; Wu, C.L.; Lanier, L.M.; Gertler, F.B.; Vidal, M.; Van Etten, R.A.; Tsai, L.H. Cables Links Cdk5 and C-Abl and Facilitates Cdk5 Tyrosine Phosphorylation, Kinase Upregulation, and Neurite Outgrowth. Neuron 2000, 26, 633–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasan, A.S.H.; Dinh, T.T.H.; Le, H.T.; Mizuno-Iijima, S.; Daitoku, Y.; Ishida, M.; Tanimoto, Y.; Kato, K.; Yoshiki, A.; Murata, K.; et al. Characterization of a Bicistronic Knock-in Reporter Mouse Model for Investigating the Role of CABLES2 In Vivo. Exp. Anim. 2021, 70, 22–30. [Google Scholar] [CrossRef]
- Woodring, P.J.; Litwack, E.D.; O’Leary, D.D.M.; Lucero, G.R.; Wang, J.Y.J.; Hunter, T. Modulation of the F-Actin Cytoskeleton by c-Abl Tyrosine Kinase in Cell Spreading and Neurite Extension. J. Cell Biol. 2002, 156, 879–892. [Google Scholar] [CrossRef]
- Michael, M.; Vehlow, A.; Navarro, C.; Krause, M. C-Abl, Lamellipodin, and Ena/VASP Proteins Cooperate in Dorsal Ruffling of Fibroblasts and Axonal Morphogenesis. Curr. Biol. 2010, 20, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Escalante, M.; Courtney, J.; Chin, W.G.; Teng, K.K.; Kim, J.I.; Fajardo, J.E.; Mayer, B.J.; Hempstead, B.L.; Birge, R.B. Phosphorylation of C-Crk II on the Negative Regulatory Tyr222 Mediates Nerve Growth Factor-Induced Cell Spreading and Morphogenesis. J. Biol. Chem. 2000, 275, 24787–24797. [Google Scholar] [CrossRef] [Green Version]
- Yano, H.; Cong, F.; Birge, R.B.; Goff, S.P.; Chao, M. V Association of the Abl Tyrosine Kinase with the Trk Nerve Growth Factor Receptor. J. Neurosci. Res. 2000, 59, 356–364. [Google Scholar] [CrossRef]
- Lee, H.; Engel, U.; Rusch, J.; Scherrer, S.; Sheard, K.; Van Vactor, D. The Microtubule plus End Tracking Protein Orbit/MAST/CLASP Acts Downstream of the Tyrosine Kinase Abl in Mediating Axon Guidance. Neuron 2004, 42, 913–926. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Shintani, T.; Takeuchi, Y.; Shirasawa, T.; Noda, M. Protein Tyrosine Phosphatase Receptor Type J (PTPRJ) Regulates Retinal Axonal Projections by Inhibiting Eph and Abl Kinases in Mice. J. Neurosci. 2018, 38, 8345–8363. [Google Scholar] [CrossRef] [PubMed]
- Radha, V.; Rajanna, A.; Mitra, A.; Rangaraj, N.; Swarup, G. C3G Is Required for C-Abl-Induced Filopodia and Its Overexpression Promotes Filopodia Formation. Exp. Cell Res. 2007, 313, 2476–2492. [Google Scholar] [CrossRef]
- Mitra, A.; Kalayarasan, S.; Gupta, V.; Radha, V. TC-PTP Dephosphorylates the Guanine Nucleotide Exchange Factor C3G (RapGEF1) and Negatively Regulates Differentiation of Human Neuroblastoma Cells. PLoS ONE 2011, 6, e23681. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Liao, G.; Wang, Y.; Tang, D.D. Distinctive Roles of Abi1 in Regulating Actin-Associated Proteins during Human Smooth Muscle Cell Migration. Sci. Rep. 2020, 10, 10667. