Mesenchymal Stem Cell-Derived Long Noncoding RNAs in Cardiac Injury and Repair
Abstract
:1. Introduction
2. Molecular Mechanisms of Cardiac Injury and Repair
2.1. Cardiac Injury
2.2. Cardiac Repair
3. Role of MSCs in Cardiac Regeneration and Repair
3.1. Paracrine Effects
3.2. Immunomodulatory Properties
3.3. Differentiation Potential
3.4. Extracellular Matrix Remodeling
4. MSC-Derived Exosomes and Noncoding RNAs
4.1. Exosomes
4.2. miRNAs
5. LncRNAs
5.1. LncRNA Biogenesis
5.2. Subcellular Localization and Functions of LncRNA
6. The Role of MSC-Derived lncRNAs in Cardiac Injury and Repair
6.1. LncRNA-TARID Improves Cardiac Function
6.2. LncRNA HAND2-AS1 Protects against Cardiomyocyte Injury
6.3. LncRNA A2M-AS1 Attenuates Myocardial Injury
6.4. Inhibition of LncRNA ZFAS1 Improves Myocardial Infarction
6.5. LncRNA Mir9-3hg Mitigates Cardiac Injury by Inhibiting Ferroptosis
6.6. LncRNA HCP5 in Mediating Cardioprotection
6.7. LncRNA UCA1 Protects against Cardiac Injury
6.8. LncRNA NEAT1 Protects against Cardiac Injuries
6.9. LncRNA KLF3-AS1 Attenuates Myocardial Infarction
6.10. LncRNA MALAT1 Prevents Aging-Induced Cardiac Dysfunction
6.11. MSC-Pretreatment-Induced lncRNAs in Mediating Cardioprotection
6.12. LncRNA XIST Improves Atrial Fibrillation
6.13. LncRNA MIR155HG Improves Vascular Health
6.14. Inhibition of lncRNA LOC100129516 Promotes Cholesterol Efflux and Alleviates Atherosclerosis
6.15. LncRNA Braveheart Promotes Cardiogenic Differentiation of MSCs In Vitro
6.16. The Role of MSC-Derived circRNA in Cardiac Injury and Repair
7. Challenges and Future Prospects for Utilizing MSC-Derived lncRNAs in Clinical Practice
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glovaci, D.; Fan, W.; Wong, N.D. Epidemiology of Diabetes Mellitus and Cardiovascular Disease. Curr. Cardiol. Rep. 2019, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Leancă, S.A.; Crișu, D.; Petriș, A.O.; Afrăsânie, I.; Genes, A.; Costache, A.D.; Tesloianu, D.N.; Costache, I.I. Left Ventricular Remodeling after Myocardial Infarction: From Physiopathology to Treatment. Life 2022, 12, 1111. [Google Scholar] [CrossRef]
- Algoet, M.; Janssens, S.; Himmelreich, U.; Gsell, W.; Pusovnik, M.; Van den Eynde, J.; Oosterlinck, W. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc. Med. 2022, 33, 357–366. [Google Scholar] [CrossRef]
- Fonseca, F.A.; Izar, M.C. Role of Inflammation in Cardiac Remodeling After Acute Myocardial Infarction. Front. Physiol. 2022, 13, 927163. [Google Scholar] [CrossRef] [PubMed]
- Kologrivova, I.; Shtatolkina, M.; Suslova, T.; Ryabov, V. Cells of the Immune System in Cardiac Remodeling: Main Players in Resolution of Inflammation and Repair After Myocardial Infarction. Front. Immunol. 2021, 12, 664457. [Google Scholar] [CrossRef]
- Halade, G.V.; Tourki, B. Specialized Pro-resolving Mediators Directs Cardiac Healing and Repair with Activation of Inflammation and Resolution Program in Heart Failure. Adv. Exp. Med. Biol. 2019, 1161, 45–64. [Google Scholar] [CrossRef]
- Paul, D.; Samuel, S.M.; Maulik, N. Mesenchymal stem cell: Present challenges and prospective cellular cardiomyoplasty approaches for myocardial regeneration. Antioxid. Redox Signal 2009, 11, 1841–1855. [Google Scholar] [CrossRef]
- Yan, W.; Abu-El-Rub, E.; Saravanan, S.; Kirshenbaum, L.A.; Arora, R.C.; Dhingra, S. Inflammation in myocardial injury: Mesenchymal stem cells as potential immunomodulators. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H213–H225. [Google Scholar] [CrossRef]
- Safari, S.; Malekvandfard, F.; Babashah, S.; Alizadehasl, A.; Sadeghizadeh, M.; Motavaf, M. Mesenchymal stem cell-derived exosomes: A novel potential therapeutic avenue for cardiac regeneration. Cell Mol. Biol. 2016, 62, 66–73. [Google Scholar]
- Nasser, M.I.; Masood, M.; Adlat, S.; Gang, D.; Zhu, S.; Li, G.; Li, N.; Chen, J.; Zhu, P. Mesenchymal stem cell-derived exosome microRNA as therapy for cardiac ischemic injury. Biomed. Pharmacother. 2021, 143, 112118. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, N.R.; Dehkordi, N.R.; Farjoo, M.H. Therapeutic properties of stem cell-derived exosomes in ischemic heart disease. Eur. J. Pharmacol. 2022, 920, 174839. [Google Scholar] [CrossRef] [PubMed]
- Kain, V.; Prabhu, S.D.; Halade, G.V. Inflammation revisited: Inflammation versus resolution of inflammation following myocardial infarction. Basic. Res. Cardiol. 2014, 109, 444. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. The extracellular matrix in myocardial injury, repair, and remodeling. J. Clin. Investig. 2017, 127, 1600–1612. [Google Scholar] [CrossRef]
