PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response
Abstract
:1. Introduction
2. Vascular Network and Therapeutic Responsiveness
Cancer | Treatment | Effect | Result | Ref. |
---|---|---|---|---|
Pancreatic | Inhibition of STAT3+ gemcitabine | ↑ The number of blood vessels (CD31). ↓ Cytidine deaminase (cda) expression. ↓ Collagen alignment. ≈ Hyaluronan and collagen density. | ↓ Tumour weight. ↑ Mouse survival. | [42] |
Breast | Salvianolic acid B+ cisplatin | ↑ αSMA/CD31 area, NG2/CD31 area (pericyte coverage), Col IV/CD31 area. ↑ VE-cadherin/CD31 area, Lectin, and O2 average. ↓ Dextran%, PIMO, and HIF-1α. | ↓ Hypoxia. ↓ Metastasis. ↑ Chemotherapy and drug penetration to the tumour. | [43] |
Hepatocellular | HRG via downregulation of placental growth factor (PIGF) | ↑ Vessel perfusion (Lectin + CD31 + Vessels). ↓ Haemorrhage. ↑ Pericyte coated vessels. | ↓ Hypoxia. ↓ Tumour cell apoptosis. TAM polarisation ↑ T cells (CD8+), dendritic cells (CD11c+), and NK cells. ↓ Necrosis. | [45] |
Hepatocellular | Tanshinone IIA | ↑ Tube formation. ≈ Microvessel density (MVD). ↑ Microvessel integrity (NG2 expression). | ↓ Metastasis. | [50] |
Breast | Sinomenine hydrochloride | ↑ Lectin+CD31+vessels and αSMA positive vessels (pericyte coverage). ↓ HIF-1α. | ↓ Hypoxia. ↓ Necrotic area. ↓ Growth rate and metastasis. | [51] |
Pancreatic | Inhibition of Rgs5 | ↑ Number of vessels. ↓ Vessel diameter. ↑ αSMA and NG2 (pericyte coverage). | ↓ Hypoxia. ↑ CD8 T cells. ↑ Mouse survival. | [47] |
3. PAK in Pancreatic Cancer
4. PAK and Tumour Vasculature
5. PAK and Therapeutical Responses
5.1. PAK and Chemotherapy
5.2. PAK in Tumour Immune Responses and Immunotherapy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PAKs | P21-activated kinases |
PDA | Pancreatic ductal adenocarcinoma |
TME | Tumour microenvironment |
CSCs | Cancer stem cells |
5-FU | 5-fluorouracil |
TKIs | Tyrosine kinase inhibitors |
PFS | Progression-free survival |
OS | Overall survival |
MVD | Microvessel density |
GTP | Guanosine triphosphate |
MVI | Microvessel integrity |
SEMA3A | Semaphorin 3A |
SalB | Salvianolic acid B |
HRG | Histidine-rich glycoprotein |
RGS5 | G-Protein Signalling 5 |
Cda | Cytidine deaminase |
EMT | Epithelial–mesenchymal transition |
VSMCs | Vascular smooth muscle cells |
CSF2 | Colony stimulating factor 2 |
HRG | Heregulin β1 |
HIF-1α | Hypoxia-inducible factor 1 alpha |
JMJD6 | Jumonji domain-containing protein 6 |
MMP9 | Matrix metalloproteinases 9 |
CAFs | Cancer-associated fibroblasts |
PSCs | Pancreatic stellate cells |
KO | Knockout |
KD | Knockdown |
GBM ECs | Glioblastoma multiforme endothelial cells |
IHC | Immunohistochemical |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Moletta, L.; Serafini, S.; Valmasoni, M.; Pierobon, E.S.; Ponzoni, A.; Sperti, C. Surgery for recurrent pancreatic cancer: Is it effective? Cancers 2019, 11, 991. [Google Scholar] [CrossRef] [PubMed]
- Adamska, A.; Domenichini, A.; Falasca, M. Pancreatic ductal adenocarcinoma: Current and evolving therapies. Int. J. Mol. Sci. 2017, 18, 1338. [Google Scholar] [CrossRef] [PubMed]
- Ansardamavandi, A.; Tafazzoli-Shadpour, M. The functional cross talk between cancer cells and cancer associated fibroblasts from a cancer mechanics perspective. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2021, 1868, 119103. [Google Scholar] [CrossRef] [PubMed]
- Krishna Priya, S.; Nagare, R.; Sneha, V.; Sidhanth, C.; Bindhya, S.; Manasa, P.; Ganesan, T. Tumour angiogenesis—Origin of blood vessels. Int. J. Cancer 2016, 139, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Schaaf, M.B.; Garg, A.D.; Agostinis, P. Defining the role of the tumor vasculature in antitumor immunity and immunotherapy. Cell Death Dis. 2018, 9, 115. [Google Scholar] [CrossRef] [PubMed]
