Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria
2.2. Culture Filtrate Protein Extract (CFPE)
2.3. Bovine Macrophage Culture
2.4. Infection with M. bovis and Treatment with CFPE
2.5. Quantification of Cell Death Types Using Annexin V/Propidium Iodide (PI)
2.6. Detection of Lactate Dehydrogenase (LDH)
2.7. IL-1β Secretion
2.8. Detection of ASC Specks
2.9. Analysis of Cleaved Gasdermin D in Granulomas from Cattle Naturally Infected with Mycobacterium bovis
2.10. CFU of M. bovis after Cell Death Induction
2.11. Western Blot
3. Results
3.1. M. bovis and Its CFPE Induce Necrotic Cell Death in Bovine Macrophages
3.2. M. bovis and CFPE Induce IL-1β Release in Bovine Macrophages
3.3. IL-1β Release Depends on ASC and Caspase-1 in Macrophages Infected with M. bovis AN5
3.4. The NLRP3 Inflammasome Was Activated by M. bovis
3.5. Cleaved Gasdermin D Was Present in Granulomatous Lesions of Cattle Naturally Infected with M. bovis
3.6. Inflammasome Activation in Macrophages Decreases Intracellular CFU of M. bovis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Lisle, G.W.; Mackintosh, C.G.; Bengis, R.G. Mycobacterium bovis in a Free-Living and Captive Wildlife, Including Farmed Deer. Rev. Sci. Tech. 2001, 20, 86–111. [Google Scholar] [CrossRef] [PubMed]
- Menzies, F.D.; Neill, S.D. Cattle-to-Cattle Transmission of Bovine Tuberculosis. Vet. J. 2000, 160, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.J.C.; Foster, C.R.W.; Morris, P.A.; Teverson, R. The Transmission of Mycobacterium bovis Infection to Cattle. Res. Vet. Sci. 2003, 74, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Tian, L.; Li, Y.; Zhang, X.; Qi, Y.; Jing, Z.; Pan, Y.; Zhang, L.; Fan, X.; Wang, M.; et al. High Prevalence of Extrapulmonary Tuberculosis in Dairy Farms: Evidence for Possible Gastrointestinal Transmission. PLoS ONE 2021, 16, e0249341. [Google Scholar] [CrossRef] [PubMed]
- Torres-González, P.; Cervera-Hernandez, M.E.; Martinez-Gamboa, A.; Garcia-Garcia, L.; Cruz-Hervert, L.P.; Bobadilla-Del Valle, M.; Ponce-De Leon, A.; Sifuentes-Osornio, J. Human Tuberculosis Caused by Mycobacterium bovis: A Retrospective Comparison with Mycobacterium tuberculosis in a Mexican Tertiary Care Centre, 2000–2015. BMC Infect. Dis. 2016, 16, 657. [Google Scholar] [CrossRef]
- Sharma, D.; Kanneganti, T.-D. The Cell Biology of Inflammasomes: Mechanisms of Inflammasome Activation and Regulation. J. Cell Biol. 2016, 213, 617–629. [Google Scholar] [CrossRef]
- Miao, E.A.; Rajan, J.V.; Aderem, A. Caspase-1-Induced Pyroptotic Cell Death. Immunol. Rev. 2011, 243, 206–214. [Google Scholar] [CrossRef]
- Sborgi, L.; Rühl, S.; Mulvihill, E.; Pipercevic, J.; Heilig, R.; Stahlberg, H.; Farady, C.J.; Müller, D.J.; Broz, P.; Hiller, S. GSDMD Membrane Pore Formation Constitutes the Mechanism of Pyroptotic Cell Death. EMBO J. 2016, 35, 1766–1778. [Google Scholar] [CrossRef]
- Briken, V.; Ahlbrand, S.E.; Shah, S. Mycobacterium tuberculosis and the Host Cell Inflammasome: A Complex Relationship. Front. Cell. Infect. Microbiol. 2013, 3, 62. [Google Scholar] [CrossRef]
- Yuan, Y.Y.; Xie, K.X.; Wang, S.L.; Yuan, L.W. Inflammatory Caspase-Related Pyroptosis: Mechanism, Regulation and Therapeutic Potential for Inflammatory Bowel Disease. Gastroenterol. Rep. 2018, 6, 167–176. [Google Scholar] [CrossRef]
- Krishnan, N.; Robertson, B.D.; Thwaites, G. Pathways of IL-1β Secretion by Macrophages Infected with Clinical Mycobacterium tuberculosis Strains. Tuberculosis 2013, 93, 538–547. [Google Scholar] [CrossRef]