- Varzideh, F.; Kansakar, U.; Donkor, K.; Wilson, S.; Jankauskas, S.S.; Mone, P.; Wang, X.; Lombardi, A.; Santulli, G. Cardiac Remodeling After Myocardial Infarction: Functional Contribution of microRNAs to Inflammation and Fibrosis. Front. Cardiovasc. Med. 2022, 9, 863238. [Google Scholar] [CrossRef]
- Uygur, A.; Lee, R.T. Mechanisms of Cardiac Regeneration. Dev. Cell 2016, 36, 362–374. [Google Scholar] [CrossRef] [PubMed]
- Frangogiannis, N.G. Transforming growth factor-β in myocardial disease. Nat. Rev. Cardiol. 2022, 19, 435–455. [Google Scholar] [CrossRef]
- Daseke, M.J., 2nd; Tenkorang, M.A.A.; Chalise, U.; Konfrst, S.R.; Lindsey, M.L. Cardiac fibroblast activation during myocardial infarction wound healing: Fibroblast polarization after MI. Matrix Biol. 2020, 91–92, 109–116. [Google Scholar] [CrossRef]
- Li, D.; Sun, J.; Zhong, T.P. Wnt Signaling in Heart Development and Regeneration. Curr. Cardiol. Rep. 2022, 24, 1425–1438. [Google Scholar] [CrossRef]
- Valizadeh, A.; Asghari, S.; Mansouri, P.; Alemi, F.; Majidinia, M.; Mahmoodpoor, A.; Yousefi, B. The Roles of Signaling Pathways in Cardiac Regeneration. Curr. Med. Chem. 2022, 29, 2142–2166. [Google Scholar] [CrossRef]
- Kachanova, O.; Lobov, A.; Malashicheva, A. The Role of the Notch Signaling Pathway in Recovery of Cardiac Function after Myocardial Infarction. Int. J. Mol. Sci. 2022, 23, 12509. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, L.; Wang, S.; Cheng, H.; Xu, L.; Pei, G.; Wang, Y.; Fu, C.; Jiang, Y.; He, C.; et al. Signaling pathways and targeted therapy for myocardial infarction. Signal Transduct. Target. Ther. 2022, 7, 78. [Google Scholar] [CrossRef] [PubMed]
- Karantalis, V.; Hare, J.M. Use of mesenchymal stem cells for therapy of cardiac disease. Circ. Res. 2015, 116, 1413–1430. [Google Scholar] [CrossRef] [PubMed]
- Vasanthan, J.; Gurusamy, N.; Rajasingh, S.; Sigamani, V.; Kirankumar, S.; Thomas, E.L.; Rajasingh, J. Role of Human Mesenchymal Stem Cells in Regenerative Therapy. Cells 2020, 10, 54. [Google Scholar] [CrossRef]
- Bagno, L.; Hatzistergos, K.E.; Balkan, W.; Hare, J.M. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol. Ther. 2018, 26, 1610–1623. [Google Scholar] [CrossRef]
- Bartczak, A.; McGilvray, I.; Keating, A. Mesenchymal stromal cell therapy to promote cardiac tissue regeneration and repair. Curr. Opin. Organ. Transplant. 2017, 22, 86–96. [Google Scholar] [CrossRef]
- Joladarashi, D.; Kishore, R. Mesenchymal Stromal Cell Exosomes in Cardiac Repair. Curr. Cardiol. Rep. 2022, 24, 405–417. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, M. New insights into the immunomodulatory role of exosomes in cardiovascular disease. Rev. Cardiovasc. Med. 2019, 20, 153–160. [Google Scholar] [CrossRef]
- Paliwal, S.; Chaudhuri, R.; Agrawal, A.; Mohanty, S. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J. Biomed. Sci. 2018, 25, 31. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, Y.; Hu, S.; Chen, Y.; Shen, Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis. 2020, 11, 349. [Google Scholar] [CrossRef]
- Bui, T.V.A.; Hwang, J.W.; Lee, J.H.; Park, H.J.; Ban, K. Challenges and Limitations of Strategies to Promote Therapeutic Potential of Human Mesenchymal Stem Cells for Cell-Based Cardiac Repair. Korean Circ. J. 2021, 51, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Margiana, R.; Markov, A.; Zekiy, A.O.; Hamza, M.U.; Al-Dabbagh, K.A.; Al-Zubaidi, S.H.; Hameed, N.M.; Ahmad, I.; Sivaraman, R.; Kzar, H.H.; et al. Clinical application of mesenchymal stem cell in regenerative medicine: A narrative review. Stem. Cell Res. Ther. 2022, 13, 366. [Google Scholar] [CrossRef] [PubMed]
- Pant, T.; Juric, M.; Bosnjak, Z.J.; Dhanasekaran, A. Recent Insight on the Non-coding RNAs in Mesenchymal Stem Cell-Derived Exosomes: Regulatory and Therapeutic Role in Regenerative Medicine and Tissue Engineering. Front. Cardiovasc. Med. 2021, 8, 737512. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.J.; Wei, R.; Li, F.; Liao, S.Y.; Tse, H.F. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem. Cell Rep. 2021, 16, 1662–1673. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, E.; Fujita, D.; Takahashi, M.; Oba, S.; Nishimatsu, H. Stem cell-derived exosomes as a therapeutic tool for cardiovascular disease. World J. Stem. Cells 2016, 8, 297–305. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, Y.; Chen, D.; Zheng, Y.; Jiang, J. Exosomes and Exosomal Cargos: A Promising World for Ventricular Remodeling Following Myocardial Infarction. Int. J. Nanomed. 2022, 17, 4699–4719. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Z. Cardiomyocyte-Derived Exosomes: Biological Functions and Potential Therapeutic Implications. Front. Physiol. 2019, 10, 1049. [Google Scholar] [CrossRef]