- Giantonio, B.J.; Catalano, P.J.; Meropol, N.J.; O’Dwyer, P.J.; Mitchell, E.P.; Alberts, S.R.; Schwartz, M.A.; Benson III, A.B. Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: Results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 2007, 25, 1539–1544. [Google Scholar] [CrossRef]
- Cohen, M.H.; Shen, Y.L.; Keegan, P.; Pazdur, R. FDA drug approval summary: Bevacizumab (Avastin®) as treatment of recurrent glioblastoma multiforme. Oncologist 2009, 14, 1131–1138. [Google Scholar] [CrossRef]
- Heath, V.L.; Bicknell, R. Anticancer strategies involving the vasculature. Nat. Rev. Clin. Oncol. 2009, 6, 395–404. [Google Scholar] [CrossRef]
- Ivy, S.P.; Wick, J.Y.; Kaufman, B.M. An overview of small-molecule inhibitors of VEGFR signaling. Nat. Rev. Clin. Oncol. 2009, 6, 569–579. [Google Scholar] [CrossRef]
- Fudalej, M.; Kwaśniewska, D.; Nurzyński, P.; Badowska-Kozakiewicz, A.; Mękal, D.; Czerw, A.; Sygit, K.; Deptała, A. New Treatment Options in Metastatic Pancreatic Cancer. Cancers 2023, 15, 2327. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Vervenne, W.L.; Bennouna, J.; Humblet, Y.; Gill, S.; Van Laethem, J.-L.; Verslype, C.; Scheithauer, W.; Shang, A.; Cosaert, J. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J. Clin. Oncol. 2009, 27, 2231–2237. [Google Scholar] [CrossRef] [PubMed]
- Vasudev, N.S.; Reynolds, A.R. Anti-angiogenic therapy for cancer: Current progress, unresolved questions and future directions. Angiogenesis 2014, 17, 471–494. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Mehta, S.; Harris, A.L. Mechanisms of resistance to antiangiogenesis therapy. Eur. J. Cancer 2010, 46, 1323–1332. [Google Scholar] [CrossRef] [PubMed]
- Munshi, N.C.; Wilson, C. Increased bone marrow microvessel density in newly diagnosed multiple myeloma carries a poor prognosis. In Seminars in Oncology; Elsevier: Amsterdam, The Netherlands, 2001; pp. 565–569. [Google Scholar]
- Nishida, T.; Yoshitomi, H.; Takano, S.; Kagawa, S.; Shimizu, H.; Ohtsuka, M.; Kato, A.; Furukawa, K.; Miyazaki, M. Low stromal area and high stromal microvessel density predict poor prognosis in pancreatic cancer. Pancreas 2016, 45, 593–600. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, J.A.; van Eijck, C.H.; Hop, W.C.; van Dekken, H.; Dicheva, B.M.; Seynhaeve, A.L.; Koning, G.A.; Eggermont, A.M.; ten Hagen, T.L. Angiogenesis: A prognostic determinant in pancreatic cancer? Eur. J. Cancer 2011, 47, 2576–2584. [Google Scholar] [CrossRef]
- MacLennan, G.T.; Bostwick, D.G. Microvessel density in renal cell carcinoma: Lack of prognostic significance. Urology 1995, 46, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, P.; Jain, R.K. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat. Rev. Drug Discov. 2011, 10, 417–427. [Google Scholar] [CrossRef]
- Wang, S.; Zheng, Y.; Yang, F.; Zhu, L.; Zhu, X.-Q.; Wang, Z.-F.; Wu, X.-L.; Zhou, C.-H.; Yan, J.-Y.; Hu, B.-Y. The molecular biology of pancreatic adenocarcinoma: Translational challenges and clinical perspectives. Signal Transduct. Target. Ther. 2021, 6, 249. [Google Scholar] [CrossRef]
- Maitra, A.; Hruban, R.H. Pancreatic cancer. Annu. Rev. Pathol. Mech. Dis. 2008, 3, 157–188. [Google Scholar] [CrossRef]
- Yeo, D.; He, H.; Baldwin, G.S.; Nikfarjam, M. The role of p21-activated kinases in pancreatic cancer. Pancreas 2015, 44, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Senapedis, W.; Crochiere, M.; Baloglu, E.; Landesman, Y. Therapeutic potential of targeting PAK signaling. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2016, 16, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Baluk, P.; Hashizume, H.; McDonald, D.M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 2005, 15, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Helmlinger, G.; Yuan, F.; Dellian, M.; Jain, R.K. Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat. Med. 1997, 3, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Duda, D.G.; Jain, R.K.; Willett, C.G. Antiangiogenics: The potential role of integrating this novel treatment modality with chemoradiation for solid cancers. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2007, 25, 4033. [Google Scholar] [CrossRef] [PubMed]