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Cleary, R.A.; Wang, R.; Tang, D.D. Role of the Adapter Protein Abi1 in Actin-Associated Signaling and Smooth Muscle Contraction. J. Biol. Chem. 2013, 288, 20713–20722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerlach, B.D.; Tubbesing, K.; Liao, G.; Rezey, A.C.; Wang, R.; Barroso, M.; Tang, D.D. Phosphorylation of GMFγ by C-Abl Coordinates Lamellipodial and Focal Adhesion Dynamics to Regulate Airway Smooth Muscle Cell Migration. Am. J. Respir. Cell Mol. Biol. 2019, 61, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Na, C.H.; Sathe, G.; Rosenthal, L.S.; Moghekar, A.R.; Dawson, V.L.; Dawson, T.M.; Pandey, A. Development of a Novel Method for the Quantification of Tyrosine 39 Phosphorylated α- and β-Synuclein in Human Cerebrospinal Fluid. Clin. Proteom. 2020, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Derkinderen, P.; Scales, T.M.E.; Hanger, D.P.; Leung, K.-Y.; Byers, H.L.; Ward, M.A.; Lenz, C.; Price, C.; Bird, I.N.; Perera, T.; et al. Tyrosine 394 Is Phosphorylated in Alzheimer’s Paired Helical Filament Tau and in Fetal Tau with c-Abl as the Candidate Tyrosine Kinase. J. Neurosci. 2005, 25, 6584–6593. [Google Scholar] [CrossRef] [Green Version]
- Ait-Bouziad, N.; Chiki, A.; Limorenko, G.; Xiao, S.; Eliezer, D.; Lashuel, H.A. Phosphorylation of the Overlooked Tyrosine 310 Regulates the Structure, Aggregation, and Microtubule- and Lipid-Binding Properties of Tau. J. Biol. Chem. 2020, 295, 7905–7922. [Google Scholar] [CrossRef]
- Tremblay, M.A.; Acker, C.M.; Davies, P. Tau Phosphorylated at Tyrosine 394 Is Found in Alzheimer’s Disease Tangles and Can Be a Product of the Abl-Related Kinase, Arg. J. Alzheimers. Dis. 2010, 19, 721–733. [Google Scholar] [CrossRef]
- Lin, H.; Lin, T.-Y.; Juang, J.-L. Abl Deregulates Cdk5 Kinase Activity and Subcellular Localization in Drosophila Neurodegeneration. Cell Death Differ. 2007, 14, 607–615. [Google Scholar] [CrossRef]
- Yang, S.; Roselli, F.; Patchev, A.V.; Yu, S.; Almeida, O.F.X. Non-Receptor-Tyrosine Kinases Integrate Fast Glucocorticoid Signaling in Hippocampal Neurons. J. Biol. Chem. 2013, 288, 23725–23739. [Google Scholar] [CrossRef] [Green Version]
- Rawat, V.; Goux, W.; Piechaczyk, M.; D’Mello, S.R. C-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity. Mol. Neurobiol. 2016, 53, 1165–1180. [Google Scholar] [CrossRef] [Green Version]
- Hooper, C.; Tavassoli, M.; Chapple, J.P.; Uwanogho, D.; Goodyear, R.; Melino, G.; Lovestone, S.; Killick, R. TAp73 Isoforms Antagonize Notch Signalling in SH-SY5Y Neuroblastomas and in Primary Neurones. J. Neurochem. 2006, 99, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Cancino, G.I.; Miller, F.D.; Kaplan, D.R. P73 Haploinsufficiency Causes Tau Hyperphosphorylation and Tau Kinase Dysregulation in Mouse Models of Aging and Alzheimer’s Disease. Neurobiol. Aging 2013, 34, 387–399. [Google Scholar] [CrossRef] [PubMed]
- Bregman, D.B.; Pestell, R.G.; Kidd, V.J. Cell Cycle Regulation and RNA Polymerase II. Front. Biosci. 2000, 5, D244–D257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaba, A.; Agus, S.; Yıldırım, E.; Erdogan, C.S.; Yılmaz, B. Interaction of the MTERT Telomerase Catalytic Subunit with the C-Abl Tyrosine Kinase in Mouse Granulosa Cells. J. Recept. Signal Transduct. Res. 2020, 40, 365–373. [Google Scholar] [CrossRef]