- Tang, Y.T.; Huang, Y.Y.; Zheng, L.; Qin, S.H.; Xu, X.P.; An, T.X.; Xu, Y.; Wu, Y.S.; Hu, X.M.; Ping, B.H.; et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int. J. Mol. Med. 2017, 40, 834–844. [Google Scholar] [CrossRef]
- Babst, M. MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr. Opin. Cell Biol. 2011, 23, 452–457. [Google Scholar] [CrossRef]
- Chang, W.; Wang, J. Exosomes and Their Noncoding RNA Cargo Are Emerging as New Modulators for Diabetes Mellitus. Cells 2019, 8, 853. [Google Scholar] [CrossRef]
- Fujii, S.; Miura, Y. Immunomodulatory and Regenerative Effects of MSC-Derived Extracellular Vesicles to Treat Acute GVHD. Stem. Cells 2022, 40, 977–990. [Google Scholar] [CrossRef]
- Maleki, B.; Alani, B.; Tamehri Zadeh, S.S.; Saadat, S.; Rajabi, A.; Ayoubzadeh, S.M.J.; Verdi, J.; Farrokhian, A.; Ghanbarian, H.; Noureddini, M.; et al. MicroRNAs and exosomes: Cardiac stem cells in heart diseases. Pathol. Res. Pract. 2022, 229, 153701. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, A.; Braniewska, A.; Kozar-Kamińska, K. MicroRNA in cardiovascular biology and disease. Adv. Clin. Exp. Med. 2017, 26, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Colpaert, R.M.W.; Calore, M. MicroRNAs in Cardiac Diseases. Cells 2019, 8, 737. [Google Scholar] [CrossRef] [PubMed]
- Giacca, M.; Zacchigna, S. Harnessing the microRNA pathway for cardiac regeneration. J. Mol. Cell Cardiol. 2015, 89, 68–74. [Google Scholar] [CrossRef]
- Dalmizrak, A.; Dalmizrak, O. Mesenchymal stem cell-derived exosomes as new tools for delivery of miRNAs in the treatment of cancer. Front. Bioeng. Biotechnol. 2022, 10, 956563. [Google Scholar] [CrossRef]
- Vieira, J.M.F.; Zamproni, L.N.; Wendt, C.H.C.; Rocha de Miranda, K.; Lindoso, R.S.; Won Han, S. Overexpression of mir-135b and mir-210 in mesenchymal stromal cells for the enrichment of extracellular vesicles with angiogenic factors. PLoS ONE 2022, 17, e0272962. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, R.; Yan, J.; Zhu, Y.; Sun, S.; Qu, Y. Mesenchymal Stem Cell-Derived Extracellular Vesicle-Shuttled microRNA-302d-3p Represses Inflammation and Cardiac Remodeling Following Acute Myocardial Infarction. J. Cardiovasc. Transl. Res. 2022, 15, 754–771. [Google Scholar] [CrossRef]
- Kim, J.Y.; Shin, K.K.; Lee, A.L.; Kim, Y.S.; Park, H.J.; Park, Y.K.; Bae, Y.C.; Jung, J.S. MicroRNA-302 induces proliferation and inhibits oxidant-induced cell death in human adipose tissue-derived mesenchymal stem cells. Cell Death Dis. 2014, 5, e1385. [Google Scholar] [CrossRef]
- Chen, Y.L.; Xu, Q.P.; Guo, F.; Guan, W.H. MicroRNA-302d downregulates TGFBR2 expression and promotes hepatocellular carcinoma growth and invasion. Exp. Ther. Med. 2017, 13, 681–687. [Google Scholar] [CrossRef]
- Li, J.; Jiang, R.; Hou, Y.; Lin, A. Mesenchymal stem cells-derived exosomes prevent sepsis-induced myocardial injury by a CircRTN4/miR-497-5p/MG53 pathway. Biochem. Biophys. Res. Commun. 2022, 618, 133–140. [Google Scholar] [CrossRef]
- Li, C.X.; Song, J.; Li, X.; Zhang, T.; Li, Z.M. Circular RNA 0001273 in exosomes derived from human umbilical cord mesenchymal stem cells (UMSCs) in myocardial infarction. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10086–10095. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, B.; Yang, Y.X.; Jia, Q.J.; Zhang, A.; Qi, Z.W.; Zhang, J.P. Long Noncoding RNAs in Pathological Cardiac Remodeling: A Review of the Update Literature. Biomed. Res. Int. 2019, 2019, 7159592. [Google Scholar] [CrossRef] [PubMed]
- Uchida, S.; Dimmeler, S. Long noncoding RNAs in cardiovascular diseases. Circ. Res. 2015, 116, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Haemmig, S.; Simion, V.; Yang, D.; Deng, Y.; Feinberg, M.W. Long noncoding RNAs in cardiovascular disease, diagnosis, and therapy. Curr. Opin. Cardiol. 2017, 32, 776–783. [Google Scholar] [CrossRef]
- García-Padilla, C.; Aránega, A.; Franco, D. The role of long non-coding RNAs in cardiac development and disease. AIMS Genet. 2018, 5, 124–140. [Google Scholar] [CrossRef]
- Alexanian, M.; Ounzain, S. Long Noncoding RNAs in Cardiac Development. Cold Spring Harb. Perspect. Biol. 2020, 12, a037374. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Vidal, N.; Bink, D.I.; Boon, R.A. Long noncoding RNA in cardiac aging and disease. J. Mol. Cell Biol. 2019, 11, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Boon, R.A.; Jaé, N.; Holdt, L.; Dimmeler, S. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? J. Am. Coll. Cardiol. 2016, 67, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Sallam, T.; Sandhu, J.; Tontonoz, P. Long Noncoding RNA Discovery in Cardiovascular Disease: Decoding Form to Function. Circ. Res. 2018, 122, 155–166. [Google Scholar] [CrossRef]