- Pouysségur, J.; Dayan, F.; Mazure, N.M. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 2006, 441, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Bansod, S.; Dodhiawala, P.B.; Lim, K.-H. Oncogenic KRAS-induced feedback inflammatory signaling in pancreatic cancer: An overview and new therapeutic opportunities. Cancers 2021, 13, 5481. [Google Scholar] [CrossRef]
- Erkan, M.; Hausmann, S.; Michalski, C.W.; Fingerle, A.A.; Dobritz, M.; Kleeff, J.; Friess, H. The role of stroma in pancreatic cancer: Diagnostic and therapeutic implications. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 454–467. [Google Scholar] [CrossRef]
- Paez-Ribes, M.; Allen, E.; Hudock, J.; Takeda, T.; Okuyama, H.; Viñals, F.; Inoue, M.; Bergers, G.; Hanahan, D.; Casanovas, O. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 2009, 15, 220–231. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Lu, L.C.; Cheng, A.L.; Hsu, C.H. Increasing incidence of brain metastasis in patients with advanced hepatocellular carcinoma in the era of antiangiogenic targeted therapy. Oncologist 2011, 16, 82–86. [Google Scholar] [CrossRef]
- Zhu, X.-D.; Sun, H.-C.; Xu, H.-X.; Kong, L.-Q.; Chai, Z.-T.; Lu, L.; Zhang, J.-B.; Gao, D.-M.; Wang, W.-Q.; Zhang, W. Antiangiogenic therapy promoted metastasis of hepatocellular carcinoma by suppressing host-derived interleukin-12b in mouse models. Angiogenesis 2013, 16, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Yin, T.; He, S.; Ye, T.; Shen, G.; Wan, Y.; Wang, Y. Antiangiogenic therapy using sunitinib combined with rapamycin retards tumor growth but promotes metastasis. Transl. Oncol. 2014, 7, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, H.-X.; Wu, C.-T.; Wang, W.-Q.; Jin, W.; Gao, H.-L.; Li, H.; Zhang, S.-R.; Xu, J.-Z.; Qi, Z.-H. Angiogenesis in pancreatic cancer: Current research status and clinical implications. Angiogenesis 2019, 22, 15–36. [Google Scholar] [CrossRef] [PubMed]
- Bergers, G.; Hanahan, D. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 2008, 8, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Viallard, C.; Larrivée, B. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets. Angiogenesis 2017, 20, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, A.M.; Xiao, L.; Ullah, M.W.; Yu, M.; Ouyang, C.; Yang, G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics 2018, 8, 533. [Google Scholar] [CrossRef] [PubMed]
- Gilles, M.-E.; Maione, F.; Cossutta, M.; Carpentier, G.; Caruana, L.; Di Maria, S.; Houppe, C.; Destouches, D.; Shchors, K.; Prochasson, C. Nucleolin targeting impairs the progression of pancreatic cancer and promotes the normalization of tumor vasculature. Cancer Res. 2016, 76, 7181–7193. [Google Scholar] [CrossRef]
- Raggi, F.; Pelassa, S.; Pierobon, D.; Penco, F.; Gattorno, M.; Novelli, F.; Eva, A.; Varesio, L.; Giovarelli, M.; Bosco, M.C. Regulation of human macrophage M1–M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front. Immunol. 2017, 8, 1097. [Google Scholar] [CrossRef]
- Huang, Y.; Yuan, J.; Righi, E.; Kamoun, W.S.; Ancukiewicz, M.; Nezivar, J.; Santosuosso, M.; Martin, J.D.; Martin, M.R.; Vianello, F. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA 2012, 109, 17561–17566. [Google Scholar] [CrossRef]
- Serini, G.; Valdembri, D.; Zanivan, S.; Morterra, G.; Burkhardt, C.; Caccavari, F.; Zammataro, L.; Primo, L.; Tamagnone, L.; Logan, M. Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature 2003, 424, 391–397. [Google Scholar] [CrossRef]
