Human Alcohol-Microbiota Mice have Increased Susceptibility to Bacterial Pneumonia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mouse Studies
2.2. Human Stool Sample Collection and Fecal Engraftment
2.3. DNA Sequencing of the 16s rRNA Gene
2.4. Sequence Analysis
2.5. K. pneumoniae and S. pneumoniae Culture and Infection
2.6. K. pneumoniae and S. pneumoniae Lung and Spleen Quantification
2.7. Bronchoalveolar Lavage (BAL) Fluid Analyses
2.8. Lung Histology
2.9. Behavioral Assessments
2.10. Statistics
3. Results
3.1. Microbial Community Structure Is Maintained in the F1 Generation of Human Alcohol-Associated Microbiota Mice
3.2. Human Alcohol-Associated Microbiota Mice have Increased Weight Loss and Decreased Survival following K. pneumoniae Infection
3.3. Human Alcohol-Associated Microbiota Mice have Altered Lung Tissue Integrity and Increased Bacterial Burden
3.4. Human Alcohol-Associated Microbiota Mice Exhibit Increased Lung Leukocyte Recruitment and Inflammation
3.5. Human Alcohol-Associated Microbiota Mice have Increased Weight Loss following S. pneumoniae infection
3.6. Human Alcohol-Associated Microbiota Mice have Altered Lung Tissue Integrity and Increased S. pneumoniae burden
3.7. Human alcohol-associated Microbiota Mice have Increased Lung Leukocyte Recruitment and Inflammation
3.8. Human Alcohol-Associated Microbiota Mice Exhibit Increased Drinking Preference and Anxiety-Like Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riva, A.; Patel, V.; Kurioka, A.; Jeffery, H.C.; Wright, G.; Tarff, S.; Shawcross, D.; Ryan, J.M.; Evans, A.; Azarian, S.; et al. Mucosa-associated invariant T cells link intestinal immunity with antibacterial immune defects in alcoholic liver disease. Gut 2018, 67, 918–930. [Google Scholar] [CrossRef]
- Samuelson, D.R.; Shellito, J.E.; Maffei, V.J.; Tague, E.D.; Campagna, S.R.; Blanchard, E.E.; Luo, M.; Taylor, C.M.; Ronis, M.J.J.; Molina, P.E.; et al. Alcohol-associated intestinal dysbiosis impairs pulmonary host defense against Klebsiella pneumoniae. PLoS Pathog. 2017, 13, e1006426. [Google Scholar] [CrossRef]
- Leclercq, S.; Matamoros, S.; Cani, P.D.; Neyrinck, A.M.; Jamar, F.; Starkel, P.; Windey, K.; Tremaroli, V.; Backhed, F.; Verbeke, K.; et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl. Acad. Sci. USA 2014, 111, E4485–E4493. [Google Scholar] [CrossRef] [PubMed]
- Swanson, G.R.; Siskin, J.; Gorenz, A.; Shaikh, M.; Raeisi, S.; Fogg, L.; Forsyth, C.; Keshavarzian, A. Disrupted diurnal oscillation of gut-derived Short chain fatty acids in shift workers drinking alcohol: Possible mechanism for loss of resiliency of intestinal barrier in disrupted circadian host. Transl. Res. 2020, 221, 97–109. [Google Scholar] [CrossRef]
- Hendrikx, T.; Duan, Y.; Wang, Y.; Oh, J.H.; Alexander, L.M.; Huang, W.; Starkel, P.; Ho, S.B.; Gao, B.; Fiehn, O.; et al. Bacteria engineered to produce IL-22 in intestine induce expression of REG3G to reduce ethanol-induced liver disease in mice. Gut 2019, 68, 1504–1515. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Torralba, M.; Tan, J.; Embree, M.; Zengler, K.; Starkel, P.; van Pijkeren, J.P.; DePew, J.; Loomba, R.; Ho, S.B.; et al. Supplementation of saturated long-chain fatty acids maintains intestinal eubiosis and reduces ethanol-induced liver injury in mice. Gastroenterology 2015, 148, 203–214. [Google Scholar] [CrossRef]
