Right Ventricle and Epigenetics: A Systematic Review
Abstract
:1. Method
1.1. Search Strategy and Study Selection
1.2. Data Extraction
1.3. Objectives
2. Introduction
3. Results
3.1. Micro-RNA
Epigenetic Modification | Human | In Vivo | In Vitro | Therapeutic Intervention | Outcomes | PMID/Ref |
---|---|---|---|---|---|---|
Arrhythmogenic Cardiomyopathy | ||||||
miR-320a | Plasma: - 53 ctrl (53% male, 42.9 y +/− 1.57) - 21 IVT (21% male, 48.1 y ± 3.09), - 36 ACM (100% male, 48.1 y ± 2.22) | N/A | N/A | N/A | - ACV vs. ctrl and IVT => ↓ miR-320a - miR-320a levels don’t correlate with ACM severity | 28684747/[15] |
miR-130a | N/A | Mice, CD-1, αMHC-tTA/TetO-miR130a | 3T3 | - Myocyte specific miR-130a overexpression - miR-130a inhibitor | In vivo: - ↑ αMHC miR-133a => ↑ RV hypertrophy and arrhythmogenic - ↑ miR-133a => fibrosis, Lipid, accumulation, CM death in LV, RV. In vitro: - miR-130a => direct regulator of DSC2 | 27834139/[16] |
- Cardiac related Array (84 miR) | RV: - 9 ACM - 4 ctrl Blood: - 9 ACM (discovery) - 90 ACM (validation) - 24 ctrl | N/A | N/A | N/A | RV and blood (discovery cohort): - ACM vs. ctrl, differentially expressed miR in a consistent direction => miR-122-5p, miR-133a-3p, miR-133b, miR-142-3p, miR-144-3p, miR-149-3p, miR-182-5p, miR-183-5p, miR-208a-3p, miR-122-5p, miR-133a-3p, miR-133b, miR-142-3p, miR-144-3p, miR-149-3p, miR-182-5p, miR-183-5p, miR-208a-3p, miR-494-3p. - ACM vs. ctrl, blood (validation cohort): - ↑ miR-122-5p, miR-182-5p, and miR-183-5p. - ↓ miR-133a-3p, miR-133b, miR-142-3p. | 32102357/[17] |
- microarray | RV: - 24 ARVC (66% male, 36 y +/− 13) - 24 ctrl | N/A | N/A | N/A | - ↑ miR-21-3p, miR-21-5p *, miR-34a, miR-212, miR-216a, miR-584, miR-1251, miR-3621miR-3674, miR-3692, miR-4286, miR-4301 in ARCV vs. ctrl - ↓ miR-135b *, miR-138, miR-193b, miR-302b, miR-302c, miR-338, miR-451a, miR-491, miR-575, miR-3529, miR-4254, miR-4643 in ARCV vs. ctrl * correlate with Wnt and Hippo pathways, as well as myocardium adiposis and fibrosis. | 27307080/[18] |
- qRT-PCR (754 miRNAs) | Plasma: - 37 ARVC (59% male, 44 y ± 13), - 30 ctrl (age sex matched) | N/A | N/A | N/A | - ARVC vs. ctrl => ↑ miR-185-5P | 34685557/[19] |
- RNAseq | Pericardial fluid - 6 ARVC (22% female, 37 y +/− 15.8), - 3 post-infarction VT (100% male, 65 y +/− 10.8) | N/A | N/A | N/A | - ARVC vs. post infarction VT => miR-1-3p, miR-21-5p, miR-122-5p, miR-206, miR-3679-5p differentially expressed | 33816578/[20] |
- hsa-let-7e, miR-122-5p, 133a, 144-3p, 145-5p, 185-5p, 195-5p, 206, 208a, 208b, and 494 | Plasma: - 28 ARVC (60% male, 48 y +/− 13) - 11 borderline ARVC (45% male, 48 y +/− 19) - 23VT (34% male, 40 y +/− 10) - 33 ctrl | N/A | N/A | N/A | - ↑ miR-144-3p, 145-5p, 185-5p, and 494 in ARVC with VA - ↑ miR-494 ARVC with recurrent VA post ablation. | 29036525/[21] |
- RNA seq - q RT-PCR | Blood - 9 chronically paced (46% male, 15.7 y +/ 2.4) - 13 non-paced ctrl (33% male, 15.03 z +/− 2) | N/A | N/A | N/A | - Paced vs. ctrl => ↓ 192, ↑ 296 miR - PCR validation selected miR paced vs. ctrl => ↑ miR-214-3p, miR-210-5p, and miR-205-5p, ↓ miR-130b-5p, miR-190a-5p, miR-148b-5p, miR-126-5p, and miR-15b-3p. | 36121621/[22] |
Coronary artery disease—cardiac allograph vasculopathy | ||||||
- miR-126 - miR-628-3p - miR-92a-3p | RV - 21 cardiac allograph vasculopathy (CAV+, 85% male, 51.1 y +/− 11.8) - 18 CAV− (89% male, 59.9 y +/− 7) - 8 end stage CAD | N/A | N/A | N/A | - CAV+ vs. CAV− => ↓ miR-126-3p - ↓ miR-126-3 predicts CAV event - CAD vs. CAV− => ↑ miR-126-3p - miR-628-30 and miR-92a-3p levels unaffected across the conditions | 32548243/[23] |
Congenital heart disease | ||||||
- RNAseq | RVOT: - 13 CHD (54% males, 1.8 y ± 1.69) - 7 controls (43% males, 25.29 W ± 1.70) | - Zebrafish embryo | - HL1 | - Mimic-miR-29b - Inhibitor-miR-29b | Human: - CHD vs. ctrl => impaired expression of 20 miRNA - CHD vs. ctrl => ↑ miR-29b-3p In Vivo/Vitro - ↑ miR-29b-3p induce cardiac malformation and lethality in zebra fish, - ↑ miR-29b-3p inhibited cardiomyocyte proliferation in vitro and in vivo - ↓ miR-29b-3p ↑ cardiomyocyte proliferation in vitro and in vivo. - miR-29b targets NOTCH2 | 32077168/[24] |