- Nagathihalli, N.S.; Castellanos, J.A.; Shi, C.; Beesetty, Y.; Reyzer, M.L.; Caprioli, R.; Chen, X.; Walsh, A.J.; Skala, M.C.; Moses, H.L. Signal transducer and activator of transcription 3, mediated remodeling of the tumor microenvironment results in enhanced tumor drug delivery in a mouse model of pancreatic cancer. Gastroenterology 2015, 149, 1932–1943. [Google Scholar] [CrossRef] [PubMed]
- Qian, C.; Yang, C.; Tang, Y.; Zheng, W.; Zhou, Y.; Zhang, S.; Song, M.; Cheng, P.; Wei, Z.; Zhong, C. Pharmacological manipulation of Ezh2 with salvianolic acid B results in tumor vascular normalization and synergizes with cisplatin and T cell-mediated immunotherapy. Pharmacol. Res. 2022, 182, 106333. [Google Scholar] [CrossRef] [PubMed]
- Poon, I.K.; Patel, K.K.; Davis, D.S.; Parish, C.R.; Hulett, M.D. Histidine-rich glycoprotein: The Swiss Army knife of mammalian plasma. Blood J. Am. Soc. Hematol. 2011, 117, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Rolny, C.; Mazzone, M.; Tugues, S.; Laoui, D.; Johansson, I.; Coulon, C.; Squadrito, M.L.; Segura, I.; Li, X.; Knevels, E. HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 2011, 19, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Silini, A.; Ghilardi, C.; Figini, S.; Sangalli, F.; Fruscio, R.; Dahse, R.; Pedley, R.B.; Giavazzi, R.; Bani, M. Regulator of G-protein signaling 5 (RGS5) protein: A novel marker of cancer vasculature elicited and sustained by the tumor’s proangiogenic microenvironment. Cell. Mol. Life Sci. 2012, 69, 1167–1178. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, J.; Jugold, M.; Kiessling, F.; Rigby, P.; Manzur, M.; Marti, H.H.; Rabie, T.; Kaden, S.; Gröne, H.-J.; Hämmerling, G.J. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 2008, 453, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Stockton, R.A.; Schaefer, E.; Schwartz, M.A. p21-activated kinase regulates endothelial permeability through modulation of contractility. J. Biol. Chem. 2004, 279, 46621–46630. [Google Scholar] [CrossRef] [PubMed]
- Fryer, B.H.; Field, J. Rho, Rac, Pak and angiogenesis: Old roles and newly identified responsibilities in endothelial cells. Cancer Lett. 2005, 229, 13–23. [Google Scholar] [CrossRef]
- Wang, W.-Q.; Liu, L.; Sun, H.-C.; Fu, Y.-L.; Xu, H.-X.; Chai, Z.-T.; Zhang, Q.-B.; Kong, L.-Q.; Zhu, X.-D.; Lu, L. Tanshinone IIA inhibits metastasis after palliative resection of hepatocellular carcinoma and prolongs survival in part via vascular normalization. J. Hematol. Oncol. 2012, 5, 69. [Google Scholar] [CrossRef]
- Zhang, H.; Ren, Y.; Tang, X.; Wang, K.; Liu, Y.; Zhang, L.; Li, X.; Liu, P.; Zhao, C.; He, J. Vascular normalization induced by sinomenine hydrochloride results in suppressed mammary tumor growth and metastasis. Sci. Rep. 2015, 5, 8888. [Google Scholar] [CrossRef]
- Waters, A.M.; Der, C.J. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. 2017, 8, a031435. [Google Scholar] [CrossRef] [PubMed]
- Manser, E.; Leung, T.; Salihuddin, H.; Zhao, Z.-s.; Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994, 367, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Nikfarjam, M.; He, H. The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Lett. 2022, 548, 215868. [Google Scholar] [CrossRef] [PubMed]
- Ahn, A.R.; Karamikheirabad, M.; Park, M.S.; Zhang, J.; Kim, H.S.; Jeong, J.S.; Kim, K.M.; Park, H.S.; Jang, K.Y. Expression Patterns of PAK4 and PHF8 Are Associated with the Survival of Gallbladder Carcinoma Patients. Diagnostics 2023, 13, 1149. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Gao, Y.; Li, T. Pan-cancer analysis identifies the immunological and prognostic role of PAK4. Life Sci. 2023, 312, 121263. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.m.; Park, J.K.; Huang, S.; Kwak, S.Y.; Ryu, K.A.; Kong, G.; Park, J.; Koo, B.S. Association of p21-activated kinase-1 activity with aggressive tumor behavior and poor prognosis of head and neck cancer. Head Neck 2015, 37, 953–963. [Google Scholar] [CrossRef] [PubMed]