- Braga, L.; Ali, H.; Secco, I.; Giacca, M. Non-coding RNA therapeutics for cardiac regeneration. Cardiovasc. Res. 2021, 117, 674–693. [Google Scholar] [CrossRef]
- Moore, J.B.T.; Uchida, S. Functional characterization of long noncoding RNAs. Curr. Opin. Cardiol. 2020, 35, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Thum, T.; Condorelli, G. Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ. Res. 2015, 116, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Tang, L.; Zhou, S.H. Long Noncoding RNAs: New Players in Ischaemia-Reperfusion Injury. Heart Lung Circ. 2018, 27, 322–332. [Google Scholar] [CrossRef]
- Brockdorff, N.; Ashworth, A.; Kay, G.F.; McCabe, V.M.; Norris, D.P.; Cooper, P.J.; Swift, S.; Rastan, S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 1992, 71, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, V.; Ellis, J.D.; Shen, Z.; Song, D.Y.; Pan, Q.; Watt, A.T.; Freier, S.M.; Bennett, C.F.; Sharma, A.; Bubulya, P.A.; et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 2010, 39, 925–938. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, S.; Huang, K.; Li, J.; Mei, X.; Li, Z.; Cheng, K. Intrapericardial long non-coding RNA-Tcf21 antisense RNA inducing demethylation administration promotes cardiac repair. Eur. Heart J. 2023, 44, 1748–1760. [Google Scholar] [CrossRef]
- Li, Q.; Bu, Y.; Shao, H.; Li, W.; Zhao, D.; Wang, J. Protective effect of bone marrow mesenchymal stem cell-derived exosomes on cardiomyoblast hypoxia-reperfusion injury through the HAND2-AS1/miR-17-5p/Mfn2 axis. BMC Cardiovasc. Disord. 2023, 23, 114. [Google Scholar] [CrossRef]
- Bai, X.; Qi, Z.; Zhu, M.; Lu, Z.; Zhao, X.; Zhang, L.; Song, G. The effect of lncRNA MIR155HG-modified MSCs and exosome delivery to synergistically attenuate vein graft intimal hyperplasia. Stem Cell Res. Ther. 2022, 13, 512. [Google Scholar] [CrossRef]
- Song, X.L.; Zhang, F.F.; Wang, W.J.; Li, X.N.; Dang, Y.; Li, Y.X.; Yang, Q.; Shi, M.J.; Qi, X.Y. LncRNA A2M-AS1 lessens the injury of cardiomyocytes caused by hypoxia and reoxygenation via regulating IL1R2. Genes. Genom. 2020, 42, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Wu, D.; Yang, T.; Fu, W.; Yang, L.; Hu, C.; Wan, H.; Hu, X.; Zhang, C.; Wu, T. Extracellular vesicles derived from HBMSCs improved myocardial infarction through inhibiting zinc finger antisense 1 and activating Akt/Nrf2/HO-1 pathway. Bioengineered 2022, 13, 905–916. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.K.; Zhang, Z.; Guo, Z.A.; Fu, Y.; Chen, X.J.; Chen, W.J.; Wu, H.F.; Cui, X.J. The BMSC-derived exosomal lncRNA Mir9-3hg suppresses cardiomyocyte ferroptosis in ischemia-reperfusion mice via the Pum2/PRDX6 axis. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 515–527. [Google Scholar] [CrossRef]
- Sun, L.; He, X.; Zhang, T.; Han, Y.; Tao, G. Knockdown of mesenchymal stem cell-derived exosomal LOC100129516 suppresses the symptoms of atherosclerosis via upregulation of the PPARγ/LXRα/ABCA1 signaling pathway. Int. J. Mol. Med. 2021, 48. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Liu, T.; Yao, C.; Liu, X.; Du, Q.; Pan, L. LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition. Lab. Investig. 2021, 101, 1427–1438. [Google Scholar] [CrossRef]
- Li, K.S.; Bai, Y.; Li, J.; Li, S.L.; Pan, J.; Cheng, Y.Q.; Li, K.; Wang, Z.G.; Ji, W.J.; Zhou, Q.; et al. LncRNA HCP5 in hBMSC-derived exosomes alleviates myocardial ischemia reperfusion injury by sponging miR-497 to activate IGF1/PI3K/AKT pathway. Int. J. Cardiol. 2021, 342, 72–81. [Google Scholar] [CrossRef]
- Diao, L.; Zhang, Q. Transfer of lncRNA UCA1 by hUCMSCs-derived exosomes protects against hypoxia/reoxygenation injury through impairing miR-143-targeted degradation of Bcl-2. Aging 2021, 13, 5967–5985. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, W.; Zhao, P.; Wang, Q.; Fan, B.; Zhu, Y.; Lu, Y.; Chen, Q.; Zhang, J.; Zhang, F. Long noncoding RNA UCA1 from hypoxia-conditioned hMSC-derived exosomes: A novel molecular target for cardioprotection through miR-873-5p/XIAP axis. Cell Death Dis. 2020, 11, 696. [Google Scholar] [CrossRef]
- Chen, H.; Xia, W.; Hou, M. LncRNA-NEAT1 from the competing endogenous RNA network promotes cardioprotective efficacy of mesenchymal stem cell-derived exosomes induced by macrophage migration inhibitory factor via the miR-142-3p/FOXO1 signaling pathway. Stem. Cell Res. Ther. 2020, 11, 31. [Google Scholar] [CrossRef]
- Zhuang, L.; Xia, W.; Chen, D.; Ye, Y.; Hu, T.; Li, S.; Hou, M. Exosomal LncRNA-NEAT1 derived from MIF-treated mesenchymal stem cells protected against doxorubicin-induced cardiac senescence through sponging miR-221-3p. J. Nanobiotechnology 2020, 18, 157. [Google Scholar] [CrossRef]
