From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes
Abstract
:1. Introduction
2. Molecular Biomarkers of Hypoxia
2.1. Hypoxia Inducible Factor (HIF)-α
2.1.1. Human Studies
2.1.2. Animal Models
2.2. Carbonic Anhydrase IX (CAIX)
Human Studies
2.3. miR-210
2.3.1. Human Studies
2.3.2. Animal Studies
3. Imaging Biomarkers of Hypoxia
3.1. T2* MRI
3.1.1. Human Studies
3.1.2. Animal Studies
3.2. Photoacoustic Imaging (PAI)
Animal Studies
4. Discussion: The Integration of Molecular and Imaging Biomarkers and Its Challenges
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Patel, J.; Landers, K.; Mortimer, R.H.; Richard, K. Regulation of Hypoxia Inducible Factors (HIF) in Hypoxia and Normoxia During Placental Development. Placenta 2010, 31, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Helmo, F.R.; Lopes, A.M.M.; Carneiro, A.C.D.M.; Campos, C.G.; Silva, P.B.; dos Reis Monteiro, M.L.G.; Rocha, L.P.; dos Reis, M.A.; Etchebehere, R.M.; Machado, J.R.; et al. Angiogenic and Antiangiogenic Factors in Preeclampsia. Pathol. Res. Pract. 2018, 214, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Benton, S.J.; McCowan, L.M.; Heazell, A.E.P.; Grynspan, D.; Hutcheon, J.A.; Senger, C.; Burke, O.; Chan, Y.; Harding, J.E.; Yockell-Lelièvre, J.; et al. Placental Growth Factor as a Marker of Fetal Growth Restriction Caused by Placental Dysfunction. Placenta 2016, 42, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Raghupathy, R. Cytokines as Key Players in the Pathophysiology of Preeclampsia. Med. Princ. Pract. 2013, 22, 8. [Google Scholar] [CrossRef] [PubMed]
- Al-Azemi, M.; Raghupathy, R.; Azizieh, F. Pro-Inflammatory and Anti-Inflammatory Cytokine Profiles in Fetal Growth Restriction. Clin. Exp. Obstet. Gynecol. 2017, 44, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Korkes, H.A.; De Oliveira, L.; Sass, N.; Salahuddin, S.; Karumanchi, S.A.; Rajakumar, A. Relationship between Hypoxia and Downstream Pathogenic Pathways in Preeclampsia. Hypertens. Pregnancy 2017, 36, 145–150. [Google Scholar] [CrossRef]
- George, E.M.; Granger, J.P. Recent Insights into the Pathophysiology of Preeclampsia. Expert Rev. Obstet. Gynecol. 2014, 5, 557–566. [Google Scholar] [CrossRef]
- Salomon, L.J.; Alfirevic, Z.; Da Silva Costa, F.; Deter, R.L.; Figueras, F.; Ghi, T.; Glanc, P.; Khalil, A.; Lee, W.; Napolitano, R.; et al. ISUOG Practice Guidelines: Ultrasound Assessment of Fetal Biometry and Growth. Ultrasound Obstet. Gynecol. 2019, 53, 715–723. [Google Scholar] [CrossRef]
- King, V.J.; Bennet, L.; Stone, P.R.; Clark, A.; Gunn, A.J.; Dhillon, S.K. Fetal Growth Restriction and Stillbirth: Biomarkers for Identifying at Risk Fetuses. Front. Physiol. 2022, 13, 959750. [Google Scholar] [CrossRef]
- Johnston, L.B. Abnormal Fetal Growth: Small for Gestational Age, Fetal Growth Restriction, Large for Gestational Age: Definitions and Epidemiology. Obstet. Gynecol. Clin. N. Am. 2021, 48, 267–279. [Google Scholar] [CrossRef]
- Giza, S.A.; Sethi, S.; Smith, L.M.; Empey, M.-E.E.T.; Morris, L.E.; McKenzie, C.A. The Application of in Utero Magnetic Resonance Imaging in the Study of the Metabolic and Cardiovascular Consequences of the Developmental Origins of Health And disease. J. Dev. Orig. Health Dis. 2021, 12, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Yamaleyeva, L.M.; Brosnihan, K.B.; Smith, L.M.; Sun, Y. Preclinical Ultrasound-Guided Photoacoustic Imaging of the Placenta in Normal and Pathologic Pregnancy. Mol. Imaging 2018, 17, 1536012118802721. [Google Scholar] [CrossRef] [PubMed]