- miR-486 - micro array (cells) | RV - 3 HLHS (newborn) - 3 controls (newborn) | - sheep - aortopulmonary vascular graft | - EMCM - Cyclic stretch | In vitro: - mimic-miR-486 | Human - HLHS vs. ctrl => ↓RV miR-486 In Vivo - hypertrophic RV => ↓RV miR-486 In vitro - Cyclic stretch => impairs expression of 34 miRNA. - Cyclic stretch => ↓RV miR-486 - ↑ miR-486 => ↑ contractility - ↑ miR-486 => ↓ FoxO1, ↓ Smad, ↑ Stat1. | 31513548/[25] |
Dilated cardiomyopathy | ||||||
- Microarray | RV: - 8 End stage DCM with LVAD (87.5% male, 57 y [26,27,28,29,30]), - 8 DCM without LVAD, (87.5% male, 50 y [26,27,28,29,30,31,32,33,34,35,36,37]) - 6 no HF (45 y, [26,27,28,29,30,31,32,33,34,38,39,40], no info sex) | N/A | N/A | N/A | - DCM no LVAD vs. no HF => 19 differentially expressed miRNAs. - 3 miRNAs (hsa_miR_21 *, hsa_miR_1972 and hsa_miR_4461) in the RV showed normalization after LVAD implantation | 35216165/[41] |
- miR-21, - miR-26, - miR-29, - miR-30 - miR-133a. | Plasma - 15 DCM with normal RV (80% male, 45.6 y +/− 12.1) - 55 DCM + RVD/SD (7.3% male, 48.7 y +/− 12.1) | N/A | N/A | N/A | - DCM + RVD/SD vs. DCM => ↑ miR-133a - MiR-21, miR-26, miR-30, and miR-133a correlate with RV morphological but not with functional parameters. - MiR-30 associated with RV impairment | 28840590/[42] |
- miR-29a - miR-29b - miR-29c - miR-133a - miR-133b | Apex, LV, septum, RV tissues. - 3 DCM (46.57 y ± 9.06) - 3 ctrl (32.0 y ± 7.16) | N/A | N/A | N/A | - DCM vs. ctrl RV => ↓ miR-29b, -133a, -133a, -29c. - DCM vs. ctrl RV => ↑ miR-21 | 27922664/[43] |
- miR-21 - miR-26 - miR-29 - miR-30 - miR-133a | Plasma and RV - 70 DCM, 48.04 y ± 12.1 - 7 patients with CAD who underwent CABG (ctrl), 72.5 y ± 3.4 | N/A | N/A | N/A | - DCM vs. ctrl RV => ↓ miR-133a, ↓ miR-26, ↑ miR-29 - DCM vs. ctrl plasma => ↓ miR-26, ↑ miR-29 - miR-133a RV => independent predictor of mortality | 29377565/[44] |
- miR-21 - miR-26 - miR-29 - miR-30 - miR-133a - miR-423 | Plasma and RV - 32 DCM + LVRR, 48.9 y ± 9.9, 9.4% female - 31 DCM without LVRR, 46.9 y ± 9.9, 9.7% female | N/A | N/A | N/A | - DCM LVRR vs. DCM no LVRR => ↑ miR-133a RV - miR-133a => independent predictor of DCM LVRR | 32207584/[45] |
Irradiation | ||||||
- miR-21 - miR-1 | N/A | - Rats, Wistar, Male - Single dose of 25 Gy of ionizing radiation | N/A | In vivo - Aspirin, - Atorvastatin - sildenafil | - no changes in RV miR-1 post irradiation. - ↑ RV mi-R21 post irradiation. - aspirin, atorvastatin, and sildenafil => ↓ RV miR-21 post irradiation | 29642568/[46] |
Neonatal Hypoxia | ||||||
- miR-206 - miR-1 | N/A | - Rats, Sprague Dawley, male+ female (2 days) - Hx 12% (2–20 days) | N/A | N/A | - hypertrophic RV => ↓ miR-206 - hypertrophic RV => no differences in miR-1 expression | 23842077/[47] |
Normal heart | ||||||
-microarray | N/A | - Rats, Wistar Han, male, (3–6 months) - Dogs, Beagle, male, (25–37 months) - Monkeys, cynomolgus, female, (2–4 years). | N/A | N/A | - Apex, septum, RV, LV, and papillary muscle => similar miRNA profile. - Heart miRNA profile poorly conserved across the species. | 23300973/[14] |
Pulmonary Hypertension | ||||||
- microarray | N/A | - Dog, male, mongrel (9–13 m, 21–27 kg) - Tachypacing-induced biventricular HF - group 2 PH model. | - DRVF - Cyclic overstretch - Aldosterone | IN vitro: - AntagomiR-21 | - HF vs. ctrl => ↑ miR21, miR221 in RV (not in LV). - In vitro miR21 and 221 increased in stressed DRVF | 31916447/[48] |
- PCR, 93 mir | N/A | - mixed-breed Western ewes, 137−141 days gestation - Fetal aortopulmonary shunt - haemodynamic measurement => 4–6 w | N/A | N/A | - Fetal shunt vs. sham RV => ↑ 40 miRNA. - ↑ miR-199b might contribute to the regulation of Dyrk1a/NFAT pathway - ↑ miR-29a contributes to fibrosis | 29906222/[49] |