- Xia, W.; Chen, H.; Xie, C.; Hou, M. Long-noncoding RNA MALAT1 sponges microRNA-92a-3p to inhibit doxorubicin-induced cardiac senescence by targeting ATG4a. Aging 2020, 12, 8241–8260. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Zhang, L.; Liang, C.; Liu, B.; Pan, X.; Wang, Y.; Zhang, Y.; Zhang, Y.; Xie, W.; Yan, B.; et al. Stem Cell-Derived Exosomes Prevent Aging-Induced Cardiac Dysfunction through a Novel Exosome/lncRNA MALAT1/NF-κB/TNF-α Signaling Pathway. Oxid. Med. Cell Longev. 2019, 2019, 9739258. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.; Liang, X.L.; Zhang, C.L.; Pang, Y.H.; Lu, Y.X. LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem. Cell Res. Ther. 2019, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Wang, L.; Li, Q.; Tian, X.; Xu, J.; Xu, J.; Xiong, Y.; Chen, G.; Qian, H.; Jin, C.; et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc. Res. 2020, 116, 353–367. [Google Scholar] [CrossRef]
- Arab, K.; Park, Y.J.; Lindroth, A.M.; Schäfer, A.; Oakes, C.; Weichenhan, D.; Lukanova, A.; Lundin, E.; Risch, A.; Meister, M.; et al. Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol. Cell 2014, 55, 604–614. [Google Scholar] [CrossRef]
- Zhao, Q.; Wirka, R.; Nguyen, T.; Nagao, M.; Cheng, P.; Miller, C.L.; Kim, J.B.; Pjanic, M.; Quertermous, T. TCF21 and AP-1 interact through epigenetic modifications to regulate coronary artery disease gene expression. Genome Med. 2019, 11, 23. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wu, J.; Song, J.; Lu, J. microRNA-17-5p downregulation inhibits autophagy and myocardial remodelling after myocardial infarction by targeting STAT3. Autoimmunity 2022, 55, 43–51. [Google Scholar] [CrossRef]
- Yu, H.; Pan, Y.; Dai, M.; Wang, X.; Chen, H. Mesenchymal Stem Cell-Originated Exosomal Lnc A2M-AS1 Alleviates Hypoxia/Reperfusion-Induced Apoptosis and Oxidative Stress in Cardiomyocytes. Cardiovasc. Drugs Ther. 2022. [Google Scholar] [CrossRef]
- Carrizzo, A.; Damato, A.; Vecchione, C. Long non-coding RNA-ZFAS1: A novel possible biomarker to monitor and hamper the atherosclerotic process? Int. J. Cardiol. 2020, 319, 129–130. [Google Scholar] [CrossRef]
- Wu, T.; Wu, D.; Wu, Q.; Zou, B.; Huang, X.; Cheng, X.; Wu, Y.; Hong, K.; Li, P.; Yang, R.; et al. Knockdown of Long Non-Coding RNA-ZFAS1 Protects Cardiomyocytes Against Acute Myocardial Infarction Via Anti-Apoptosis by Regulating miR-150/CRP. J. Cell Biochem. 2017, 118, 3281–3289. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, L.; Sun, L.; Li, Y.; Gao, Y.; Xu, C.; Shao, Y.; Li, M.; Li, C.; Lu, Y.; et al. LncRNA ZFAS1 as a SERCA2a Inhibitor to Cause Intracellular Ca(2+) Overload and Contractile Dysfunction in a Mouse Model of Myocardial Infarction. Circ. Res. 2018, 122, 1354–1368. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.W.; Wang, T.X.; You, L.; Zheng, L.F.; Shu, H.; Zhang, T.P.; Zhao, Y.P. Insulin-like growth factor 1 receptor (IGF-1R) as a target of MiR-497 and plasma IGF-1R levels associated with TNM stage of pancreatic cancer. PLoS ONE 2014, 9, e92847. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Mao, S.; Luo, X.; Wang, Y. Circulating miR-1/UCA1 is a novel biomarker for the diagnosis and prognosis of acute myocardial infarction. Int. J. Cardiol. 2020, 310, 137. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, B.; Liu, N.; Qi, C.; Xiao, Y.; Tian, X.; Li, T.; Liu, B. Circulating Long Noncoding RNA UCA1 as a Novel Biomarker of Acute Myocardial Infarction. Biomed. Res. Int. 2016, 2016, 8079372. [Google Scholar] [CrossRef] [PubMed]
- Ramos, K.S.; Li, J.; Wijdeveld, L.F.J.; van Schie, M.S.; Taverne, Y.; Boon, R.A.; de Groot, N.M.S.; Brundel, B. Long Noncoding RNA UCA1 Correlates With Electropathology in Patients With Atrial Fibrillation. JACC Clin. Electrophysiol. 2023, 9, 1097–1107. [Google Scholar] [CrossRef]
- Wu, Z.; Bai, Y.; Qi, Y.; Chang, C.; Jiao, Y.; Bai, Y.; Guo, Z. lncRNA NEAT1 Downregulation Ameliorates the Myocardial Infarction of Mice by Regulating the miR-582-5p/F2RL2 Axis. Cardiovasc. Ther. 2022, 2022, 4481360. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J.; Zhang, J.; Yang, J.; Liu, H.; Zhai, Y.; Zhang, P. Targeting NEAT1 in heart disease. Int. J. Cardio.l 2022, 348, 22. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, N.; Jiang, W.; Lun, X. Clinical significance of the long non-coding RNA NEAT1/miR-129-5p axis in the diagnosis and prognosis for patients with chronic heart failure. Exp. Ther. Med. 2021, 21, 512. [Google Scholar] [CrossRef]