- Galbiati, S.; Gabellini, D.; Ambrosi, A.; Soriani, N.; Pasi, F.; Locatelli, M.; Lucianò, R.; Candiani, M.; Valsecchi, L.; Zerbini, G.; et al. Early Increase in Circulating Carbonic Anhydrase IX: A Potential New Predictive Biomarker of Preeclampsia. Front. Mol. Biosci. 2023, 10, 1075604. [Google Scholar] [CrossRef] [PubMed]
- Ura, B.; Feriotto, G.; Monasta, L.; Bilel, S.; Zweyer, M.; Celeghini, C. Potential Role of Circulating MicroRNAs as Early Markers of Preeclampsia. Taiwan J. Obstet. Gynecol. 2014, 53, 232–234. [Google Scholar] [CrossRef]
- Zimna, A.; Kurpisz, M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis: Applications and Therapies. BioMed Res. Int. 2015, 2015, 549412. [Google Scholar] [CrossRef]
- Siragher, E.; Sferruzzi-Perri, A.N. Placental Hypoxia: What Have We Learnt from Small Animal Models? Placenta 2021, 113, 29–47. [Google Scholar] [CrossRef]
- Tianthong, W.; Phupong, V. Serum Hypoxia-Inducible Factor-1α and Uterine Artery Doppler Ultrasound during the First Trimester for Prediction of Preeclampsia. Sci. Rep. 2021, 11, 6674. [Google Scholar] [CrossRef]
- Galbiati, S.; Inversetti, A.; Causarano, V.; Stenirri, S.; Soriani, N.; Ambrosi, A.; Valsecchi, L.; Candiani, M.; Cremonesi, L.; Ferrari, M.; et al. HIF1A and MIF as Potential Predictive MRNA Biomarkers of Pre-Eclampsia: A Longitudinal Prospective Study in High Risk Population. Clin. Chem. Lab. Med. 2015, 53, 1339–1347. [Google Scholar] [CrossRef]
- Akhilesh, M.; Mahalingam, V.; Nalliah, S.; Ali, R.M.; Ganesalingam, M.; Haleagrahara, N. Hypoxia-Inducible Factor-1α as a Predictive Marker in Pre-Eclampsia. Biomed. Rep. 2013, 1, 257. [Google Scholar] [CrossRef]
- McCracken, S.A.; Seeho, S.K.M.; Carrodus, T.; Park, J.H.; Woodland, N.; Gallery, E.D.M.; Morris, J.M.; Ashton, A.W. Dysregulation of Oxygen Sensing/Response Pathways in Pregnancies Complicated by Idiopathic Intrauterine Growth Restriction and Early-Onset Preeclampsia. Int. J. Mol. Sci. 2022, 23, 2772. [Google Scholar] [CrossRef]
- Dai, S.Y.; Kanenishi, K.; Ueno, M.; Sakamoto, H.; Hata, T. Hypoxia-Inducible Factor-2α Is Involved in Enhanced Apoptosis in the Placenta from Pregnancies with Fetal Growth Restriction. Pathol. Int. 2004, 54, 843–849. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Tanaka, K.; Tanaka, H.; Maki, S.; Enomoto, N.; Takakura, S.; Nii, M.; Toriyabe, K.; Katsuragi, S.; Ikeda, T. Tadalafil Treatment Ameliorates Hypoxia and Alters Placental Expression of Proteins Downstream of MTOR Signaling in Fetal Growth Restriction. Medicina 2020, 56, 722. [Google Scholar] [CrossRef] [PubMed]
- Stubert, J.; Schattenberg, F.; Richter, D.U.; Dieterich, M.; Briese, V. Trophoblastic Progranulin Expression Is Upregulated in Cases of Fetal Growth Restriction and Preeclampsia. J. Perinat. Med. 2012, 40, 475–481. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, C.; Cotter, F.E.; McElwaine, S.; Twomey, A.; Mooney, E.E.; Ryan, F.; Vaughan, J. Altered Gene Expression Patterns in Intrauterine Growth Restriction: Potential Role of Hypoxia. Am. J. Obstet. Gynecol. 2007, 196, 70.e1–70.e6. [Google Scholar] [CrossRef]