- Engen, P.A.; Green, S.J.; Voigt, R.M.; Forsyth, C.B.; Keshavarzian, A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol. Res. Curr. Rev. 2015, 37, 223–236. [Google Scholar]
- Yang, J.H.; Bhargava, P.; McCloskey, D.; Mao, N.; Palsson, B.O.; Collins, J.J. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function. Cell Host Microbe 2017, 22, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, D.R.; Burnham, E.L.; Maffei, V.J.; Vandivier, R.W.; Blanchard, E.E.; Shellito, J.E.; Luo, M.; Taylor, C.M.; Welsh, D.A. The respiratory tract microbial biogeography in alcohol use disorder. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L107–L117. [Google Scholar] [CrossRef] [PubMed]
- MCC, C.; NL, L.; CM, F.; JL, G.; D, A.; C, G.; G, C.; SH, P.; C, M.; FS, M.; et al. Comparing the effects of acute alcohol consumption in germ-free and conventional mice: The role of the gut microbiota. BMC Microbiol. 2014, 14, 240. [Google Scholar] [CrossRef] [PubMed]
- Romano, K.A.; Dill-McFarland, K.A.; Kasahara, K.; Kerby, R.L.; Vivas, E.I.; Amador-Noguez, D.; Herd, P.; Rey, F.E. Fecal Aliquot Straw Technique (FAST) allows for easy and reproducible subsampling: Assessing interpersonal variation in trimethylamine-N-oxide (TMAO) accumulation. Microbiome 2018, 6, 91. [Google Scholar] [CrossRef]
- Samuelson, D.R.; Smith, D.R.; Cunningham, K.C.; Haq, S.; Villageliu, D.N.; Ellis, C.M.; Chowdhury, N.B.; Ramer-Tait, A.E.; Price, J.D.; Knoell, D.L. The Inherited Intestinal Microbiota from Myeloid-Specific ZIP8KO Mice Impairs Pulmonary Host Defense against Pneumococcal Pneumonia. Pathogens 2023, 12, 639. [Google Scholar] [CrossRef]
- Samuelson, D.R.; Smith, D.R.; Cunningham, K.C.; Wyatt, T.A.; Hall, S.C.; Murry, D.J.; Chhonker, Y.S.; Knoell, D.L. ZIP8-Mediated Intestinal Dysbiosis Impairs Pulmonary Host Defense against Bacterial Pneumonia. Int. J. Mol. Sci 2022, 23, 1022. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Parks, D.H.; Tyson, G.W.; Hugenholtz, P.; Beiko, R.G. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014, 30, 3123–3124. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O.’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Ter Braak and James Weedon (2022). Vegan: Community Ecology Package. R Package Version 2.6-4. Available online: https://cran.r-project.org/web/packages/vegan/index.html (accessed on 30 July 2023).
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2: An improved and extensible approach for metagenome inference. bioRxiv 2019, 672295. [Google Scholar] [CrossRef]
- Barnett, D.J.M.; Arts, I.C.W.; Penders, J. microViz: An R package for microbiome data visualization and statistics. J. Open Source Softw. 2021, 6. [Google Scholar] [CrossRef]
- Tools for Microbiome Analysis in R., 2017. Available online: https://github.com/microbiome/microbiome (accessed on 30 July 2023).