- Chen, G.; Yue, A.; Wang, M.; Ruan, Z.; Zhu, L. The Exosomal lncRNA KLF3-AS1 From Ischemic Cardiomyocytes Mediates IGF-1 Secretion by MSCs to Rescue Myocardial Ischemia-Reperfusion Injury. Front Cardiovasc. Med. 2021, 8, 671610. [Google Scholar] [CrossRef]
- Aslan, G.S.; Jaé, N.; Manavski, Y.; Fouani, Y.; Shumliakivska, M.; Kettenhausen, L.; Kirchhof, L.; Günther, S.; Fischer, A.; Luxán, G.; et al. Malat1 deficiency prevents neonatal heart regeneration by inducing cardiomyocyte binucleation. JCI Insight 2023, 8, e162124. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, J.Y.; Liu, F.; Zhang, X.H.; Luo, F.; Yang, Y.N.; Li, X.M. Long noncoding RNA MALAT1 polymorphism predicts MACCEs in patients with myocardial infarction. BMC Cardiovasc. Disord 2022, 22, 152. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; Liu, L.; Feng, Q.; Yang, X. Long non-coding RNA MALAT1 and its target microRNA-125b associate with disease risk, severity, and major adverse cardiovascular event of coronary heart disease. J. Clin. Lab. Anal. 2021, 35, e23593. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Jin, J.; Liu, E.; Zhang, J. A novel circulating biomarker lnc-MALAT1 for acute myocardial infarction: Its relationship with disease risk, features, cytokines, and major adverse cardiovascular events. J. Clin. Lab. Anal. 2022, 36, e24771. [Google Scholar] [CrossRef]
- Sun, Z.L.; Chen, M.H.; Guo, Y.N.; Liu, Z.Q. LncRNA XIST is elevated in patients with chronic heart failure and has a regulatory role in cardiomyocyte function. J. Biol. Regul. Homeost. Agents 2021, 35, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yu, H.; Yang, Z.; Li, L.; He, Y.; Zhu, S.; Li, C.; Zhang, S.; Luo, B.; Gao, Y. A Functional Indel Polymorphism Within MIR155HG Is Associated With Sudden Cardiac Death Risk in a Chinese Population. Front Cardiovasc. Med. 2021, 8, 671168. [Google Scholar] [CrossRef]
- Klattenhoff, C.A.; Scheuermann, J.C.; Surface, L.E.; Bradley, R.K.; Fields, P.A.; Steinhauser, M.L.; Ding, H.; Butty, V.L.; Torrey, L.; Haas, S.; et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 2013, 152, 570–583. [Google Scholar] [CrossRef]
- David, R.; Schwarz, F.; Rimmbach, C.; Nathan, P.; Jung, J.; Brenner, C.; Jarsch, V.; Stieber, J.; Franz, W.M. Selection of a common multipotent cardiovascular stem cell using the 3.4-kb MesP1 promoter fragment. Basic. Res. Cardiol. 2013, 108, 312. [Google Scholar] [CrossRef]
- Hou, J.; Long, H.; Zhou, C.; Zheng, S.; Wu, H.; Guo, T.; Wu, Q.; Zhong, T.; Wang, T. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro. Stem. Cell Res. The.r 2017, 8, 4. [Google Scholar] [CrossRef]
- Dong, K.; Shen, J.; He, X.; Hu, G.; Wang, L.; Osman, I.; Bunting, K.M.; Dixon-Melvin, R.; Zheng, Z.; Xin, H.; et al. CARMN Is an Evolutionarily Conserved Smooth Muscle Cell-Specific LncRNA That Maintains Contractile Phenotype by Binding Myocardin. Circulation 2021, 144, 1856–1875. [Google Scholar] [CrossRef]
- Ni, H.; Haemmig, S.; Deng, Y.; Chen, J.; Simion, V.; Yang, D.; Sukhova, G.; Shvartz, E.; Wara, A.; Cheng, H.S.; et al. A Smooth Muscle Cell-Enriched Long Noncoding RNA Regulates Cell Plasticity and Atherosclerosis by Interacting With Serum Response Factor. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2399–2416. [Google Scholar] [CrossRef]
- Vacante, F.; Rodor, J.; Lalwani, M.K.; Mahmoud, A.D.; Bennett, M.; De Pace, A.L.; Miller, E.; Van Kuijk, K.; de Bruijn, J.; Gijbels, M.; et al. CARMN Loss Regulates Smooth Muscle Cells and Accelerates Atherosclerosis in Mice. Circ. Res. 2021, 128, 1258–1275. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, A.; Calkin, A.C.; Lau, S.; Kiriazis, H.; Donner, D.G.; Liu, Y.; Bond, S.T.; Moody, S.C.; Gould, E.A.M.; Colgan, T.D.; et al. Loss of the long non-coding RNA OIP5-AS1 exacerbates heart failure in a sex-specific manner. iScience 2021, 24, 102537. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Riching, A.S.; Knight, W.E.; Chi, C.; Broadwell, L.J.; Du, Y.; Abdel-Hafiz, M.; Ambardekar, A.V.; Irwin, D.C.; Proenza, C.; et al. Cardiomyocyte-Specific Long Noncoding RNA Regulates Alternative Splicing of the Triadin Gene in the Heart. Circulation 2022, 146, 699–714. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Li, H.; Xie, R.; Zhang, X.; Nie, X.; Shi, X.; Zhan, J.; Yin, Z.; Zhao, Y.; Dai, B.; et al. LncRNA ZNF593-AS Alleviates Contractile Dysfunction in Dilated Cardiomyopathy. Circ. Res. 2021, 128, 1708–1723. [Google Scholar] [CrossRef]
- Fasolo, F.; Jin, H.; Winski, G.; Chernogubova, E.; Pauli, J.; Winter, H.; Li, D.Y.; Glukha, N.; Bauer, S.; Metschl, S.; et al. Long Noncoding RNA MIAT Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization. Circulation 2021, 144, 1567–1583. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, M.; Wu, H.; Wu, J.; Hu, X.; Pei, X.; Li, D.; Zhao, L.; Hua, Q.; Meng, B.; et al. CIRKIL Exacerbates Cardiac Ischemia/Reperfusion Injury by Interacting With Ku70. Circ. Res. 2022, 130, e3–e17. [Google Scholar] [CrossRef]