- Kim, B.W.; Jeong, Y.E.; Wong, M.; Martin, L.J. DNA Damage Accumulates and Responses Are Engaged in Human ALS Brain and Spinal Motor Neurons and DNA Repair Is Activatable in IPSC-Derived Motor Neurons with SOD1 Mutations. Acta Neuropathol. Commun. 2020, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Burger, K.; Schlackow, M.; Gullerova, M. Tyrosine Kinase C-Abl Couples RNA Polymerase II Transcription to DNA Double-Strand Breaks. Nucleic Acids Res. 2019, 47, 3467–3484. [Google Scholar] [CrossRef]
- Dufey, E.; Bravo-San Pedro, J.M.; Eggers, C.; González-Quiroz, M.; Urra, H.; Sagredo, A.I.; Sepulveda, D.; Pihán, P.; Carreras-Sureda, A.; Hazari, Y.; et al. Genotoxic Stress Triggers the Activation of IRE1α-Dependent RNA Decay to Modulate the DNA Damage Response. Nat. Commun. 2020, 11, 2401. [Google Scholar] [CrossRef]
- Deville, S.S.; Delgadillo Silva, L.F.; Vehlow, A.; Cordes, N. C-Abl Tyrosine Kinase Is Regulated Downstream of the Cytoskeletal Protein Synemin in Head and Neck Squamous Cell Carcinoma Radioresistance and DNA Repair. Int. J. Mol. Sci. 2020, 21, 7277. [Google Scholar] [CrossRef]
- Baskaran, R.; Wood, L.D.; Whitaker, L.L.; Canman, C.E.; Morgan, S.E.; Xu, Y.; Barlow, C.; Baltimore, D.; Wynshaw-Boris, A.; Kastan, M.B.; et al. Ataxia Telangiectasia Mutant Protein Activates C-Abl Tyrosine Kinase in Response to Ionizing Radiation. Nature 1997, 387, 516–519. [Google Scholar] [CrossRef]
- Martin, L.J.; Liu, Z.; Pipino, J.; Chestnut, B.; Landek, M.A. Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex. Cereb. Cortex 2009, 19, 1273–1293. [Google Scholar] [CrossRef]
- Chibaya, L.; Karim, B.; Zhang, H.; Jones, S.N. Mdm2 Phosphorylation by Akt Regulates the P53 Response to Oxidative Stress to Promote Cell Proliferation and Tumorigenesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2003193118. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Blain, S.W. S Phase Entry Causes Homocysteine-Induced Death While Ataxia Telangiectasia and Rad3 Related Protein Functions Anti-Apoptotically to Protect Neurons. Brain 2010, 133, 2295–2312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, N.-X.; Liu, K.; Liu, X.; Zhang, X.-X.; Han, D.-Y. Induction and Regulation of the Immunoproteasome Subunit Β5i (PSMB8) in Laryngeal and Hypopharyngeal Carcinoma Cells. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2020, 26, e923621. [Google Scholar] [CrossRef] [PubMed]
- Marín, T.; Contreras, P.; Castro, J.F.; Chamorro, D.; Balboa, E.; Bosch-Morató, M.; Muñoz, F.J.; Alvarez, A.R.; Zanlungo, S. Vitamin E Dietary Supplementation Improves Neurological Symptoms and Decreases C-Abl/P73 Activation in Niemann-Pick C Mice. Nutrients 2014, 6, 3000–3017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaki, G.S.; Papavassiliou, A.G. Oxidative Stress-Induced Signaling Pathways Implicated in the Pathogenesis of Parkinson’s Disease. Neuromolecular Med. 2014, 16, 217–230. [Google Scholar] [CrossRef]