- Samuelson, D.R.; Gu, M.; Shellito, J.E.; Molina, P.E.; Taylor, C.M.; Luo, M.; Welsh, D.A. Pulmonary immune cell trafficking promotes host defense against alcohol-associated Klebsiella pneumonia. Commun. Biol. 2021, 4, 997. [Google Scholar] [CrossRef]
- Poole, J.A.; Wyatt, T.A.; Kielian, T.; Oldenburg, P.; Gleason, A.M.; Bauer, A.; Golden, G.; West, W.W.; Sisson, J.H.; Romberger, D.J. Toll-like receptor 2 regulates organic dust-induced airway inflammation. Am. J. Respir. Cell Mol. Biol 2011, 45, 711–719. [Google Scholar] [CrossRef]
- Poole, J.A.; Wyatt, T.A.; Oldenburg, P.J.; Elliott, M.K.; West, W.W.; Sisson, J.H.; Von Essen, S.G.; Romberger, D.J. Intranasal organic dust exposure-induced airway adaptation response marked by persistent lung inflammation and pathology in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009, 296, L1085–L1095. [Google Scholar] [CrossRef]
- Angoa-Perez, M.; Kane, M.J.; Briggs, D.I.; Francescutti, D.M.; Kuhn, D.M. Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J. Vis. Exp. 2013, 50978. [Google Scholar] [CrossRef]
- Blizard, D.A.; Vandenbergh, D.J.; Lionikas, A.; McClearn, G.E. Learning in the 2-bottle alcohol preference test. Alcohol. Clin. Exp. Res. 2008, 32, 2041–2046. [Google Scholar] [CrossRef]
- Fagundes, C.T.; Amaral, F.A.; Vieira, A.T.; Soares, A.C.; Pinho, V.; Nicoli, J.R.; Vieira, L.Q.; Teixeira, M.M.; Souza, D.G. Transient TLR activation restores inflammatory response and ability to control pulmonary bacterial infection in germfree mice. J. Immunol. 2012, 188, 1411–1420. [Google Scholar] [CrossRef]
- Brown, R.L.; Sequeira, R.P.; Clarke, T.B. The microbiota protects against respiratory infection via GM-CSF signaling. Nat. Commun. 2017, 8, 1512. [Google Scholar] [CrossRef]
- Ichinohe, T.; Pang, I.K.; Kumamoto, Y.; Peaper, D.R.; Ho, J.H.; Murray, T.S.; Iwasaki, A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. USA 2011, 108, 5354–5359. [Google Scholar] [CrossRef]
- Antunes, K.H.; Fachi, J.L.; de Paula, R.; da Silva, E.F.; Pral, L.P.; Dos Santos, A.A.; Dias, G.B.M.; Vargas, J.E.; Puga, R.; Mayer, F.Q.; et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat. Commun. 2019, 10, 3273. [Google Scholar] [CrossRef]
- Doherty, T.M.; Olsen, A.W.; van Pinxteren, L.; Andersen, P. Oral vaccination with subunit vaccines protects animals against aerosol infection with Mycobacterium tuberculosis. Infect. Immun. 2002, 70, 3111–3121. [Google Scholar] [CrossRef]
- KuoLee, R.; Harris, G.; Conlan, J.W.; Chen, W. Oral immunization of mice with the live vaccine strain (LVS) of Francisella tularensis protects mice against respiratory challenge with virulent type A F. tularensis. Vaccine 2007, 25, 3781–3791. [Google Scholar] [CrossRef]
- Samuelson, D.R.; de la Rua, N.M.; Charles, T.P.; Ruan, S.; Taylor, C.M.; Blanchard, E.E.; Luo, M.; Ramsay, A.J.; Shellito, J.E.; Welsh, D.A. Oral Immunization of Mice with Live Pneumocystis murina Protects against Pneumocystis Pneumonia. J. Immunol. 2016, 196, 2655–2665. [Google Scholar] [CrossRef]
- Sisson, J.H. Alcohol and airways function in health and disease. Alcohol 2007, 41, 293–307. [Google Scholar] [CrossRef]