- PCR array (753 miR) | Plasma, from superior vena cava, pulmonary artery, and ascending aorta: - 12 PAH (42% male, 7.8 y (0.5–17.7)), - 9 ctrl (56% male, 6.5 (0.4–17.1)) | N/A | N/A | N/A | - Trans RV miRNA gradients (pulmonary artery vs. superior vena cava): miR-193a-5p (↑ in PAH, ↓ in ctrl) and miR-423-5p (↓ in PAH and ctrl) - transpulmonary miRNA gradients (ascending aorta vs. pulmonary artery): miR-26b-5p (↓ in ctrl), miR-331-3p (↑ in PAH). - miR-193a-5p, miR-423-5p, miR-26b-5p, miR-331-3p correlate with haemodynamic - PAH vs. ctrl ↑ miR-29a-3p, miR-26a-5p, miR-590-5p, and miR-200c-3p in PAH-superior vena cava and ↓ miR-99a-5p in PAH -pulmonary artery | 31876555/[50] |
- myomiRs (miR-1, miR-133a, miR-208, miR-499) and miR-214 | N/A | - Rats, Wistar, Male - MCT, 60 mg/kg, s.c. | N/A | N/A | - MCT vs. Ctrl =>↓ miR-208a, ↓miR-1, ↓miR-133a and ↓miR-499 in RV - MCT vs. Ctrl => ↑ cardiac damage-related miR-214 in failing RV. | 32395887/[33] |
- Mir-21 | plasma, group 3 PH, n = 41 - 19 COPD, - 9 bronchiectasis, - 7 pulmonary tuberculosis, - 6 IPF. RV dysfunction: - 31 without RV dysfunction (67.7% male, 56.2 y ± 8.5), −10 with RV dysfunction (60% male, 51.6 y ± 19.4) | N/A | - H9C2 | - Mimic-miR21 | Human: - Circulating miR-21correlated with RV dysfunction In Vitro: - miR-21 => ↑ CM hypertrophy - miR-21 => ↑ cardia stress markers (BNP) expression. | 30449992/[51] |
- Mir-1 | N/A | - Rats, Sprague-Dawley, Male (180–200 g) - Hx (10% O2, 4 w) | - RCF - Hx | in vitro/in vivo: - mimic-miR1 - antagomiR-miR-1 | In Vivo: - Hx RV => ↑ miR1 - ↓ miR1 => ↓ RV hypertrophy, - ↓ miR1 => ↓RV fibrosis In Vitro: - Hx RCF => ↑ miR1 - ↓ miR1 => ↓ collagen production | 33604679/[37] |
- Mir-495 | N/A | - Rats, Sprague-Dawley, Male - MCT, 60 mg/kg, s.c. | - NRVC | In Vitro: - mimic-miR495 - antagomir-miR495 | In Vivo: - ↓RV miR-495 => ↑ PTEN. In vitro: - ↑ miR-495 prevents CM hypertrophy - ↑ miR-495 => ↓ cardiac stress marker (e.g. NPPA) | 29566365/[34] |
- Mir-322 (424) | N/A | - Rats (6–8 w) - MCT, 40 mg/kg, s.c. | - C1C12 (mouse myoblast) | In Vitro - Mimic-miR322 (424) - Antagomir- miR322 (424) | In Vivo - MCT vs. ctrl RV => ↓ Mir-322 (424) In Vitro - Mir-322 (424) directly targets IGF-1 | 29511611/[28] |
- Mir-322 (424) | Plasma: - 14 IPAH, HPAH, DPAH (54 y, 40–67; 80% F) - 15 PAH-CTP (59 y, 51–71; 80% F) - 32 PAH CHD (37 y, 31–47; 59% F) - 3 PoPH (52 y, 31–67; 100% F) - 24 CTEPH (60 y, 49–73; 58% Female) - 34 healthy control (69 y, 64–75; 52% F) | - Rats, Wistar, Male - MCT, 60 mg/kg, i.p. | - NRVC - H9c2 | N/A | Human: -PH patients vs. Ctrl = ↑ miR-424(322) - miR-424(322) corelates with symptoms and hemodynamics - miR-424(322) predicts survival in CHD-PH. In Vivo: - association between circulating miR-424(322) levels and RV hypertrophy - RV miR-424(322) correlates with ↓ SMURF1 expression In Vitro: - hypoxia induces the secretion of miR-424(322) by PAECs, which after being taken up by cardiomyocytes leads to down-regulation of SMURF1. | 29016730/[29] |
- Mir-325 | N/A | - Rats, Sprague-Dawley, Male - MCT, 60 mg/kg, i.p.. | -RCF - exposed to angII | In Vivo - Lentivirus-miR-325-3p. In vitro - Mimic-miR-325-3p | In Vivo: - MCT vs. Ctrl RV => ↓ miR-325 - miR-325 negatively correlates withRV fibrosis - ↑ miR-325 => HE4 => ↓ RV fibrosis In Vitro - angII => ↓ miR-325 - ↑ miR-325 => ↓ fibrosis | 35136419/[52] |
-Mir-223 | N/A | - Mice, C57BL/6, Male - Hx (10% o2, 21d), -PAB, - transgenic miR-223 knock-out mice. | - cos-7 | In vivo: - miR-223 genetic depletion - adeno-associated virus cardiac specific pre-miR-223 overexpression - AntagomiR-223 In vitro - AntagomiR-223 | In Vivo: - Hx => ↓miR-223 - PAB => ↓ miR-223 - ↑ miR-223 => ↓ RV fibrosis, ↑ RV function - ↓ miR-223 => ↓ RV function - miR-223 targets IGF-IR | 27013635/[26] |
- Mir-214 - Mir-199 | N/A | - Rat, Wistar Kyoto, - mice, C57BL/6, Male + female, 8 weeks - C57BL/6 depleted for miR-214 - SUHX, 20 mg/kg, s.c. | N/A | miR-214 genetic depletion | - SuHX vs. ctrl (rats and mice) => ↑ mir-214, ↑ miR-199 - ↓ miR-214 => ↑RV hypertrophy - miR-214 targets phosphatase and tensin and PTEN | 27162619/[30] |