- Sezer, S.D.; Küçük, M.; Döger, F.K.; Yüksel, H.; Odabaşi, A.R.; Türkmen, M.K.; Cakmak, B.Ç.; Ömürlü, I.K.; Kinaş, M.G. VEGF, PIGF and HIF-1α in Placentas of Early- and Late-Onset Pre-Eclamptic Patients. Gynecol. Endocrinol. 2013, 29, 797–800. [Google Scholar] [CrossRef]
- Colson, A.; Depoix, C.L.; Baldin, P.; Hubinont, C.; Sonveaux, P.; Debiève, F. Hypoxia-Inducible Factor 2 Alpha Impairs Human Cytotrophoblast Syncytialization: New Insights into Placental Dysfunction and Fetal Growth Restriction. FASEB J. 2020, 34, 15222–15235. [Google Scholar] [CrossRef]
- Rajakumar, A.; Whitelock, K.A.; Weissfeld, L.A.; Daftary, A.R.; Markovic, N.; Conrad, K.P. Selective Overexpression of the Hypoxia-Inducible Transcription Factor, HIF-2α, in Placentas from Women with Preeclampsia. Biol. Reprod. 2001, 64, 499–506. [Google Scholar] [CrossRef]
- Zamudio, S.; Wu, Y.; Ietta, F.; Rolfo, A.; Cross, A.; Wheeler, T.; Post, M.; Illsley, N.P.; Caniggia, I. Human Placental Hypoxia-Inducible Factor-1α Expression Correlates with Clinical Outcomes in Chronic Hypoxia in Vivo. Am. J. Pathol. 2007, 170, 2171–2179. [Google Scholar] [CrossRef]
- Keyes, L.E.; Armaza, J.F.; Niermeyer, S.; Vargas, E.; Young, D.A.; Moore, L.G. Intrauterine Growth Restriction, Preeclampsia, and Intrauterine Mortality at High Altitude in Bolivia. Pediatr. Res. 2003, 54, 20–25. [Google Scholar] [CrossRef]
- Fushima, T.; Sekimoto, A.; Minato, T.; Ito, T.; Oe, Y.; Kisu, K.; Sato, E.; Funamoto, K.; Hayase, T.; Kimura, Y.; et al. Reduced Uterine Perfusion Pressure (RUPP) Model of Preeclampsia in Mice. PLoS ONE 2016, 11, e0155426. [Google Scholar] [CrossRef]
- Zheng, L.; Huang, J.; Su, Y.; Wang, F.; Kong, H.; Xin, H. Vitexin Ameliorates Preeclampsia Phenotypes by Inhibiting TFPI-2 and HIF-1α/VEGF in a l-NAME Induced Rat Model. Drug Dev. Res. 2019, 80, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Bibeau, K.; Sicotte, B.; Béland, M.; Bhat, M.; Gaboury, L.; Couture, R.; St-Louis, J.; Brochu, M. Placental Underperfusion in a Rat Model of Intrauterine Growth Restriction Induced by a Reduced Plasma Volume Expansion. PLoS ONE 2016, 11, e0145982. [Google Scholar] [CrossRef] [PubMed]
- McClements, L.; Richards, C.; Patel, N.; Chen, H.; Sesperez, K.; Bubb, K.J.; Karlstaedt, A.; Aksentijevic, D. Impact of Reduced Uterine Perfusion Pressure Model of Preeclampsia on Metabolism of Placenta, Maternal and Fetal Hearts. Sci. Rep. 2022, 12, 1111. [Google Scholar] [CrossRef]
- Sekimoto, A.; Tanaka, K.; Hashizume, Y.; Sato, E.; Sato, H.; Ikeda, T.; Takahashi, N. Tadalafil Alleviates Preeclampsia and Fetal Growth Restriction in RUPP Model of Preeclampsia in Mice. Biochem. Biophys. Res. Commun. 2020, 521, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, D.J.; Escott, M.E.; Myers, L.; Intapad, S.; Lindsey, S.H.; Bayer, C.L. Spectral Photoacoustic Imaging to Estimate in Vivo Placental Oxygenation during Preeclampsia. Sci. Rep. 2019, 9, 558. [Google Scholar] [CrossRef]
- Gilbert, J.S.; Gilbert, S.A.B.; Arany, M.; Granger, J.P. Chbpr-Hypertension Produced By Placental Ischemia In Pregnant Rats Is Associated With Increased Soluble Endoglin Expression. Hypertension 2009, 53, 399. [Google Scholar] [CrossRef]