- Pan, B.; Yang, L.; Wang, J.; Wang, Y.; Wang, J.; Zhou, X.; Yin, X.; Zhang, Z.; Zhao, D. C-Abl Tyrosine Kinase Mediates Neurotoxic Prion Peptide-Induced Neuronal Apoptosis via Regulating Mitochondrial Homeostasis. Mol. Neurobiol. 2014, 49, 1102–1116. [Google Scholar] [CrossRef]
- Yildirim, E.; Yaba, A. Determination of C-Abl Tyrosine Kinase and MTERT Catalytic Subunit of Telomerase Expression Level during Prenatal-Postnatal Mouse Ovary-Testis Development. Reprod. Biol. 2020, 20, 555–567. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, J.; Zhu, Y.-N.; Ma, Y.; Murtaza, G.; Li, Y.; Wang, J.-H.; Pu, Y.-S. C1222C Deletion in Exon 8 of ABL1 Is Involved in Carcinogenesis and Cell Cycle Control of Colorectal Cancer Through IRS1/PI3K/Akt Pathway. Front. Oncol. 2020, 10, 1385. [Google Scholar] [CrossRef]
- Wang, J.Y.; Ki, S.W. Choosing between Growth Arrest and Apoptosis through the Retinoblastoma Tumour Suppressor Protein, Abl and P73. Biochem. Soc. Trans. 2001, 29, 666–673. [Google Scholar] [CrossRef]
- Lee, J.-H.; Jeong, M.-W.; Kim, W.; Choi, Y.H.; Kim, K.-T. Cooperative Roles of C-Abl and Cdk5 in Regulation of P53 in Response to Oxidative Stress. J. Biol. Chem. 2008, 283, 19826–19835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, D.-Y.; Du, Z.-H.; Liu, S.-M.; Liu, H.-J.; Wang, F.-W.; Ling, E.-A.; Liu, K.; Hao, A.-J. C-Abl Is Involved in High Glucose-Induced Apoptosis in Embryonic E12.5 Cortical Neural Progenitor Cells from the Mouse Brain. J. Neurochem. 2008, 106, 1720–1730. [Google Scholar] [CrossRef] [PubMed]
- Bagashev, A.; Mukerjee, R.; Santerre, M.; Del Carpio-Cano, F.E.; Shrestha, J.; Wang, Y.; He, J.J.; Sawaya, B.E. Involvement of MiR-196a in HIV-Associated Neurocognitive Disorders. Apoptosis 2014, 19, 1202–1214. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Mungunsukh, O.; Tutino, R.L.; Marquez, A.P.; Day, R.M. Angiotensin-II-Induced Apoptosis Requires Regulation of Nucleolin and Bcl-XL by SHP-2 in Primary Lung Endothelial Cells. J. Cell Sci. 2010, 123, 1634–1643. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Wu, J.; Xiao, L.; Bai, Y.; Qu, A.; Zheng, Z.; Yuan, Z. Regulation of Neuronal Cell Death by C-Abl-Hippo/MST2 Signaling Pathway. PLoS ONE 2012, 7, e36562. [Google Scholar] [CrossRef] [Green Version]
- Morales, I.; Farías, G.; Maccioni, R.B. Neuroimmunomodulation in the Pathogenesis of Alzheimer’s Disease. Neuroimmunomodulation 2010, 17, 202–204. [Google Scholar] [CrossRef]
- Schlatterer, S.D.; Suh, H.; Conejero-Goldberg, C.; Chen, S.; Acker, C.M.; Lee, S.C.; Davies, P. Neuronal C-Abl Activation Leads to Induction of Cell Cycle and Interferon Signaling Pathways. J. Neuroinflamm. 2012, 9, 208. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, F.A.; Piera-Velazquez, S.; Jimenez, S.A. Tyrosine Kinases in the Pathogenesis of Tissue Fibrosis in Systemic Sclerosis and Potential Therapeutic Role of Their Inhibition. Transl. Res. 2021, 231, 139–158. [Google Scholar] [CrossRef]
- Cheng, J.; Liao, Y.; Xiao, L.; Wu, R.; Zhao, S.; Chen, H.; Hou, B.; Zhang, X.; Liang, C.; Xu, Y.; et al. Autophagy Regulates MAVS Signaling Activation in a Phosphorylation-Dependent Manner in Microglia. Cell Death Differ. 2017, 24, 276–287. [Google Scholar] [CrossRef]