- Wyatt, T.A.; Gentry-Nielsen, M.J.; Pavlik, J.A.; Sisson, J.H. Desensitization of PKA-stimulated ciliary beat frequency in an ethanol-fed rat model of cigarette smoke exposure. Alcohol. Clin. Exp. Res. 2004, 28, 998–1004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Bagby, G.J.; Happel, K.I.; Summer, W.R.; Nelson, S. Pulmonary host defenses and alcohol. Front. Biosci. 2002, 7, d1314–d1330. [Google Scholar] [PubMed]
- Arbabi, S.; Garcia, I.; Bauer, G.J.; Maier, R.V. Alcohol (ethanol) inhibits IL-8 and TNF: Role of the p38 pathway. J. Immunol. 1999, 162, 7441–7445. [Google Scholar] [CrossRef] [PubMed]
- Boe, D.M.; Nelson, S.; Zhang, P.; Quinton, L.; Bagby, G.J. Alcohol-induced suppression of lung chemokine production and the host defense response to Streptococcus pneumoniae. Alcohol. Clin. Exp. Res. 2003, 27, 1838–1845. [Google Scholar] [CrossRef]
- D’Souza, N.B.; Mandujano, J.F.; Nelson, S.; Summer, W.R.; Shellito, J.E. Alcohol ingestion impairs host defenses predisposing otherwise healthy mice to Pneumocystis carinii infection. Alcohol. Clin. Exp. Res. 1995, 19, 1219–1225. [Google Scholar] [CrossRef]
- Happel, K.I.; Odden, A.R.; Zhang, P.; Shellito, J.E.; Bagby, G.J.; Nelson, S. Acute alcohol intoxication suppresses the interleukin 23 response to Klebsiella pneumoniae infection. Alcohol. Clin. Exp. Res. 2006, 30, 1200–1207. [Google Scholar] [CrossRef]
- Mason, C.M.; Dobard, E.; Kolls, J.K.; Nelson, S. Ethanol and murine interleukin (IL)-12 production. Alcohol. Clin. Exp. Res. 2000, 24, 553–559. [Google Scholar] [CrossRef]
- Standiford, T.J.; Danforth, J.M. Ethanol feeding inhibits proinflammatory cytokine expression from murine alveolar macrophages ex vivo. Alcohol. Clin. Exp. Res. 1997, 21, 1212–1217. [Google Scholar] [CrossRef]
- Zisman, D.A.; Strieter, R.M.; Kunkel, S.L.; Tsai, W.C.; Wilkowski, J.M.; Bucknell, K.A.; Standiford, T.J. Ethanol feeding impairs innate immunity and alters the expression of Th1- and Th2-phenotype cytokines in murine Klebsiella pneumonia. Alcohol. Clin. Exp. Res. 1998, 22, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Laso, F.J.; Vaquero, J.M.; Almeida, J.; Marcos, M.; Orfao, A. Chronic alcohol consumption is associated with changes in the distribution, immunophenotype, and the inflammatory cytokine secretion profile of circulating dendritic cells. Alcohol. Clin. Exp. Res. 2007, 31, 846–854. [Google Scholar] [CrossRef]
- Siggins, R.W.; Bagby, G.J.; Molina, P.; Dufour, J.; Nelson, S.; Zhang, P. Alcohol exposure impairs myeloid dendritic cell function in rhesus macaques. Alcohol. Clin. Exp. Res. 2009, 33, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Szabo, G.; Catalano, D.; White, B.; Mandrekar, P. Acute alcohol consumption inhibits accessory cell function of monocytes and dendritic cells. Alcohol. Clin. Exp. Res. 2004, 28, 824–828. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Samuelson, D.R.; Taylor, C.M.; Molina, P.E.; Luo, M.; Siggins, R.W.; Shellito, J.E.; Welsh, D.A. Alcohol-associated intestinal dysbiosis alters mucosal-associated invariant T-cell phenotype and function. Alcohol. Clin. Exp. Res. 2021, 45, 934–947. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, D.R.; Gu, M.; Shellito, J.E.; Molina, P.E.; Taylor, C.M.; Luo, M.; Welsh, D.A. Intestinal Microbial Products From Alcohol-Fed Mice Contribute to Intestinal Permeability and Peripheral Immune Activation. Alcohol. Clin. Exp. Res. 2019, 43, 2122–2133. [Google Scholar] [CrossRef]