- Yamaleyeva, L.M.; Sun, Y.; Bledsoe, T.; Hoke, A.; Gurley, S.B.; Brosnihan, K.B. Photoacoustic Imaging for in Vivo Quantification of Placental Oxygenation in Mice. FASEB J. 2017, 31, 5520–5529. [Google Scholar] [CrossRef]
- Robb, K.P.; Cotechini, T.; Allaire, C.; Sperou, A.; Graham, C.H. Inflammation-Induced Fetal Growth Restriction in Rats Is Associated with Increased Placental HIF-1α Accumulation. PLoS ONE 2017, 12, e0175805. [Google Scholar] [CrossRef]
- Shi, M.; Yang, X.; Sun, L.; Ding, Y.; Huang, Z.; Zhang, P.; Yang, X.; Li, R.; Wang, G. Comparison of Different Modified Operations in the Reduced Uteroplacental Perfusion Pressure Rat Model of Preeclampsia. J. Reprod. Immunol. 2023, 156, 103815. [Google Scholar] [CrossRef]
- Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C.T. Carbonic Anhydrases: Current State of the Art, Therapeutic Applications and Future Prospects. J. Enzym. Inhib. Med. Chem. 2004, 19, 199–229. [Google Scholar] [CrossRef]
- Liao, S.Y.; Lerman, M.I.; Stanbridge, E.J. Expression of Transmembrane Carbonic Anhydrases, CAIX and CAXII, in Human Development. BMC Dev. Biol. 2009, 9, 22. [Google Scholar] [CrossRef]
- Valsecchi, L.; Galdini, A.; Gabellini, D.; Dell’Antonio, G.; Galbiati, S.; Fanecco, A.; Viganò, I.; Smid, M.; Bernardi, R.; Maestroni, S.; et al. Renal Dysfunction and Podocyturia in Pre-Eclampsia May Be Explained by Increased Urinary VEGF. Nephrol. Dial. Transpl. 2022, 37, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Mentese, A.; Güven, S.; Demir, S.; Sümer, A.; Yaman, S.Ö.; Alver, A.; Sonmez, M.; Karahan, S.C. Circulating Parameters of Oxidative Stress and Hypoxia in Normal Pregnancy and HELLP Syndrome. Adv. Clin. Exp. Med. 2018, 27, 1567–1572. [Google Scholar] [CrossRef]
- Bavelloni, A.; Ramazzotti, G.; Poli, A.; Piazzi, M.; Focaccia, E.; Blalock, W.; Faenza, I. MiRNA-210: A Current Overview. Anticancer Res. 2017, 37, 6511–6521. [Google Scholar] [CrossRef] [PubMed]
- Jaszczuk, I.; Koczkodaj, D.; Kondracka, A.; Kwaśniewska, A.; Winkler, I.; Filip, A. The Role of MiRNA-210 in Pre-Eclampsia Development. Ann. Med. 2022, 54, 1350. [Google Scholar] [CrossRef] [PubMed]
- Jairajpuri, D.S.; Malalla, Z.H.; Sarray, S.; Mahmood, N. Analysis of Differential Expression of Hypoxia-Inducible MicroRNA-210 Gene Targets in Mild and Severe Preeclamptic Patients. Non-Coding RNA Res. 2021, 6, 51. [Google Scholar] [CrossRef]
- Biró, O.; Alasztics, B.; Molvarec, A.; Joó, J.; Nagy, B.; Rigó, J. Various Levels of Circulating Exosomal Total-MiRNA and MiR-210 HypoxamiR in Different Forms of Pregnancy Hypertension. Pregnancy Hypertens. 2017, 10, 207–212. [Google Scholar] [CrossRef]
- Frazier, S.; McBride, M.W.; Mulvana, H.; Graham, D. From Animal Models to Patients: The Role of Placental MicroRNAs, MiR-210, MiR-126, and MiR-148a/152 in Preeclampsia. Clin. Sci. 2020, 134, 1001. [Google Scholar] [CrossRef]
- Pineles, B.L.; Romero, R.; Montenegro, D.; Tarca, A.L.; Han, Y.M.; Kim, Y.M.; Draghici, S.; Espinoza, J.; Kusanovic, J.P.; Mittal, P.; et al. Distinct Subsets of MicroRNAs Are Expressed Differentially in the Human Placentas of Patients with Preeclampsia. Am. J. Obstet. Gynecol. 2007, 196, 261.e1–261.e6. [Google Scholar] [CrossRef]