- Liu, H.; Cui, Y.; Bai, Y.; Fang, Y.; Gao, T.; Wang, G.; Zhu, L.; Dong, Q.; Zhang, S.; Yao, Y.; et al. The Tyrosine Kinase C-Abl Potentiates Interferon-Mediated Antiviral Immunity by STAT1 Phosphorylation. iScience 2021, 24, 102078. [Google Scholar] [CrossRef]
- Song, J.-H.; Yu, D.-H.; Hwang, T.-S.; Seung, B.-J.; Sur, J.-H.; Kim, Y.J.; Jung, D.-I. Expression of Platelet-Derived Growth Factor Receptor-α/ß, Vascular Endothelial Growth Factor Receptor-2, c-Abl, and c-Kit in Canine Granulomatous Meningoencephalitis and Necrotizing Encephalitis. Vet. Med. Sci. 2020, 6, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.N.; Aman, J.; van Nieuw Amerongen, G.P.; Dudek, S.M. Targeting Abl Kinases to Regulate Vascular Leak during Sepsis and Acute Respiratory Distress Syndrome. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1071–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, A.J.; Hebron, M.; Missner, A.A.; Wang, R.; Gao, X.; Kurd-Misto, B.T.; Liu, X.; Moussa, C.E.-H. Multikinase Abl/DDR/Src Inhibition Produces Optimal Effects for Tyrosine Kinase Inhibition in Neurodegeneration. Drugs R&D 2019, 19, 149–166. [Google Scholar] [CrossRef] [Green Version]
Inhibitor Disease | Model | Outcome of Inhibitor Use | Refs |
---|---|---|---|
Nilotinib | |||
PD | Transgenic α-Syn mice | 40% ↓ α-syn phosphorylation in the striatum and cortex | [9] |
PD patients | ↑ motor and cognitive functions | [35] | |
Mouse expressing Abl, α-Syn in substantia nigra | ↓ Abl activity, ↑ clearance of α-Syn by autophagic degradation ↑ lysosomal deposition, ↑ neurons survival, ↑ motor performance | [38] | |
A53T a-syn mouse | ↑ autophagic flux, ↓ accumulation of a-Syn, delayed disease onset | [30] | |
Mouse exposed to MPTP | ↓ Abl activation, ↓ levels of PARIS ↓ DA neuron loss and behavioral deficit | [34] | |
AD | DA neurons (VTA) in Tg2576 mouse overexpressing human APP695 | ↑ autophagy, ↓ autophagosome accumulation ↓ Aβ levels ↑ DA outflow to hippocampus ↓ hippocampal associated cognitive deficit | [2] |
α-Syn expressing mice, striatum, cortex neurons | ↓ Abl activity 30–40% ↓ α-Syn phosphorylation, no change of α−Syn aggregate burden | [9] | |
AD, NPC | NPC neurons AD transgenic mice | ↓ APP amyloidogenic cleavage in neurons overexpressing Aβ and APP ↓ Aβ burden in brains of AD mouse model | [43] |
Nilotinib Bosutinib | |||
α-Syn Tauopathy | Old A53T mice (human A53T α-Syn) | ↓ brain and peripheral α-Syn and p-Tau, modulated blood immunological response, altered microglia morphology, ↓ astrocytes and dendritic cells | [36] |
Bosutinib | |||
ALS | SOD1 iPCS MN SOD1 mice | ↑ survival of motor neurons in vitro, ↑ autophagy, ↓ misfolded SOD1 ↓ expression of mitochondrial genes, ↑ survival of SOD1 mice | [53] |
Imatininb (Imatinib mesylate, Gleevec, STI-571) | |||
PD | SN4741 cells, primary midbrain neurons | ↑ autophagy-lysosomal pathway, ↑ nuclear translocation of TFEB | [33] |