- Mir-21 | Blood, - 19 CHD-PAH + HF (50 y +/− 23.7; 37% male) - 57 CHD-PAH no HF (52 y +/− 22; 33% male) 10 healthy controls (50 y +/− 8; 40 % male) | - Rats, Sprague-Dawley, Male - aorto-venous fistula | - H9C2 cardiomyocytes, - microflow-mediated shear stress | In vitro -Mimic-miR-21 | Human - CHD-PAH HF vs. no HF => ↓ miR-21 - Multivariate analysis => miR-21 levels associated with HF hospitalization. In Vivo - ↑ RV mir-21 RV in early response to aeorto-venous fistula - ↓ RV mir-21 RV in late response to aeorto-venous fistula In vitro - ↑ miR-21 in cardiomyocytes under shear stress at 3 h and ↓ at 6 h. - ↓ miR-21 => ↑ apoptosis. - ↑ miR-21 prevent CM apoptosis. | 35159373/[38] |
- Mir-21 | N/A | - Rats, Sprague-Dawley, Male - SUHX, 20 mg/kg, s.c., 10% O2 | - Adult RRVC - Adult RLVC - Hx | In vivo - Trimetazidine (rat 10 mg/kg/days, 4 weeks) In vitro - Trimetazidine (10 µM) | In vivo - ↓ miR-21 in decompensated RV - Trimetazidine => ↑miR-21 expression => ↑ RV function In Vitro - ↓ miR-21 => ↑ RRVC apoptosis - Trimetazidine => ↑miR-21 => ↓ apoptosis | 22842854/[39] |
- Mir-208 | N/A | - Rats, Sprague-Dawley, Male - MCT, 60 mg/kg, s.c. | - Adult RRVC - Adult RLVC - Hx - NRC - TNF and phenylephrine | In vitro -mimic-miR-208 - antagomir-208 | In vivo - ↓ miR-208 in decompensated RV. In vitro - miR-208 and Inflammation regulates the MED13/NCoR1-Mef2 Axis in the RV but not in the LV - ↓ mir-208 inhibition decreases cardiomyocyte hypertrophy | 25287062/[53] |
- Mir-200b | N/A | - Mice, C57BL/6, Male - MCT 60 mg/kg, i.p. | N/A | In Vivo - mimic-miR-200b | - ↓ miR-200b in MCT RV - ↑ miR-200b => ↓ RV PKCa expression | 31730233/[54] |
- microarray (miR-197, miR-146b, miR-133, miR 491) | RV - 7 IPAH - 6 Ctrl | - Rats, Sprague-Dawley, Male - SUHX, 20 mg/kg, s.c., 10% O2 | - NRCM | In Vivo - pioglitazone In vitro - pre-miR-197 - pre miR-146b - pioglitazone | Human - IPAH vs. Ctrl RV => ↑ miR-197, ↑ miR-146b In vivo - SuHx vs. Ctrl RV => ↑ miR-197, ↑ miR-146b, ↓miR-133, ↓miR 491 - pioglitazone => ↓miR-197, ↓ miR-146b and ↑miR-491 In Vitro - ↑ miR-197, ↑ miR-146b => ↓ genes that drive FAO (CPT1B, FABP4). | 29695452/[27] |
- miR-17 - miR-21 - miR-30b - miR-145 - miR-204 - miR-424 - miR-503 | Plasma, - 14 PAH - 13 controls | - Rats, Sprague-Dawley, Male, SUHX, 20 mg/kg, s.c., 10% O2 - Rats, Fisher, Male, MCT, 60 mg/kg, i.p. - Mice, C57BI6J, male, Hypoxia (10% o2) | N/A | N/A | Human - PAH vs. Ctrl => ↓ miR-17, ↓ miR-145, ↑ miR-424 In vivo - Rat MCT vs. ctrl RV => ↓ miR-145. - Rat SuHX vs. ctrl RVI => ↑ miR-21 and ↓ miR-204 - Mice Hx vx NX RV =>↑ miR-322 and ↑ miR-503. | 25763574/[55] |
- miR-17-5p - miR-21-5p - miR-126-3p - miR-145-5p - miR-150-5p - miR-204-5p - miR-223-3p - miR-328-3p - miR-424-5p | N/A | - Rats, Sprague Dawley, Female - MCT, 60 mg/kg, i.p. | N/A | In vivo: - AntagomiR-223 | - MCT vs. ctrl RV => ↑ miR-17, ↑ miR-21, ↑ miR-223, ↑ miR-503 - MCT vs. ctrl RV => ↓ miR-145, ↓ miR-150, ↓ 424 - treatment did not changed RV miR-223 expression | 26815432/[40] |
-miR-126 | RV free wall tissue - 17 Ctrl (62 +/− 4 years, 53% female) - 8 CRV (40 +/− 7 years, 50% female); - 14 PAH DRV (53 +/− 4 years 79% female) | - Rats, Sprague-Dawley, Male - MCT, 60 mg/kg, s.c. | - Human EC from ctrl, CRV and DRV | In vivo and in vitro: - mimic-miR-126 - antagomiR-126 | Human: - ↓ miR-126 in DRV In vivo - ↓ miR-126 in DRV - ↑ miR-126 in RV => ↑ capillary density => ↑ RV function In vitro - ↓ miR-126 in EC from DRV - ↑ miR-126 => ↑ EC angiogenic potential - ↑ miR-126 => ↓ SPRED-1 => ↑ angiogenesis | 26162916/[56] |
-miR-1 | N/A | - Rats, Sprague-Dawley, Male - MCT, 60 mg/kg, s.c. | - human LHCN-M2 skeletal myoblasts | In vitro - mimic-miR-1 | In vivo - MCT vs. ctrl RV => ↓ miR-1 In vitro - miR-1 targets TGF-βR1 and reduces TGF-β signalling | 32109943/[36] |