- Samuelson, D.R.; Siggins, R.W.; Ruan, S.; Amedee, A.M.; Sun, J.; Zhu, Q.K.; Marasco, W.A.; Taylor, C.M.; Luo, M.; Welsh, D.A.; et al. Alcohol consumption increases susceptibility to pneumococcal pneumonia in a humanized murine HIV model mediated by intestinal dysbiosis. Alcohol 2018, 80, 33–43. [Google Scholar] [CrossRef]
- Li, W.; Zhang, K.; Yang, H. Pectin Alleviates High Fat (Lard) Diet-Induced Nonalcoholic Fatty Liver Disease in Mice: Possible Role of Short-Chain Fatty Acids and Gut Microbiota Regulated by Pectin. J. Agric. Food Chem. 2018, 66, 8015–8025. [Google Scholar] [CrossRef]
- Chu, H.; Duan, Y.; Yang, L.; Schnabl, B. Small metabolites, possible big changes: A microbiota-centered view of non-alcoholic fatty liver disease. Gut 2019, 68, 359–370. [Google Scholar] [CrossRef]
- Greer, R.; Dong, X.; Morgun, A.; Shulzhenko, N. Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes 2016, 7, 126–135. [Google Scholar] [CrossRef]
- Dimitriu, P.A.; Boyce, G.; Samarakoon, A.; Hartmann, M.; Johnson, P.; Mohn, W.W. Temporal stability of the mouse gut microbiota in relation to innate and adaptive immunity. Environ. Microbiol Rep. 2013, 5, 200–210. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Gender | Age | AUDIT C | AUDIT Total |
---|---|---|---|---|
D1022 | Female | 60 | 1 | 1 |
D1003 | Female | 35 | 0 | 0 |
D1023 | Male | 63 | 0 | 0 |
D1038 | Male | 63 | 2 | 8 |
D1035 | Male | 63 | 9 | 17 |
D1047 | Male | 46 | 6 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunningham, K.C.; Smith, D.R.; Villageliú, D.N.; Ellis, C.M.; Ramer-Tait, A.E.; Price, J.D.; Wyatt, T.A.; Knoell, D.L.; Samuelson, M.M.; Molina, P.E.; et al. Human Alcohol-Microbiota Mice have Increased Susceptibility to Bacterial Pneumonia. Cells 2023, 12, 2267. https://doi.org/10.3390/cells12182267
Cunningham KC, Smith DR, Villageliú DN, Ellis CM, Ramer-Tait AE, Price JD, Wyatt TA, Knoell DL, Samuelson MM, Molina PE, et al. Human Alcohol-Microbiota Mice have Increased Susceptibility to Bacterial Pneumonia. Cells. 2023; 12(18):2267. https://doi.org/10.3390/cells12182267
Chicago/Turabian StyleCunningham, Kelly C., Deandra R. Smith, Daniel N. Villageliú, Christi M. Ellis, Amanda E. Ramer-Tait, Jeffrey D. Price, Todd A. Wyatt, Daren L. Knoell, Mystera M. Samuelson, Patricia E. Molina, and et al. 2023. "Human Alcohol-Microbiota Mice have Increased Susceptibility to Bacterial Pneumonia" Cells 12, no. 18: 2267. https://doi.org/10.3390/cells12182267
APA StyleCunningham, K. C., Smith, D. R., Villageliú, D. N., Ellis, C. M., Ramer-Tait, A. E., Price, J. D., Wyatt, T. A., Knoell, D. L., Samuelson, M. M., Molina, P. E., Welsh, D. A., & Samuelson, D. R. (2023). Human Alcohol-Microbiota Mice have Increased Susceptibility to Bacterial Pneumonia. Cells, 12(18), 2267. https://doi.org/10.3390/cells12182267