- Sehgal, P.; Mathew, S.; Sivadas, A.; Ray, A.; Tanwar, J.; Vishwakarma, S.; Ranjan, G.; Shamsudheen, K.V.; Bhoyar, R.C.; Pateria, A.; et al. LncRNA VEAL2 regulates PRKCB2 to modulate endothelial permeability in diabetic retinopathy. Embo. J. 2021, 40, e107134. [Google Scholar] [CrossRef]
- Sato, M.; Kadomatsu, T.; Miyata, K.; Warren, J.S.; Tian, Z.; Zhu, S.; Horiguchi, H.; Makaju, A.; Bakhtina, A.; Morinaga, J.; et al. The lncRNA Caren antagonizes heart failure by inactivating DNA damage response and activating mitochondrial biogenesis. Nat. Commun. 2021, 12, 2529. [Google Scholar] [CrossRef]
- Ruan, Z.B.; Chen, G.C.; Zhang, R.; Zhu, L. Circular RNA expression profiles during the differentiation of human umbilical cord-derived mesenchymal stem cells into cardiomyocyte-like cells. J. Cell Physiol. 2019, 234, 16412–16423. [Google Scholar] [CrossRef]
- Ding, F.; Lu, L.; Wu, C.; Pan, X.; Liu, B.; Zhang, Y.; Wang, Y.; Wu, W.; Yan, B.; Zhang, Y.; et al. circHIPK3 prevents cardiac senescence by acting as a scaffold to recruit ubiquitin ligase to degrade HuR. Theranostics 2022, 12, 7550–7566. [Google Scholar] [CrossRef]
- Shafei, A.E.; Ali, M.A.; Ghanem, H.G.; Shehata, A.I.; Abdelgawad, A.A.; Handal, H.R.; ElSayed, A.S.; Ashaal, A.E.; Ali, M.M.; El-Shal, A.S. Mechanistic effects of mesenchymal and hematopoietic stem cells: New therapeutic targets in myocardial infarction. J. Cell Biochem. 2018, 119, 5274–5286. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, S.; He, C.; Chen, Z.; Lyu, T.; Zeng, L.; Wang, L.; Zhang, F.; Chen, H.; Zhao, R.C. Long Non-coding RNA Regulation of Mesenchymal Stem Cell Homeostasis and Differentiation: Advances, Challenges, and Perspectives. Front Cell Dev. Biol. 2021, 9, 711005. [Google Scholar] [CrossRef] [PubMed]
- Girousse, A.; Mathieu, M.; Sastourné-Arrey, Q.; Monferran, S.; Casteilla, L.; Sengenès, C. Endogenous Mobilization of Mesenchymal Stromal Cells: A Pathway for Interorgan Communication? Front. Cell Dev. Biol. 2020, 8, 598520. [Google Scholar] [CrossRef] [PubMed]
Name of the Long Noncoding RNA (lncRNA) | Source of Mesenchymal Stem Cells (MSCs) and Exosomes | Experimental Model (In Vitro and or In Vivo) | Mechanism and the Role of LncRNA in Cardiac Injury or Repair | Reference |
---|---|---|---|---|
Tcf21 antisense RNA inducing demethylation (TARID) | MSC-derived extracellular vesicles (EVs) | In vivo: mouse and porcine models of myocardial infarction. | LncRNA-TARID to upregulate Tcf21 expression and improved cardiac function and myocardial fibrosis in mouse and porcine models of myocardial infarction. | [68] |
HAND2 antisense RNA 1 (HAND2-AS1) | Bone marrow MSC-derived exosomes | In vitro: hypoxia/reoxygenation (H/R) injury in H9c2 cells. | LncRNA HAND2-AS1 protects against cardiomyocyte injury from H/R-induced apoptosis, oxidative stress, and inflammation by attenuating the expression of miR-17-5p. | [69] |
MIR155 host gene (MIR155HG) | Exosomes derived from MIR155HG-overexpressing MSCs | In vivo: rat model of vein graft. | MSCs overexpressed with lncRNA MIR155HG protected vascular endothelial integrity, reduced inflammation, and significantly attenuated intimal hyperplasia. | [70] |
A2M antisense RNA 1 (A2M-AS1) | Exosomes derived from lncRNA A2M-AS1-transfected MSCs | In vitro: hypoxia/reoxygenation (H/R) injury in human cardiomyocytes. | Exosomal delivery of lncRNA A2M-AS1 ameliorates H/R-induced cardiomyocyte apoptosis and oxidative stress through the regulation of the miR-556-5p/XIAP pathway. | [71] |
Zinc finger antisense 1 (ZFAS1) | Exosomes from human bone marrow MSCs | In vitro: hypoxia injury in H9c2 cells. In vivo: rat models of myocardial infarction. | Treatment with MSC-derived EVs improved cardiomyocyte viability, increased expression of vWF and VEGF, and activated the Akt/Nrf2/HO-1 pathway. However, overexpressing lncRNA ZFAS1 reversed these effects of MSC-derived EVs. | [72] |
MIR9-3 host gene (Mir9-3hg) | Exosomes derived from mouse bone marrow MSCs | In vitro: hypoxia/reoxygenation (H/R)-injury in HL-1 mouse cardiomyocytes. In vivo: mice ischemia/reperfusion injury. | Mir9-3hg was shown to bind with Pum2 protein and downregulate Pum2 expression. BM-MSC-derived exosomes ameliorated cardiac function in mice subjected to I/R injury by inhibiting cardiomyocyte ferroptosis through modulation of the Pum2/peroxiredoxin 6 (PRDX6) axis. | [73] |