- Kopriva, S.E.; Chiasson, V.L.; Mitchell, B.M.; Chatterjee, P. TLR3-Induced Placental MiR-210 down-Regulates the STAT6/Interleukin-4 Pathway. PLoS ONE 2013, 8, e67760. [Google Scholar] [CrossRef]
- Hu, X.Q.; Dasgupta, C.; Xiao, D.; Huang, X.; Yang, S.; Zhang, L. MicroRNA-210 Targets Ten-Eleven Translocation Methylcytosine Dioxygenase 1 and Suppresses Pregnancy-Mediated Adaptation of Large Conductance Ca2+-Activated K+ Channel Expression and Function in Ovine Uterine Arteries. Hypertension 2017, 70, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, A.; Hutter, J.; Seed, M.; Grant, P.E.; Gowland, P. T2* Weighted Placental MRI: Basic Research Tool or an Emerging Clinical Test of Placental Dysfunction? Ultrasound Obstet. Gynecol. 2019, 55, 293–302. [Google Scholar] [CrossRef]
- Chavhan, G.B.; Babyn, P.S.; Thomas, B.; Shroff, M.M.; Haacke, E.M. Principles, Techniques, and Applications of T2*-Based MR Imaging and Its Special Applications. Radiographics 2009, 29, 1433–1449. [Google Scholar] [CrossRef] [PubMed]
- Sinding, M.; Peters, D.A.; Frøkjær, J.B.; Christiansen, O.B.; Petersen, A.; Uldbjerg, N.; Sørensen, A. Prediction of Low Birth Weight: Comparison of Placental T2* Estimated by MRI and Uterine Artery Pulsatility Index. Placenta 2017, 49, 48–54. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Chen, Z.; Chen, C.; Liu, P. Differences in Placental Oxygenation and Perfusion Status between Fetal Growth-Restricted and Small-for-Gestational-Age Pregnancies: A Functional Magnetic Resonance Imaging Study. Eur. Radiol. 2023, 33, 1729–1736. [Google Scholar] [CrossRef] [PubMed]
- Sinding, M.; Peters, D.A.; Frøkjær, J.B.; Christiansen, O.B.; Petersen, A.; Uldbjerg, N.; Sørensen, A. Placental Magnetic Resonance Imaging T2* Measurements in Normal Pregnancies and in Those Complicated by Fetal Growth Restriction. Ultrasound Obstet. Gynecol. 2016, 47, 748–754. [Google Scholar] [CrossRef]
- Hansen, D.N.; Sinding, M.; Petersen, A.; Christiansen, O.B.; Uldbjerg, N.; Peters, D.A.; Frøkjær, J.B.; Sørensen, A. T2*-Weighted Placental Magnetic Resonance Imaging: A Biomarker of Placental Dysfunction in Small-for-Gestational-Age Pregnancies. Am. J. Obstet. Gynecol. MFM 2022, 4, 100578. [Google Scholar] [CrossRef]
- Schabel, M.C.; Roberts, V.H.J.; Gibbins, K.J.; Rincon, M.; Gaffney, J.E.; Streblow, A.D.; Wright, A.M.; Lo, J.O.; Park, B.; Kroenke, C.D.; et al. Quantitative Longitudinal T2* Mapping for Assessing Placental Function and Association with Adverse Pregnancy Outcomes across Gestation. PLoS ONE 2022, 17, e0270360. [Google Scholar] [CrossRef]
- Magawa, S.; Nii, M.; Enomoto, N.; Takakura, S.; Maki, S.; Tanaka, H.; Ishida, M.; Kondo, E.; Sakuma, H.; Ikeda, T. Evaluation of Placental Oxygenation in Fetal Growth Restriction Using Blood Oxygen Level-Dependent Magnetic Resonance Imaging. Placenta 2022, 126, 40–45. [Google Scholar] [CrossRef]
- Sinding, M.; Peters, D.A.; Poulsen, S.S.; Frøkjær, J.B.; Christiansen, O.B.; Petersen, A.; Uldbjerg, N.; Sørensen, A. Placental Baseline Conditions Modulate the Hyperoxic BOLD-MRI Response. Placenta 2018, 61, 17–23. [Google Scholar] [CrossRef]