- Jagadeeshan, S.; Krishnamoorthy, Y.; Singhal, M.; Subramanian, A.; Mavuluri, J.; Lakshmi, A.; Roshini, A.; Baskar, G.; Ravi, M.; Joseph, L. Transcriptional regulation of fibronectin by p21-activated kinase-1 modulates pancreatic tumorigenesis. Oncogene 2015, 34, 455–464. [Google Scholar] [CrossRef]
- Wang, K.; Baldwin, G.S.; Nikfarjam, M.; He, H. p21-activated kinase signalling in pancreatic cancer: New insights into tumour biology and immune modulation. World J. Gastroenterol. 2018, 24, 3709. [Google Scholar] [CrossRef]
- Hoff, P.M.; Machado, K.K. Role of angiogenesis in the pathogenesis of cancer. Cancer Treat. Rev. 2012, 38, 825–833. [Google Scholar] [CrossRef]
- Yuan, L.; Duan, X.; Dong, J.; Lu, Q.; Zhou, J.; Zhao, Z.; Bao, J.; Jing, Z. p21-activated kinase 4 promotes intimal hyperplasia and vascular smooth muscle cells proliferation during superficial femoral artery restenosis after angioplasty. BioMed Res. Int. 2017, 2017, 5296516. [Google Scholar] [CrossRef]
- Rane, C.K.; Minden, A. P21 activated kinase signaling in cancer. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2019; pp. 40–49. [Google Scholar]
- King, H.; Thillai, K.; Whale, A.; Arumugam, P.; Eldaly, H.; Kocher, H.M.; Wells, C.M. PAK4 interacts with p85 alpha: Implications for pancreatic cancer cell migration. Sci. Rep. 2017, 7, 42575. [Google Scholar] [CrossRef] [PubMed]
- Thillai, K.; Sarker, D.; Wells, C. PAK4 as a potential therapeutic target in pancreatic ductal adenocarcinoma (PDAC). J. Clin. Oncol. 2017, 35, e23139. [Google Scholar] [CrossRef]
- Tyagi, N.; Marimuthu, S.; Bhardwaj, A.; Deshmukh, S.K.; Srivastava, S.K.; Singh, A.P.; McClellan, S.; Carter, J.E.; Singh, S. p-21 activated kinase 4 (PAK4) maintains stem cell-like phenotypes in pancreatic cancer cells through activation of STAT3 signaling. Cancer Lett. 2016, 370, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, S.-Y.; Du, F.; Han, Q.; Wang, E.-H.; Luo, E.-J.; Liu, Y. Knockdown of PAK1 inhibits the proliferation and invasion of Non–Small cell Lung cancer cells through the ERK pathway. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Davidson, A.; Tyler, J.; Hume, P.; Singh, V.; Koronakis, V. A kinase-independent function of PAK is crucial for pathogen-mediated actin remodelling. PLoS Pathog. 2021, 17, e1009902. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, H.; Lundin, L.; Thullberg, M.; Liu, Y.; Wang, Y.; Claesson-Welsh, L.; Strömblad, S. p21-activated kinase 4 phosphorylation of integrin β5 Ser-759 and Ser-762 regulates cell migration. J. Biol. Chem. 2010, 285, 23699–23710. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.W.; Kim, S.H.; Ihm, H.J.; Oh, Y.S.; Chae, H.D.; Kim, C.-H.; Kang, B.M. Increased expression of p21-activated kinase 4 in adenomyosis and its regulation of matrix metalloproteinase-2 and-9 in endometrial cells. Fertil. Steril. 2015, 103, 1089–1097.e1082. [Google Scholar] [CrossRef]
- Etienne-Manneville, S.; Hall, A. Rho GTPases in cell biology. Nature 2002, 420, 629–635. [Google Scholar] [CrossRef]
- Bryan, B.A.; Dennstedt, E.; Mitchell, D.C.; Walshe, T.E.; Noma, K.; Loureiro, R.; Saint-Geniez, M.; Campaigniac, J.-P.; Liao, J.K.; D’Amore, P.A. RhoA/ROCK signaling is essential for multiple aspects of VEGF-mediated angiogenesis. FASEB J. 2010, 24, 3186. [Google Scholar] [CrossRef]
- Bryan, B.; D’amore, P. What tangled webs they weave: Rho-GTPase control of angiogenesis. Cell. Mol. Life Sci. 2007, 64, 2053–2065. [Google Scholar] [CrossRef]
- Hu, G.-D.; Chen, Y.-H.; Zhang, L.; Tong, W.-C.; Cheng, Y.-X.; Luo, Y.-L.; Cai, S.-X.; Zhang, L. The generation of the endothelial specific cdc42-deficient mice and the effect of cdc42 deletion on the angiogenesis and embryonic development. Chin. Med. J. 2011, 124, 4155–4159. [Google Scholar]
- El Atat, O.; Fakih, A.; El-Sibai, M. RHOG activates RAC1 through CDC42 leading to tube formation in vascular endothelial cells. Cells 2019, 8, 171. [Google Scholar] [CrossRef]