Neuronal cells (striatum) of C57BL/6 mice | ↓ parkin phosphorylation ↓ accumulation of substrates AIMP2, FBP1 | [47] | |
Neuronal cells, parkin (+), cAbl cond. KO mouse | ↓ parkin phosphorylation ↑ catalytically active and protective parkin | [46] | |
Mice exposed to short term MPTP treatment | ↓ Abl activity ↓ loss of DA neurons, ↓ locomotive defects | [16] | |
AD | Transgenic AD mouse overexpressing Aβ, cAbl KO mice, ABO expressing cells, | ↓ AβO in plasma, ↓ AD brain plaques and AβO accumulation ↓ neuroinflammation and cognitive deficits ↓ levels of beta-CTF fragments | [61] |
Neurons Transgenic AD mouse expressing AβO | ↓ HDAC2 levels ↓ repression activity and HDAC2 recruitment to the promoter of synaptic genes | [52] | |
Neurons in culture AD mouse (AβO)l | ↓ dendritic spine reduction ↓ neuronal apoptosis by AβO | [58] | |
APPswe/PSEN1ΔE9 mouse, primary neurons | ↓ Tau phosphorylation that is induced by Aβ activation of c-Abl/cdk5 | [62] | |
APPsw/PSEN1DeltaE9 transgenic rat model | ↓ cABl/p73 signaling, ↓ rat behavioral deficit induced by Aβ, tau phosphorylation and apoptosis | [63] | |
Rat hippocampal neurons expressing Aβ | ↓ neuronal cell death | [64] | |
Oxidative stress induced ND | P6 rat cerebellar granule neurons, E18 rat embryo hippocampus neurons exposed to H2O2, rotenone treated rats | ↓ oxidative stress induced c-Abl autophosphorylation ↓ downstream MST1 phosphorylation ↓ cell death | [65] |
Primary cortical astrocytes treated H2O2 | ↓level of FoxO1/3 and Mst1 ↓ cell death | [66] | |
NPC | NPC1 (Niemann–Pick type C) mouse | ↑ survival of Purkinje neurons, ↓ apoptosis in cerebellum, due ↓ c-Abl/p73 signaling | [67] |
Prp(Sc) | Neuro2A cells, rat hippocampal neurons of E18 embryos, both tretaed with Prp106-126 peptide | ↓ c-Abl kinase activity ↓ MMP change, ↓ Bax translocation to mitochondria ↓ cytochrome c release ↓ activation of BIM expression | [68] |
enterovirus EV71 infect | Non neuronal cells | ↓ c-Abl and Cdk65 activation ↓ neuronal apoptosis in cells infected with EV71 | [69] |
Trigeminal neuralgia | Infraorbital nerve ligation TN rat model | ↓ P38 expression ↓ loss of DA neurons | [28] |
VSMC degeneration | AngII infused mouse, Vasc. smooth muscle cell | ↓ AngII-induced apoptosis ↓ phenotypic transformation of VSCM in vivo and in vitro | [70] |
Neurofibromas | NF1+/− fibroblasts Fibroblasts from neurofibromas | ↓ excessive collagen synthesis ↓ proliferation ↓ Ras-cAbl signaling and TGF-β mediated fibroblast recruitment | [71] |
Imatinib with Spermidine, Mexiletine, Riluzol | |||
ALS (SOD1) | Rat spinal cord cells exposed to SOD1(G93A), SOD1 (wt) Ms astrocytes | ↓ c-Abl activity ↓ motoneuron death mediated through mitochondrial alterations | [3] |
Imatinib with antioxidants (troloc, esculetin tiron) | |||
ALS | Rat spinal cord cells exposed to SOD1(G86R), TDP43(A315T) astrocytes | ↓ motor neuron death | [3] |
Imatinib, nilotinib, dasatinib, GNF-2, analog GNF-5 | |||
NPC (Niemann–Pick type C) | HeLa TFEB-GFP cells HT22 TFEB-GFP cells HEK293 TFEB-GFP cells | ↑ TFEB nuclear translocation, ↑ TFEB activity ↓ c-Abl activity ↑ lysosomal exocytosis and autophagic flux, ↑ cholesterol clearance | [72] |