- Vega-Manriquez, X.; López-Vidal, Y.; Moran, J.; Adams, L.G.; Gutiérrez-Pabello, J.A. Apoptosis-Inducing Factor Participation in Bovine Macrophage Mycobacterium bovis-Induced Caspase-Independent Cell Death. Infect. Immun. 2007, 75, 1223–1228. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Solís, H.; Vallecillo, A.J.; Benítez-Guzmán, A.; Adams, L.G.; López-Vidal, Y.; Gutiérrez-Pabello, J.A. Nitric Oxide Not Apoptosis Mediates Differential Killing of Mycobacterium bovis in Bovine Macrophages. PLoS ONE 2013, 8, e63464. [Google Scholar] [CrossRef]
- Molloy, A.; Laochumroonvorapong, P.; Kaplan, G. Apoptosis, but Not Necrosis, of Infected Monocytes Is Coupled with Killing of Intracellular Bacillus Calmette-Guérin. J. Exp. Med. 1994, 180, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Behar, S.M.; Divangahi, M.; Remold, H.G. Evasion of Innate Immunity by Mycobacterium tuberculosis: Is Death an Exit Strategy? Nat. Rev. Microbiol. 2010, 8, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Beckwith, K.S.; Beckwith, M.S.; Ullmann, S.; Sætra, R.S.; Kim, H.; Marstad, A.; Åsberg, S.E.; Strand, T.A.; Haug, M.; Niederweis, M.; et al. Plasma Membrane Damage Causes NLRP3 Activation and Pyroptosis during Mycobacterium tuberculosis Infection. Nat. Commun. 2020, 11, 2270. [Google Scholar] [CrossRef]
- Gutiérrez-Pabello, J.A.; Mcmurray, D.N.; Adams, L.G. Upregulation of Thymosin-10 by Mycobacterium bovis Infection of Bovine Macrophages Is Associated with Apoptosis. Infect. Immun. 2002, 70, 2121–2127. [Google Scholar] [CrossRef]
- Benítez-Guzmán, A.; Arriaga-Pizano, L.; Morán, J.; Gutiérrez-Pabello, J.A. Endonuclease G Takes Part in AIF-Mediated Caspase-Independent Apoptosis in Mycobacterium bovis-Infected Bovine Macrophages. Vet. Res. 2018, 49, 69. [Google Scholar] [CrossRef] [PubMed]
- Dallenga, T.; Repnik, U.; Corleis, B.; Eich, J.; Reimer, R.; Griffiths, G.W.; Schaible, U.E.M. Tuberculosis-Induced Necrosis of Infected Neutrophils Promotes Bacterial Growth Following Phagocytosis by Macrophages. Cell Host Microbe 2017, 22, 519–530.e3. [Google Scholar] [CrossRef]
- Danilchanka, O.; Sun, J.; Pavlenok, M.; Maueröder, C.; Speer, A.; Siroy, A.; Marrero, J.; Trujillo, C.; Mayhew, D.L.; Doornbos, K.S.; et al. An Outer Membrane Channel Protein of Mycobacterium tuberculosis with Exotoxin Activity. Proc. Natl. Acad. Sci. USA 2014, 111, 6750–6755. [Google Scholar] [CrossRef]
- Feng, S.; Hong, Z.; Zhang, G.; Li, J.; Tian, G.-B.; Zhou, H.; Huang, X. Mycobacterium PPE31 Contributes to Host Cell Death. Front. Cell. Infect. Microbiol. 2021, 11, 629836. [Google Scholar] [CrossRef] [PubMed]
- Danelishvili, L.; Everman, J.; Bermudez, L.E. Mycobacterium tuberculosis PPE68 and Rv2626c Genes Contribute to the Host Cell Necrosis and Bacterial Escape from Macrophages. Virulence 2016, 7, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Tundup, S.; Mohareer, K.; Hasnain, S.E. Mycobacterium tuberculosis PE25/PPE41 Protein Complex Induces Necrosis in Macrophages: Role in Virulence and Disease Reactivation? FEBS Open Bio 2014, 4, 822–828. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.E.; Brodin, P.; Jang, J.; Jang, M.-S.; Robertson, B.D.; Gicquel, B.; Stewart, G.R. The Balance of Apoptotic and Necrotic Cell Death in Mycobacterium tuberculosis Infected Macrophages Is Not Dependent on Bacterial Virulence. PLoS ONE 2012, 7, e47573. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Hou, W.; Song, X.; Yu, Y.; Huang, J.; Sun, X.; Kang, R.; Tang, D. Ferroptosis: Process and Function. Cell Death Differ. 2016, 23, 369–379. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, X.; Kouadir, M.; Shi, F.; Ding, T.; Liu, C.; Liu, J.; Wang, M.; Yang, L.; Yin, X.; et al. The AIM2 Inflammasome Is Involved in Macrophage Activation During Infection With Virulent Mycobacterium bovis Strain. J. Infect. Dis. 2013, 208, 1849–1858. [Google Scholar] [CrossRef]