- Li, C.-F.; Chan, T.-C.; Fang, F.-M.; Yu, S.-C.; Huang, H.-Y. PAK1 overexpression promotes myxofibrosarcoma angiogenesis through STAT5B-mediated CSF2 transactivation: Clinical and therapeutic relevance of amplification and nuclear entry. Int. J. Biol. Sci. 2023, 19, 3920. [Google Scholar] [CrossRef] [PubMed]
- Bagheri-Yarmand, R.; Vadlamudi, R.K.; Wang, R.-A.; Mendelsohn, J.; Kumar, R. Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin-β1-mediated angiogenesis. J. Biol. Chem. 2000, 275, 39451–39457. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Gao, Y.; Yu, Q.H.; Li, M.; Cheng, X.; Hu, S.B.; Song, Z.F.; Zheng, Q.C. P-21-activated kinase 1 contributes to tumor angiogenesis upon photodynamic therapy via the HIF-1α/VEGF pathway. Biochem. Biophys. Res. Commun. 2020, 526, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.; Johnson, R.S. Hypoxia: A key regulator of angiogenesis in cancer. Cancer Metastasis Rev. 2007, 26, 281–290. [Google Scholar] [CrossRef]
- Goc, A.; Al-Azayzih, A.; Abdalla, M.; Al-Husein, B.; Kavuri, S.; Lee, J.; Moses, K.; Somanath, P.R. P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor β expression and enhanced matrix metalloproteinase 9 secretion. J. Biol. Chem. 2013, 288, 3025–3035. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, Y.-G.; Pu, D.-M. Matrix metalloproteinase-2 and-9 expression correlated with angiogenesis in human adenomyosis. Gynecol. Obstet. Investig. 2006, 62, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhan, Y.; Huynh, N.; Dumesny, C.; Wang, X.; Asadi, K.; Herrmann, D.; Timpson, P.; Yang, Y.; Walsh, K. Inhibition of PAK1 suppresses pancreatic cancer by stimulation of anti-tumour immunity through down-regulation of PD-L1. Cancer Lett. 2020, 472, 8–18. [Google Scholar] [CrossRef]
- Yeo, D.; Phillips, P.; Baldwin, G.S.; He, H.; Nikfarjam, M. Inhibition of group 1 p21-activated kinases suppresses pancreatic stellate cell activation and increases survival of mice with pancreatic cancer. Int. J. Cancer 2017, 140, 2101–2111. [Google Scholar] [CrossRef]
- Allam, A.; Thomsen, A.; Gothwal, M.; Saha, D.; Maurer, J.; Brunner, T. Pancreatic stellate cells in pancreatic cancer: In focus. Pancreatology 2017, 17, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Topalovski, M.; Brekken, R.A. Matrix control of pancreatic cancer: New insights into fibronectin signaling. Cancer Lett. 2016, 381, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, Y.; Zhang, R.; Yang, F.; Zhang, D.; Huang, M.; Zhang, L.; Dorsey, J.F.; Binder, Z.A.; O’Rourke, D.M. Targeting PAK4 to reprogram the vascular microenvironment and improve CAR-T immunotherapy for glioblastoma. Nat. Cancer 2021, 2, 83–97. [Google Scholar] [CrossRef]
- Su, S.; You, S.; Wang, Y.; Tamukong, P.; Quist, M.J.; Grasso, C.S.; Kim, H.L. PAK4 inhibition improves PD1 blockade immunotherapy in prostate cancer by increasing immune infiltration. Cancer Lett. 2023, 555, 216034. [Google Scholar] [CrossRef] [PubMed]
- Frank, P.G.; Lisanti, M.P. ICAM-1: Role in inflammation and in the regulation of vascular permeability. Am. J. Physiol. -Heart Circ. Physiol. 2008, 295, H926–H927. [Google Scholar] [CrossRef]
- Sarelius, I.H.; Glading, A.J. Control of vascular permeability by adhesion molecules. Tissue Barriers 2015, 3, e985954. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.M.; Wiesolek, H.L.; Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leucoc. Biol. 2020, 108, 787–799. [Google Scholar] [CrossRef]
- Riegler, J.; Gill, H.; Ogasawara, A.; Hedehus, M.; Javinal, V.; Oeh, J.; Ferl, G.Z.; Marik, J.; Williams, S.; Sampath, D. VCAM-1 density and tumor perfusion predict T-cell infiltration and treatment response in preclinical models. Neoplasia 2019, 21, 1036–1050. [Google Scholar] [CrossRef]