- microarray | N/A | Rats, Sprague-Dawley, Male - SUHX, 20 mg/kg, s.c., 10% O2 | N/A | N/A | In vivo - SuHX vs. ctrl RV => ↑ miR-21-5p, ↑ miR-31-5 and 3p, ↑ miR-140-5 and 3p, ↑ miR-208b-3p, ↑ miR-221-3p, ↑ miR-222-3p, ↑ miR-702-3p, ↑ miR-1298 - SuHX vs. ctrl RV => ↓ miR-187-5p, ↓ miR-208a-3p, ↓ miR-877 - miR-140 expression correlates with mitofusin-1 expression in PH RV. | 27422986/[31] |
- microarray | N/A | Rats, CRV - PAB - chronic hypoxia (10% O2, 4 weeks) Rats DRV - SUHX, 20 mg/kg, s.c., 10% O2 -PAB + low copper diet | N/A | N/A | In Vivo, - DRV vs. CRV => ↓ miR-133a, miR-139-3p, miR-21 and miR 34c - Normal RV and LV => discernable differences in miRNA expression | 21719795/[57] |
-750 miRNAs by qPCR arrays | RV - 6 Ctrl - 4 IPAH (25 y +/− 11.5, 75% female) | Mice, FVB, - Hx10% O2, 18 h, 48 h, 5 days | - NRC - Hx | In vitro: - premiR-146b - AntagomiR-146b | In vivo: - Hx regulated miR in RV and LV => let-7e-5p, miR-29c-3p, miR-127-3p, miR-130a-3p, miR-146b-5p, miR-197-3p, miR-214-3p, miR-223-3p, and miR-451 - ↓ miR-146b in Hx RV In vitro - Hx => ↓ miR-146b - ↓ miR-146b => ↑ TRAF6, and ↑ IL-6 and ↑ CCL2(MCP-1) | 31338525/[58] |
- miR-20a-5p - miR-17-5p - miR-93-5p - miR-3202 - miR-665 | Blood - 8 CTEPH (50% female, 61 y +/− 6.8) | N/A | N/A | N/A | - miR-20a-5p correlates with all the RV function echocardiographic parameters - miR-93-5p, miR-17-5p and miR-3202 correlates with some RV echocardiographic parameters - combination of miRNAs (miR-20a-5p, miR-93-5p and miR-17-5p) => best predictor of RV function | 35488248/[59] |
- miR-21 | N/A | - Sheep (5 mo) - PAB | - NRVM - phenylephrine | - mimic-21 - antagomir-21 | In vivo: PAB vs. ctrl => ↓ RV function and basal stain RV PAB vs. ctrl basal RV => ↓ miR-21 expression PAB vs. ctrl apical RV => no changes in miR-21 expression In vitro - ↑ miR-21 alters mitosis and cytokinesis - ↓ miR-21 => ↓ phenylephrine induces hypertrophy. - ↑ miR-21 => ↑ phenylephrine induces hypertrophy. | 33548242/[60] |
- RNA seq - qRT-PCR (miR-335-3p) | N/A | Rats, male, Sprague Dawley, 6 weeks -MCT (60 mg/kg, i.p.) Mice, male, C57/BL6, 8 weeks -SuHX, 20 mg/kg s.c., 10% O2 | H9c2 | In vivo AntagomiR-335-5p In vitro AntagomiR-335-5p AngII | In vivo - MCT vs. ctrl rat RV => ↑ 74 miRNA and ↓ 77 miRNA. - MCT vs. ctrl rat RV => ↑ miR-335-5p - SuHX vs. ctrl mice RV => ↑ miR-335-5p - ↓ miR-335-5p => ↓ RV fibrosis and CM apoptosis, ↑ calumenin expression, and ↑ RV function in MCT rats In vitro - Ang II induces H9c2 hypertrophy => ↑ miR-335-5p - miR-335-5p binds calumenin - ↓ miR-335-5p => ↓ H9c2 hypertrophy, apoptosis, expression of cardiac stress markers (ANP), ↑ calumenin expression. | 36246958/[61] |
miR-200c | N/A | - Rats, Sprague Dawley, 3–4 weeks, male, 120–150 g - PAB | N/A | N/A | PAB vs. Sham RV => ↓ miR-200c | 35384363/[62] |
Pulmonary stenosis and insufficiency | ||||||
- miR-1 - miR-21 | N/A | - Rats, Wistar, females, 8 w - PAB, - Training (treadmill, 8 w). | N/A | N/A | - PAB vs. Sham RV => ↓ miR-21 - Training => ↑ miR21, ↓ miR-1 in RV | 27994552/[32] |
- miR-21 - miR-221 - miR-222 - miR-143 | RV infundibular muscle bundles: - 3 RVOTO (67% male, 2.9 y +/− 1.2, 67%) - 7 TOF (57% male, 0.3 y +/− 0.05), - 4 PS + PI (25% male, 3.4 y +/− 1.3) - 2 PS-RVF (100% male, 7.7 y +/− 4.1). Plasma: - 10 ctrl (40% male, 14.5 y +/− 3.6) - 7 PS + PI (50% male, 10.5 y +/− 4.5), - 9 PS-RVF (67% male, 8.7 y +/− 5.6) | - Mice, male, FVB, 12 w -PI + PS surgical model (pulmonary valves leaflet ligation and pulmonary artery banding) | N/A | N/A | Human: - PI + PS RVF vs. TOF and RVOTO => ↑ miR21 in RV - PI + PS vs. ctrl => ↑ miR-21 in blood - PI + PS-RVF vs. ctrl => ↓ miR21 in blood - RV miR-21 levels are associated with RV fibrosis in human and mice. - circulating miR-21 correlates with RV function in human and mice. In vivo: - PI + PS mices => ↑ RV miR-21, miR-221, miR-222. - PI + PS mices => ↓ blood miR-221, miR222. - ↑ blood miR-21 in early stage of PI+PS then ↓ miR-21 expression in late stages. | 28469078/[63] |
Right ventricular failure | ||||||