- Dorhoi, A.; Nouailles, G.; Jörg, S.; Hagens, K.; Heinemann, E.; Pradl, L.; Oberbeck-Müller, D.; Duque-Correa, M.A.; Reece, S.T.; Ruland, J.; et al. Activation of the NLRP3 Inflammasome by Mycobacterium tuberculosis Is Uncoupled from Susceptibility to Active Tuberculosis. Eur. J. Immunol. 2012, 42, 374–384. [Google Scholar] [CrossRef]
- Wawrocki, S.; Druszczynska, M. Review Article Inflammasomes in Mycobacterium Tuberculosis-Driven Immunity. Can. J. Infect. Dis. Med. Microbiol. 2017, 2017, 2309478. [Google Scholar] [CrossRef]
- Compan, V.; Baroja-Mazo, A.; López-Castejón, G.; Gomez, A.I.; Martínez, C.M.; Angosto, D.; Montero, M.T.; Herranz, A.S.; Bazán, E.; Reimers, D.; et al. Cell Volume Regulation Modulates NLRP3 Inflammasome Activation. Immunity 2012, 37, 487–500. [Google Scholar] [CrossRef]
- Guo, H.; Callaway, J.B.; Ting, J.P.-Y. Inflammasomes: Mechanism of Action, Role in Disease, and Therapeutics. Nat. Med. 2015, 21, 677–687. [Google Scholar] [CrossRef]
- Lukens, J.R.; Gross, J.M.; Calabrese, C.; Iwakura, Y.; Lamkanfi, M.; Vogel, P.; Kanneganti, T.D. Critical Role for Inflammasome-Independent IL-1β Production in Osteomyelitis. Proc. Natl. Acad. Sci. USA 2014, 111, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-C.; Tsai, S.-H.; Lu, C.-C.; Hu, S.-T.; Wu, T.-S.; Huang, T.-T.; Sad-Sadier, N.; Ojcius, D.M.; Lai, H.-C. Activation of an NLRP3 Inflammasome Restricts Mycobacterium Kansasii Infection. PLoS ONE 2012, 7, e36292. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.F.; Shu, C.C.; Wang, J.Y.; Yan, B.S.; Lai, H.C.; Chiang, B.L.; Wu, L.S.H.; Yu, C.J. NLRP3 Inflammasome Is Attenuated in Patients with Mycobacterium Avium Complex Lung Disease and Correlated with Decreased Interleukin-1β Response and Host Susceptibility. Sci. Rep. 2019, 9, 12534. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Kim, B.J.; Kook, Y.H.; Kim, B.J. Mycobacterium abscessus Infection Leads to Enhanced Production of Type 1 Interferon and NLRP3 Inflammasome Activation in Murine Macrophages via Mitochondrial Oxidative Stress. PLoS Pathog. 2020, 16, e1008294. [Google Scholar] [CrossRef]
- Zhou, Y.; Shah, S.Z.A.; Yang, L.; Zhang, Z.; Zhou, X.; Zhao, D. Virulent Mycobacterium Bbovis Beijing Strain Activates the NLRP7 Inflammasome in THP-1 Macrophages. PLoS ONE 2016, 11, e0152853. [Google Scholar] [CrossRef]
- Bergsbaken, T.; Fink, S.L.; Cookson, B.T. Pyroptosis: Host Cell Death and Inflammation. Nat. Rev. Microbiol. 2009, 7, 99–109. [Google Scholar] [CrossRef]
- Motani, K.; Kushiyama, H.; Imamura, R.; Kinoshita, T.; Nishiuchi, T.; Suda, T. Caspase-1 Protein Induces Apoptosis-Associated Speck-like Protein Containing a Caspase Recruitment Domain (ASC)- Mediated Necrosis Independently of Its Catalytic Activity. J. Biol. Chem. 2011, 286, 33963–33972. [Google Scholar] [CrossRef]
- Conos, S.A.; Chen, K.W.; De Nardo, D.; Hara, H.; Whitehead, L.; Núñez, G.; Masters, S.L.; Murphy, J.M.; Schroder, K.; Vaux, D.L.; et al. Active MLKL Triggers the NLRP3 Inflammasome in a Cell-Intrinsic Manner. Proc. Natl. Acad. Sci. USA 2017, 114, E961–E969. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Y.; Wang, K.; Shi, X.; Wang, Y.; Huang, H.; Zhuang, Y.; Cai, T.; Wang, F.; Shao, F. Cleavage of GSDMD by Inflammatory Caspases Determines Pyroptotic Cell Death. Nature 2015, 526, 660–665. [Google Scholar] [CrossRef]