- Abril-Rodriguez, G.; Torrejon, D.Y.; Karin, D.; Campbell, K.M.; Medina, E.; Saco, J.D.; Galvez, M.; Champhekar, A.S.; Perez-Garcilazo, I.; Baselga-Carretero, I. Remodeling of the tumor microenvironment through PAK4 inhibition sensitizes tumors to immune checkpoint blockade. Cancer Res. Commun. 2022, 2, 1214–1228. [Google Scholar] [CrossRef]
- Liu, X.; Si, W.; Liu, X.; He, L.; Ren, J.; Yang, Z.; Yang, J.; Li, W.; Liu, S.; Pei, F. JMJD6 promotes melanoma carcinogenesis through regulation of the alternative splicing of PAK1, a key MAPK signaling component. Mol. Cancer 2017, 16, 1–18. [Google Scholar] [CrossRef]
- Neesse, A.; Michl, P.; Frese, K.K.; Feig, C.; Cook, N.; Jacobetz, M.A.; Lolkema, M.P.; Buchholz, M.; Olive, K.P.; Gress, T.M. Stromal biology and therapy in pancreatic cancer. Gut 2011, 60, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.; Pritchett, J.; Llewellyn, J.; Mullan, A.F.; Athwal, V.S.; Dobie, R.; Harvey, E.; Zeef, L.; Farrow, S.; Streuli, C. PAK proteins and YAP-1 signalling downstream of integrin beta-1 in myofibroblasts promote liver fibrosis. Nat. Commun. 2016, 7, 12502. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Liu, S.; Zhang, G.; Wu, B.; Zhu, Y.; Frederick, D.T.; Hu, Y.; Zhong, W.; Randell, S.; Sadek, N. PAK signalling drives acquired drug resistance to MAPK inhibitors in BRAF-mutant melanomas. Nature 2017, 550, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Sun, X.; Gao, Y.; Lu, M.; Zhu, L.; Wang, D.; Hu, C.; Chen, J.; Cao, P. Natural Compound Shikonin Is a Novel PAK1 Inhibitor and Enhances Efficacy of Chemotherapy against Pancreatic Cancer Cells. Molecules 2022, 27, 2747. [Google Scholar] [CrossRef] [PubMed]
- Yeo, D.; He, H.; Patel, O.; Lowy, A.M.; Baldwin, G.S.; Nikfarjam, M. FRAX597, a PAK1 inhibitor, synergistically reduces pancreatic cancer growth when combined with gemcitabine. BMC Cancer 2016, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Dumesny, C.; Ang, C.-S.; Dong, L.; Ma, Y.; Zeng, J.; Nikfarjam, M. A novel PAK4 inhibitor suppresses pancreatic cancer growth and enhances the inhibitory effect of gemcitabine. Transl. Oncol. 2022, 16, 101329. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, R.M.; Li, Y.; Muqbil, I.; Aboukameel, A.; Senapedis, W.; Baloglu, E.; Landesman, Y.; Philip, P.A.; Azmi, A.S. Targeting Rho GTPase effector p21 activated kinase 4 (PAK4) suppresses p-Bad-microRNA drug resistance axis leading to inhibition of pancreatic ductal adenocarcinoma proliferation. Small GTPases 2019, 10, 367–377. [Google Scholar] [CrossRef]
- Tian, L.; Goldstein, A.; Wang, H.; Ching Lo, H.; Sun Kim, I.; Welte, T.; Sheng, K.; Dobrolecki, L.E.; Zhang, X.; Putluri, N. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 2017, 544, 250–254. [Google Scholar] [CrossRef]
- Parsa, A.T.; Waldron, J.S.; Panner, A.; Crane, C.A.; Parney, I.F.; Barry, J.J.; Cachola, K.E.; Murray, J.C.; Tihan, T.; Jensen, M.C. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 2007, 13, 84–88. [Google Scholar] [CrossRef]
- Kharma, B.; Baba, T.; Matsumura, N.; Kang, H.S.; Hamanishi, J.; Murakami, R.; McConechy, M.M.; Leung, S.; Yamaguchi, K.; Hosoe, Y. STAT1 drives tumor progression in serous papillary endometrial cancer. Cancer Res. 2014, 74, 6519–6530. [Google Scholar] [CrossRef]
- Abril-Rodriguez, G.; Torrejon, D.Y.; Liu, W.; Zaretsky, J.M.; Nowicki, T.S.; Tsoi, J.; Puig-Saus, C.; Baselga-Carretero, I.; Medina, E.; Quist, M.J. PAK4 inhibition improves PD-1 blockade immunotherapy. Nat. Cancer 2020, 1, 46–58. [Google Scholar] [CrossRef]
- Kasprzak, A. Angiogenesis-related functions of Wnt signaling in colorectal carcinogenesis. Cancers 2020, 12, 3601. [Google Scholar] [CrossRef]
- Cully, M. Tumour vessel normalization takes centre stage. Nat. Rev. Drug Discov. 2017, 16, 87. [Google Scholar] [CrossRef]
Type of Cancer | Treatment | Result | Other | Ref. |
---|---|---|---|---|
Myxofibrosarcoma | ↑ PAK1 | ↑ Tube formation and, ↑ Microvascular density (CD31 expression). | ↑ CSF2 expression. | [75] |