- Microarray | N/A | - Mice, FVB, male, 12 w - PAB | N/A | N/A | - PAB vs. sham => ↑ RV miR-199a-3p - PAB induced RVF => ↑ miR-208b miR-34, miR-1, ↓ miR-21 in RV. - ↑ 34a, 28, 148a, and 93 in RV but not in LV | 22454450/[64] |
Systemic right ventricle | ||||||
- miR-423-5p | Plasma - 41 SRV (65.9% male 29.2 y ± 3.6). - 10 ctrl (70% male, 30.3 y ±.4.6). | N/A | N/A | N/A | - SRV vs. Ctrl => no changed in miR-423-5p - No correlation between miR-423-5p and a clinical parameter. | 22188991/[65] |
- Microarray | Plasma: Discovery (microarray). - 5 TGA + SRV (60% male, 26.5 y ± 5.1) - 5 ctrl (60% male, 24.5 y ± 6.3). Validation (qRTPCR) - 26 TGA + SRV (65% male, 25.3 y ± 3.2) - 20 ctrl (55% male, 25.0 y ± 4.3). | N/A | N/A | N/A | - TGA + SRV vs. ctrl => ↑ miR-16, miR-106a, miR-144 *, miR-18a, miR-25, miR-451, miR-486-3p, miR-486-5p, miR-505 *, let-7e and miR-93 - miR-18a and miR-486-5p correlate with SRV isovolumic contraction. | 24040857/[66] |
- Microarray | Plasma: - 36 TGA + SRV (64% male, 36.3 y ± 12.3), - 35 ctrl (age sex matched) | N/A | N/A | N/A | - TGA + SRV => 106 miRNA with impaired expression. - miR-150-5p, miR-1255b-5p, miR-423-3p, and miR-183-3p associated impaired RV. - miR-183-3p => independent predictors of worsening HF | 34568463/[67] |
Tetralogy of Fallot | ||||||
- RNAseq | RV: - 22 TOF (54% male, 0–3 y), - 4 ctrl (50% Male, 14–25 y) | N/A | N/A | N/A | - TOF vs. ctrl: 172 differentially expressed miR, - Disease-related miRNA-mRNA pairs include miR-1 and miR-133, which are essential to cardiac development and function by regulating KCNJ2, FBN2, SLC38A3 and TNNI1 | 31836860/[68] |
- Microarray | RVOT: Discovery (microarray) - 10 TOF, - 6 ctrl Validation (qRT-PCR) - 26 TOF, - 15 ctrl | N/A | - hCMPCs | - Mimic-miR-940 - Inhibitors-miR-940 | Humans: - TOF vs. ctrl => 75 differentially expressed miRNA - TOF vs. ctrl => ↓ miR-940 expression In vitro: - ↓ miRNA-940 expression => ↑ hCMPCs proliferation and ↓ migration. - ↑ miRNA-940 expression => ↓ hCMPCs proliferation - miRNA-940 targets JARID2. | 24889693/[69] |
- miR-421 | - RV myocardium: Discovery (microarray) - 16 TOF (69% male, 276 d (98–510). - 8 ctrl (37% male, 142 d (28–382). Validation (qRT-PCR) - 8 TOF (50% male, 292 d (167–425), 4M/4F) | N/A | - HRVPCC | - Plasmid-miR-421 - Inhibitors-miR-421 | Humans - TOF vs. ctrl => ↑ miR-421 – In Vitro - miR-421 targets SOX4 | 25257024/[70] |
- Microarray | RVOT Discovery (microarray) - 5 non-syndromic TOF (60% male, 28.6 m +/− 4.7) - 3 ctrl (33% male, 10.7 m +/− 8.1). Validation (qRT-PCR) - 26 TOF (69% male, 11.7 m +/− 8.7) - 6 ctrl (33% male, 21.2 m +/− 14.4). | N/A | - P19 - PEMC (E12.5) | - Lentivirus miR-222 (overexpression) - Lentivirus miR-424/424* (overexpression) | Humans: - TOF vs. ctrl => ↑ miR-146b-5p, miR-155, miR-19a, miR-222, miR-424, miR337-5p, miR363, miR-130b, miR-154, miR-708, miR-181c, miR-424*, miR-181d, miR-192, miR-660 - TOF vs. ctrl => ↓ miR-29c, miR-720, miR-181a*. In vitro: - miR-424/424* ↑ PEMC proliferation and ↓ migration - miR-424/424* ↓ HAS2 and NF1 expression. - miR-222 ↑ PEMC proliferation - miR-222 ↓ P19 cardiomyogenic differentiation. | 24140236/[71] |
- Microarray | Plasma: - 4 TOF with normal RV (100% male 29.0 y (22.4–36.6)) - 11 TOF with mild/moderate RV enlargement (36% male, 35.8 y (26.3–40.7)) - 5 TOF with severe RV enlargement (40% male; 46.5 y (42.7–51.2)) | N/A | N/A | N/A | - normal RV size vs. mild-moderate and severe RV enlargement => ↓ 267 miRNA and ↑ 66 miRNA. - miRNA 28-3p, 433-3p, and 371b-3p => associated with ↑ RV size and ↓ RV systolic function. - Dysregulated miRNAs => cell cycle pathways, extracellular matrix proteins and fatty acid synthesis pathways. - ↓ HIF 1α signaling (predicted) - ↑ p53 signaling (predicted) | 33175850/[72] |