LOC100129516 | Human bone marrow MSC-derived exosomes | In vitro: THP-1 cells were treated with oxidized low-density lipoproteins to induce foam cell formation. In vivo: ApoE−/− atherosclerosis mouse model. | Knockdown of MSC-derived exosomal lncRNA LOC100129516 promotes cholesterol efflux and alleviates atherosclerosis peroxisome proliferator-activated receptor γ (PPARγ)/liver X receptor α (LXRα)/phospholipid-transporting ATPase ABCA1 (ABCA1) signaling pathway. | [74] |
X-inactive specific transcript (XIST) | EVs derived from mouse adipose tissue MSCs | In vitro: mouse HL-1 atrial myocytes. In vivo: mouse models of atrial fibrillation. | LncRNA XIST improves atrial fibrillation in vivo and in vitro. XIST acted as a competing endogenous RNA (ceRNA) of miR-214-3p, promoting the upregulation of its target gene Arl2. | [75] |
HLA complex P5 (HCP5) | Exosomes from human bone marrow MSC cells | In vitro: hypoxia/reperfusion injury in human cardiac myocyte cell line. In vivo: rat model of myocardial I/R. | MSC-derived exosomes containing lncRNA HCP5 sponged miR-497, leading to activation of the IGF1/PI3K/AKT pathway and protection against I/R injury. | [76] |
Urothelial carcinoma-associated 1 (UCA1) | Exosomes derived from human umbilical cord MSCs | In vitro: hypoxia/reoxygenation injury in cardiac microvascular endothelial cells. In vivo: rat model ischemia/reperfusion injury. | The lncRNA UCA1 competitively binds to miR-143, upregulating Bcl-2 expression and leading to the protection of cardiac microvascular endothelial cells against cardiac injury. | [77] |
UCA1 | Exosomes derived from hypoxia-conditioned human MSCs | In vivo: rat model of myocardial infarction. | UCA1 targets miR-873 via sponging, leading to XIAP activation, AMPK phosphorylation, and increased expression of the antiapoptotic protein BCL2. | [78] |
Nuclear paraspeckle assembly transcript 1 (NEAT1) | Exosomes derived from macrophage migration inhibitory factor (MIF)-pretreated human-adipose-derived MSCs | In vitro: hydrogen peroxide treatment in human-iPSC-derived cardiomyocytes. | NEAT1 regulates the expression of miR-142-3p and activates FOXO1, thereby promoting cardiomyocyte survival and inhibiting apoptosis. | [79] |
NEAT1 | MIF-pretreated human-adipose-derived MSCs | In vivo: doxorubicin-induced cardiomyopathy. | MIF exosomes recover cardiac function and reduce cellular senescence through the transfer of NEAT1, which inhibits miR-221-3p, activates Sirt2, and counteracts the cardiotoxic effects of doxorubicin. | [80] |
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) | Exosomes derived from hypoxia-preconditioned human-adipose-derived MSCs | In vitro: doxorubicin treatment in human-iPSC-derived cardiomyocytes. | MALAT1 in exosomes derived from hypoxia-preconditioned MSCs acts as a ceRNA that binds to miR-92a-3p, leading to ATG4a activation and improved mitochondrial metabolism. | [81] |
MALAT1 | Exosomes derived from human umbilical cord MSCs | In vitro: hydrogen peroxide treatment in rat H9c2 cells. In vivo: mice model of aging. | MSC-derived exosomes release lncRNA MALAT1, which prevents aging-induced cardiac dysfunction by inhibiting the NF-κB/TNF-α signaling pathways. | [82] |
KLF3 antisense RNA 1 (KLF3-AS1) | Exosomes from human MSCs | In vivo: rat model of myocardial infarction. | Overexpression of KLF3-AS1 in exosomes attenuates myocardial infarction by sponging miR-138-5p and regulates Sirt1 expression. | [83] |
H19 | Exosomes from atorvastatin-pretreated rat MSCs | In vivo: rat model of myocardial infarction. | LncRNA H19 acts as a mediator of the cardioprotective effects of atorvastatin-pretreated MSC-derived exosomes by regulating the expression of miR-675, proangiogenic factor VEGF, and intercellular adhesion molecule-1. | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tran, T.; Cruz, C.; Chan, A.; Awad, S.; Rajasingh, J.; Deth, R.; Gurusamy, N. Mesenchymal Stem Cell-Derived Long Noncoding RNAs in Cardiac Injury and Repair. Cells 2023, 12, 2268. https://doi.org/10.3390/cells12182268
Tran T, Cruz C, Chan A, Awad S, Rajasingh J, Deth R, Gurusamy N. Mesenchymal Stem Cell-Derived Long Noncoding RNAs in Cardiac Injury and Repair. Cells. 2023; 12(18):2268. https://doi.org/10.3390/cells12182268
Chicago/Turabian StyleTran, Talan, Claudia Cruz, Anthony Chan, Salma Awad, Johnson Rajasingh, Richard Deth, and Narasimman Gurusamy. 2023. "Mesenchymal Stem Cell-Derived Long Noncoding RNAs in Cardiac Injury and Repair" Cells 12, no. 18: 2268. https://doi.org/10.3390/cells12182268
APA StyleTran, T., Cruz, C., Chan, A., Awad, S., Rajasingh, J., Deth, R., & Gurusamy, N. (2023). Mesenchymal Stem Cell-Derived Long Noncoding RNAs in Cardiac Injury and Repair. Cells, 12(18), 2268. https://doi.org/10.3390/cells12182268