Breast | ↑ PAK1 | ↑ Angiogenesis (CD34 expression). | ↑ VEGF. | [76] |
Cholangiocarcinoma | ↓ PAK1 | ↓ Tube formation and angiogenesis. | ↓ VEGF. | [77] |
Melanoma | ↓ PAK1 | ↓ Tube formation and number of blood vessels. | PAK1 expression is regulated by JMJD6, which phosphorylates RAF and MEK and positively regulates the MAPK pathway. | [92] |
Prostate | ↓ PAK1 | ↓ Laminin positive blood vessels. | ↓ MMP9 (tenfold). | [79] |
Pancreatic | ↓ PAK1 | ↓ αSMA and Desmin. | Deactivation of PSCs contributing to angiogenesis. | [81,82] |
Glioblastoma endothelial cells | ↓ PAK4 | ↑ Tube formation. ≈Change of CD31 expression. ↓ Monolayer permeability. ↓ Hypoxia and vascular abnormality. | ↓ Fibroblast-specific protein 1 (FSP-1), αsma, CDH2 (N-cadherin), SLUG, and ZEB1. ↑ Claudin-1, Claudin-14, ICAM1, and VCAM1 expression (twofold). | [85] |
Prostate | ↓ PAK4 | ↑ Blood vessel width and density (PECAM1). | ↑ ICAM1 (CD54), VCAM1 (CD106), VEGFA RNA sequencing, and PECAM1 (CD31). | [86] |
Melanoma | ↓ PAK4 | ↑ Cercam1, Enpep, Itga3, and Lgals3. | [91] |
Cancer Type | PAK Inhibitors | Target | Treatment | Mechanism | Ref. |
---|---|---|---|---|---|
Melanoma | PF-3758309 | PAK1 PAK4 | BRAFi inhibitor MEKi inhibitor | Enhance apoptosis and reduce cellular resistance to combined therapy via regulation of multiple pathways including JNK, ERK, β-catenin, and mTOR. | [95] |
Pancreatic | Shikonin | PAK1 | Gemcitabine 5-FU | Increase apoptosis in cancer cells. | [96] |
Pancreatic | FRAX597 | PAK1 | Gemcitabine | Suppress HIF1α and AKT. | [97] |
Pancreatic | PF-3758309 | PAK1 PAK4 | Gemcitabine 5-FU Abraxane | Reduce cell proliferation and enhance apoptosis. Decrease the expression of αSMA, Phalloidin, and HIF1α in vivo. | [100] |
Pancreatic | PAKib | PAK4 | Gemcitabine | Induce cell cycle arrest and cell death and regulate cell junction and adhesion. | [98] |
Pancreatic | KPT-9274 KPT-9307 | PAK4 | Gemcitabine | Downregulate p-Bad-microRNA drug resistance axis and upregulate tumour-suppressive miRNAs. | [99] |
Type of Cancer | Treatment | Techniques | Type of Immune Cell Activation | Possible Effect on Tumour Vasculature | Ref. |
---|---|---|---|---|---|
Pancreatic | ↓ PAK1 | Western blot and IHC | T cells (CD3+, CD4+, and CD8+) | ↓ αSMA and Desmin, which indicates cancer associated fibroblast deactivation, in turn anticipating the reduced angiogenesis. | [81] |
Melanoma | ↓ PAK4 | Mass cytometry and IHC | T cells (CD8+) and dendritic cells | ↑ Activation of WNT signalling pathway, anticipating the increasing angiogenesis. | [103] |
Melanoma | ↓ PAK4 | Transcriptomic, IHC, and flow cytometry | T cells (CD8+) and dendritic cells (CD103+) | ↑ Alterations in genes associated with blood vessel formation, specifically, Cercam, Enpep, Itga, and Lgals. | [91] |
Glioblastoma | ↓ PAK4 | IHC and bioluminescence imaging | T cells (CD3+) | ↑ Vascular normality with reduced hypoxia. | [85] |
Prostate | ↓ PAK4 | Flow cytometry and IHC | T cells (CD8+) and B cells | ↑ ICAM1 and VCAM1. ↑ Inflammatory signals (CCR7, CCL19 and CCL21, CXCL13, and CXCR5). | [86] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansardamavandi, A.; Nikfarjam, M.; He, H. PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response. Cells 2023, 12, 2692. https://doi.org/10.3390/cells12232692
Ansardamavandi A, Nikfarjam M, He H. PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response. Cells. 2023; 12(23):2692. https://doi.org/10.3390/cells12232692
Chicago/Turabian StyleAnsardamavandi, Arian, Mehrdad Nikfarjam, and Hong He. 2023. "PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response" Cells 12, no. 23: 2692. https://doi.org/10.3390/cells12232692
APA StyleAnsardamavandi, A., Nikfarjam, M., & He, H. (2023). PAK in Pancreatic Cancer-Associated Vasculature: Implications for Therapeutic Response. Cells, 12(23), 2692. https://doi.org/10.3390/cells12232692