- Microarray | Plasma - 15 ctrl (30.2 ± 10.8 years), - 3 TOF + RVF (33.0 y +/− 13.9) - 34 TOF no RVF (29.9 y +/− 10.7) | N/A | N/A | N/A | All TOF vs. ctrl - 49 miRNA impaired - ↓ miR181d-5p, miR-142-5p, miR-206 (PCR validation) - ↑ miR-625-5p (PCR validation) TOF + RVF vs. ctrl - 58 miRNA impaired - ↓ miR-181d-5p, miR-206 (PCR validation) - ↑ miR-1233-3p, miR-183-5p, miR-421, miR-625-5p (PCR validation) TOF no RVF vs. ctrl - 77 miRNA impaired - ↓ miR-421, miR-1233-3p, miR-625-5p miR-421 and miR-1233-3p correlate with RV function (ejection fraction, end diastolic and end systolic volume). | 28693530/[73] |
- Microarray | Plasma: Discovery (micro array) - 8 TOF (62% male, 21.5 y +/− 6), - 8 ctrl (62% male, 19.7 y +/− 4.2). Validation 1 (qRT-PCR) - 49 TOF (51% male, 23.0 y +/− 6.7), - 30 ctrl (50% male, 22.7 y +/− 5.8). Validation 2 (qRT-PCR) - 55 TOF (49% male, 23.3 y +/− 6.5), - 40 ctrl (62.5% male, 23.4 y +/− 5.3). Validation 3 (qRT-PCR) - 104 TOF (50% male, 23.2 y +/− 6.6), - 70 ctrl (57% male, 23.2 y +/− 5.5) | N/A | N/A | N/A | TOF vs. ctrl => ↑ circulating miR-99b TOF vs. ctrl => ↓ circulating miR-766 | 28664568/[74] |
MicroArray | RV myocardium: - 16 TOF (31% female, 276 d (98–510), - 8 ctrl (62% female, 142 d (28–382)), - 8 TOF (validation, 50% female, 292 d (167–425)), -3 fetal samples. | N/A | N/A | N/A | - TOF vs. ctrl => 61 miRNAs differentially expressed miRNA (32 upregulated, 29 downregulated) | 22528145/[75] |
Microarray | RV - 4 TOF (50% male, 2.7 y +/− 1.5) - 4 ctrl (10.7 y +/− 0.3) | N/A | N/A | N/A | TOF vs. ctrl => ↑ 16 miRNAs↓ 31 miRNAs | 22882842/[76] |
miR-21 | Blood - 60 TOF (47% male, 15.0 y (9, 22)) | N/A | N/A | N/A | - miR-21 levels did not correlate with RV functional parameters | 35487317/[77] |
Micro-array | RV - 14 TOF (50% male, 7 m +/− 2.7) | N/A | N/A | N/A | Female vs. male TOF => 41 differentially expressed miRNA including miR1/133 | 30150777/[78] |
3.2. Arrhythmogenic Cardiomyopathy
3.3. Pulmonary Hypertension
3.4. Congenital Heart Diseases
- -
- Tetralogy of Fallot
3.5. The Systemic Right Ventricle
3.6. Dilated Cardiomyopathy
3.7. Right Ventricle Dysfunction Associated with Neonatal Hypoxia and Irradiation
3.8. Long Non-Coding RNA
Epigenetic Modification | Human | In Vivo | In Vitro | Therapeutic Intervention | Outcome | PMID/Ref |
---|---|---|---|---|---|---|
Development/Embryogenesis | ||||||
RNA seq | RVOT samples: - 4 TOF (2 and 24 M) - 3 VSD (2 and 5 Y) | Mice, C57B/6, male postnatal D0 (before the ductal closure), D3, and D7 | N/A | N/A | - In vivo, RV vs. LV => ↑expression of 11 lncRNA. - In human, lncRNA orthologs correlate with ↓ expression of their putative mRNA targets. | 27591185/[94] |
LncRNA HDN | N/A | C57BL/6 mice depleted for Hdn (Hdn+/em5Phg) | N/A | N/A | - lncRNA Hdn haploinsufficient for embryonic development. - Hdn RNA transcript dispensable for cardiac gene regulation. - Hdn regulates the cis-located Hand2 - Hdn+/em5Phg adult mice => exhibit RV hyperplasia | 31422919/[96] |
LncRNA Uph | N/A | C57BL/6 mice lacking Uph (Uph+/−) | N/A | N/A | - Uph+/− => ↓ Hand2 expression, - Uph+/− => RV hypoplasia and embryonic lethality in mice. - Hand2 regulated by super-enhancer H3K27ac - Hand2 +/− => RV hypoplasia and embryonic lethality. - Uph–Hand2 regulatory partnership can establish a permissive chromatin environment. | 27783597/[97] |
Heart Failure | ||||||
RNA seq | 22 explanted human HF hearts: - 11 non ischemic RVF (36% female, 49 +/− 14 y), - 11 ischemic RVF (18% female, 54 +/− 9 y), control 5 unused donor human hearts (no info) | N/A | N/A | N/A | - RVF vs. ctrl => 105 differentially expressed lncRNAs, | 25992278/[101] |
RNA seq | RV myocardium - 22 RVF (84% female, 51 y +/− 11) - 5 ctrl | N/A | N/A | N/A | - Ctrl RV express 10,732 lncRNA - RVF express 10,831 lncRNA | 25725476/[100] |
Pulmonary hypertension | ||||||
RNA seq | N/A | - Rats, Male, Sprague-Dawley, 250–300 g - MCT (IP, 60 mg/kg, 28 D) - LPS, (IP, 1 mg/kg, serotype O55:B5, 2 h) | N/A | N/A | - 169 lncRNAs were differently expressed in PH rats with acute RV failure (MCT + LPS) | 30119177/[98] |