Dasatinib | |||
ALS (SOD1) | Mouse SOD1 motor neurons Transg. G93A-SOD1 mice | ↓ c-Abl phosphorylation, ↓ neuronal cytotoxicity ↓c-Abl phosphorylation, ↓ caspase-3 ↑ innervation status of neuromuscular junctions | [13] |
Radotinib | |||
PD | Primary cortical neurons, α-Syn pre-formed fibrils (PFF) inj. C57BL/6 mouse | ↓ neuronal toxicity, ↓ α-Syn PFF induced c-Abl activation ↓ dopaminergic neuron loss neuroinflammation and behavioral deficits ↓ β-Syn PFF induced toxicity in mice | [35] |
EGCG—epigallacatechin gallate | |||
Amyloidosis | MC65 neuronal cells expressing Aβ fragment APP-C99 | ↓ levels of AB, ↑ APP nonamyloidogenic proteolytic processing ↓ nuclear translocation of c-Abl ↓ c-Abl/Fe65 interaction | [73] |
N-acetyl cysteine | |||
PD | PFF exposed Wt neurons, AAV-mediated α-Syn overexpressing mouse | ↓ PFF-induced c-Abl activation in wt neurons, ↓ α-Syn aggregation ↓ dopaminergic neuronal loss ↓ microglia activation and motor impairment | [74] |
Dexibrufen (DXB) | |||
AD | APPswe/PS1dE3 mice | ↓ activation of glial cells, ↓ cytokine release (TNFα), ↓ soluble Aβ plaque deposition, ↑ Aβ degradation ↓ Tau hyperphosphorylation, ↓ c-Abl/CABLES/Cdk5 signaling ↓ memory impairment, ↑spatial learning | [75] |
INNO-406, second generation Abl inhibitor | |||
PD | C57bl/6 mouse exposed to toxic MPTP | ↓ c-Abl phosphorylation of parkin, ↓ AIMP2 accumulation, ↓progression of DA neuronal damage | [17] |
LY294002 | |||
SAH | Subarachnoid hemorrhage mice model | ↓ neuronal apoptosis, mortality and neurological deficits ↓ expression of cleaved caspase 3 | [51] |
Propofol | |||
animal model | Propofol treat. rat brains | ↓ c-Abl expression and ROS, ↑ neuronal survival | [14] |
Levo-tetrahydropalmitine (L-THP) | |||
Cer. I/R injury | Cerebral ischemic rats | ↓ c-Abl expression, ↓ neuronal apoptosis in injured rats | [76] |
Methyl-beta-cyclodextrin, vitamin E, + Two inhibitors | |||
NPC | NPC neuronal models, Npc1−/− mice | ↓ c-Abl/HDAC activation in NPC neurons, Npc1−/− mice, ↓ HDAC2 recruitment to promoter, ↓ neuronal genes’ expression | [77] |
Small molecule inhibitor PD180970 | |||
PD | HeLa cells, dopaminergic N27 cells, microglial BV2 cells, MPTP exposed mice | ↑ autophagy in an mTOR-independent manner ↓ α-Syn toxicity in cells and mice ↓ microglial activation | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motaln, H.; Rogelj, B. The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells 2023, 12, 2041. https://doi.org/10.3390/cells12162041
Motaln H, Rogelj B. The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells. 2023; 12(16):2041. https://doi.org/10.3390/cells12162041
Chicago/Turabian StyleMotaln, Helena, and Boris Rogelj. 2023. "The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies" Cells 12, no. 16: 2041. https://doi.org/10.3390/cells12162041
APA StyleMotaln, H., & Rogelj, B. (2023). The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells, 12(16), 2041. https://doi.org/10.3390/cells12162041