- Carrisoza-Urbina, J.; Morales-Salinas, E.; Bedolla-Alva, M.A.; Hernández-Pando, R.; Gutiérrez-Pabello, J.A. Atypical Granuloma Formation in Mycobacterium bovis-Infected Calves. PLoS ONE 2019, 14, e0218547. [Google Scholar] [CrossRef]
- Xue, Y.; Bai, Y.; Gao, X.; Jiang, H.; Wang, L.; Gao, H.; Xu, Z. Expression, Purification and Characterization of Mycobacterium tuberculosis RpfE Protein. J. Biomed. Res. 2012, 26, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.K.; Srivastava, R. Resuscitation Promoting Factors: A Family of Microbial Proteins in Survival and Resuscitation of Dormant Mycobacteria. Indian J. Microbiol. 2012, 52, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Behar, S.M.; Martin, C.J.; Booty, M.G.; Nishimura, T.; Zhao, X.; Gan, H.X.; Divangahi, M.; Remold, H.G. Apoptosis Is an Innate Defense Function of Macrophages against Mycobacterium tuberculosis. Mucosal Immunol. 2011, 4, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Macedo, A.A.; Costa, E.A.; Silva, A.P.C.; Paixão, T.A.; Santos, R.L. Monocyte-Derived Macrophages from Zebu (Bos Taurus Indicus) Are More Efficient to Control Brucella Abortus Intracellular Survival than Macrophages from European Cattle (Bos Taurus Taurus). Vet. Immunol. Immunopathol. 2013, 151, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Mahamed, D.; Boulle, M.; Ganga, Y.; Mc Arthur, C.; Skroch, S.; Oom, L.; Catinas, O.; Pillay, K.; Naicker, M.; Rampersad, S.; et al. Intracellular Growth of Mycobacterium tuberculosis after Macrophage Cell Death Leads to Serial Killing of Host Cells. eLife 2017, 6, e22028. [Google Scholar] [CrossRef]
- Christgen, S.; Zheng, M.; Kesavardhana, S.; Karki, R.; Malireddi, R.K.S.; Banoth, B.; Place, D.E.; Briard, B.; Sharma, B.R.; Tuladhar, S.; et al. Identification of the PANoptosome: A Molecular Platform Triggering Pyroptosis, Apoptosis, and Necroptosis (PANoptosis). Front. Cell. Infect. Microbiol. 2020, 10, 237. [Google Scholar] [CrossRef]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2021, 184, 149–168.e17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobar-Chavarría, O.; Benitez-Guzman, A.; Jiménez-Vázquez, I.; Carrisoza-Urbina, J.; Arriaga-Pizano, L.; Huerta-Yépez, S.; Baay-Guzmán, G.; Gutiérrez-Pabello, J.A. Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages. Cells 2023, 12, 2079. https://doi.org/10.3390/cells12162079
Escobar-Chavarría O, Benitez-Guzman A, Jiménez-Vázquez I, Carrisoza-Urbina J, Arriaga-Pizano L, Huerta-Yépez S, Baay-Guzmán G, Gutiérrez-Pabello JA. Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages. Cells. 2023; 12(16):2079. https://doi.org/10.3390/cells12162079
Chicago/Turabian StyleEscobar-Chavarría, Omar, Alejandro Benitez-Guzman, Itzel Jiménez-Vázquez, Jacobo Carrisoza-Urbina, Lourdes Arriaga-Pizano, Sara Huerta-Yépez, Guillermina Baay-Guzmán, and José A. Gutiérrez-Pabello. 2023. "Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages" Cells 12, no. 16: 2079. https://doi.org/10.3390/cells12162079
APA StyleEscobar-Chavarría, O., Benitez-Guzman, A., Jiménez-Vázquez, I., Carrisoza-Urbina, J., Arriaga-Pizano, L., Huerta-Yépez, S., Baay-Guzmán, G., & Gutiérrez-Pabello, J. A. (2023). Necrotic Cell Death and Inflammasome NLRP3 Activity in Mycobacterium bovis-Infected Bovine Macrophages. Cells, 12(16), 2079. https://doi.org/10.3390/cells12162079