- Collinot, H.; Marchiol, C.; Lagoutte, I.; Lager, F.; Siauve, N.; Autret, G.; Balvay, D.; Renault, G.; Salomon, L.J.; Vaiman, D. Preeclampsia Induced by STOX1 Overexpression in Mice Induces Intrauterine Growth Restriction, Abnormal Ultrasonography and BOLD MRI Signatures. J. Hypertens. 2018, 36, 1399–1406. [Google Scholar] [CrossRef]
- Lo, J.O.; Roberts, V.H.J.; Schabel, M.C.; Wang, X.; Morgan, T.K.; Liu, Z.; Studholme, C.; Kroenke, C.D.; Frias, A.E. Novel Detection of Placental Insufficiency by Magnetic Resonance Imaging in the Nonhuman Primate. Reprod. Sci. 2018, 25, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Chalouhi, G.E.; Alison, M.; Deloison, B.; Thiam, R.; Autret, G.; Balvay, D.; Cuenod, C.A.; Clément, O.; Salomon, L.J.; Siauve, N. Fetoplacental Oxygenation in an Intrauterine Growth Restriction Rat Model by Using Blood Oxygen Level-Dependent MR Imaging at 4.7 T. Radiology 2013, 269, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Aimot-Macron, S.; Salomon, L.J.; Deloison, B.; Thiam, R.; Cuenod, C.A.; Clement, O.; Siauve, N. In Vivo MRI Assessment of Placental and Foetal Oxygenation Changes in a Rat Model of Growth Restriction Using Blood Oxygen Level-Dependent (BOLD) Magnetic Resonance Imaging. Eur. Radiol. 2013, 23, 1335–1342. [Google Scholar] [CrossRef]
- Ginosar, Y.; Bromberg, Z.; Nachmanson, N.; Ariel, I.; Skarzinski, G.; Hagai, L.; Elchalal, U.; Shapiro, J.; Abramovitch, R. Chronic Hypoxia in Pregnant Mice Impairs the Placental and Fetal Vascular Response to Acute Hypercapnia in BOLD-MRI Hemodynamic Response Imaging. Placenta 2021, 110, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Attia, A.B.E.; Balasundaram, G.; Moothanchery, M.; Dinish, U.S.; Bi, R.; Ntziachristos, V.; Olivo, M. A Review of Clinical Photoacoustic Imaging: Current and Future Trends. Photoacoustics 2019, 16, 100144. [Google Scholar] [CrossRef]
- Lawrence, D.J.; Bayer, C.L. Photoacoustic Imaging Provides an in Vivo Assessment of the Preeclamptic Placenta Remodeling and Function in Response to Therapy. Placenta 2022, 126, 46–53. [Google Scholar] [CrossRef]
- Ho, A.E.P.; Hutter, J.; Jackson, L.H.; Seed, P.T.; McCabe, L.; Al-Adnani, M.; Marnerides, A.; George, S.; Story, L.; Hajnal, J.V.; et al. T2* Placental Magnetic Resonance Imaging in Preterm Preeclampsia: An Observational Cohort Study. Hypertension 2020, 75, 1523–1531. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Darwish, F.M.; Meijerink, L.; Coolen, B.F.; Strijkers, G.J.; Bekker, M.; Lely, T.; Terstappen, F. From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes. Cells 2023, 12, 2080. https://doi.org/10.3390/cells12162080
Al Darwish FM, Meijerink L, Coolen BF, Strijkers GJ, Bekker M, Lely T, Terstappen F. From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes. Cells. 2023; 12(16):2080. https://doi.org/10.3390/cells12162080
Chicago/Turabian StyleAl Darwish, Fatimah M., Lotte Meijerink, Bram F. Coolen, Gustav J. Strijkers, Mireille Bekker, Titia Lely, and Fieke Terstappen. 2023. "From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes" Cells 12, no. 16: 2080. https://doi.org/10.3390/cells12162080
APA StyleAl Darwish, F. M., Meijerink, L., Coolen, B. F., Strijkers, G. J., Bekker, M., Lely, T., & Terstappen, F. (2023). From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes. Cells, 12(16), 2080. https://doi.org/10.3390/cells12162080