- LncRNA H19, - miR-675 | RV samples: - 18 ctrl (55% male, 47 +/− 2.9 y) - 15 CRV (26% male, 31 +/− 12.2 y) - 11DRV (18% male, 62 +/− 11.5 y). Blood discovery cohort - 57 ctrl (35% male, 46 +/− 19 y) - 52 IPAH (40% male, 61 +/− 16 y), - 21 CTD PAH (24% male, 69 +/− 8 y) Blood validation cohort - 54 ctrl (32% male, 48 +/− 18 y) - 75 IPAH (73% male, 52 +/− 16 y) - 31 CTD-PAH (24% male, 66 +/− 9 y). | Rats, Male, Sprague-Dawley - MCT (SC, 60 mg/kg) - PAB | - H9c2 - NRVM | - H19 sirna, - adv-H19 - mimic 675 | Human: - ↑ H19 and mir 675 in PAH DRV. - H19 correlates with RV fibrosis and CM hypertrophy. - ↑ H19 in blood of PAH DRV patients. - Circulating H19 is an independent predictor of survival. In vivo: - targeting H19 improves RV function, ↓ RV fibrosis in MCT and PAB rats. In vitro: - si H19 => ↓ CM hypertrophy and expression of cardiac stress genes - adv H19 and mimic-675 has the opposite effect. | 32698630/[99] |
Surgery | ||||||
RNA seq | N/A | Rabbit, Female, new. Zealand, 3 month, 2.5–3.5 kg) - ePTFE implantation in RVOT. - Sham (suture) implantation. | N/A | N/A | ePTFE vs. Sham RV => ↑ 110 lncRNA, (potentially involved in the regulation of inflammation) ↓ 136 lncRNA (potentially involved in cardiac remodeling and metabolism) | 34239925/[105] |
Tetralogy of Fallot | ||||||
HA117 | - RVOT tissues from 84 TOF (55% male, 13 (9,24.5) month) | N/A | N/A | N/A | - ↑ lncRNA HA117 is a risk factor for unfavorable McGoon ratio, Nakata index and LVEDVI in TOF. - ↑ lncRNA HA117 might lead to adverse short-term outcomes in TOF patients. | 30258948/[104] |
RNA seq | RV or RVOT tissue: - 19 TOF/PS (37% female, 5.4 +/− 1.3 m); 8 VSD (control, 63% female, 6.1 +/− 3.5 m) | N/A | N/A | N/A | TOF/PS vs. VSD => 8 miR, 25 lncRNA are differentially expressed | 33786422/[58] |
Tricuspid regurgitation | ||||||
RNA seq | RV myocardium: - 9 patients with TR cardiomyopathy (no info). - 9 Ctrl from the GTEx project (no info) | N/A | N/A | N/A | TR vs. Ctrl => 648 mRNAs, 201 miRs, 163 lncRNAs are differentially expressed | 34603374/Tian C et al. 2021 [103] |
3.9. Other Non-Coding RNA
Epigenetic Modification | Human | In Vivo | In Vitro | Therapeutic Intervention | Outcome | PMID/Ref |
---|---|---|---|---|---|---|
- circRNA_0068481 - mir-646 - miR-570 - miR-885 | Blood - ctrl (92.3% female, 54.3 y +/− 5.9) - PAH no RVH (98% female, 45.5 y +/− 4.8) - PAH + RVH (100% female, 46.1 y +/− 3.7) | N/A | -AC-16 | - CircRNA_0068481 siRNA | In human - PAH + RVH VS PAH no RVH and ctrl => ↓ circRNA_0068481, ↑ miR-646 and miR-570 - circRNA_0068481, miR-646 and miR-570 predict RVH In vitro - mir-646, miR-570, miR-885 bind circRNA_0068481 - ↓ circRNA_0068481 => ↑ mir-646, miR-570, miR-885 expression | 33710774/Guo HM et al. 2021 [35] |
RNA seq | RV or RVOT tissue: - 19 TOF/PS (37% female, 5.4 +/− 1.3 m); 8 VSD (control, 63% female, 6.1 +/− 3.5 m) | N/A | N/A | N/A | TOF/PS vs. VSD => 3 CircRNAs, are differentially expressed (ENSG00000171517:LPAR3, ENSG00000155657:TTN, and ENSG00000127914:AKAP9:chr7) | 33786422/[103] |
microArray | RV myocardium: - 16 TOF (31% female, 276 d (98–510), - 8 ctrl (62% female, 142 d (28–382), - 8 TOF (validation, 50% female, 292 d (167–425), - 3 fetal samples. | N/A | N/A | N/A | - TOF vs. ctrl => 61 miRNAs and 135 snoRNAs differentially expressed - 44 genes had significant negative correlation with 33 miRNAs, - Potential link between levels of snoRNA, spliceosomal function, and heart development. | 22528145/[12] |
3.10. Histone Modifications
Epigenetic Modification | Human | In Vivo | In Vitro | Therapeutic Intervention | Outcome | PMID/Ref |
---|---|---|---|---|---|---|
Embryogenesis | ||||||
HDAC4 and HDAC5 | N/A | C57BL/6 mice depleted for Apelin receptor APJ−/− | N/A | N/A | - HDAC4, and HDAC5, activates MEF2. - APJ−/− mice ↓ nuclear HDAC4, ↓ HDAC5, ↓ MEF2 expression - APJ−/− mice => poorly looped hearts, aberrant RV, defective atrioventricular cushion formation | 23603510/[110] |
HMT Smyd1 | N/A | C57BL/6 mice depleted for Smyd-1 (Smyd−/−) | N/A | N/A | - OFT and CM Smyd−\− => embryonic lethality at E9.5, - Smyd−\− => truncation of the OFT and RV - Smyd−\− =>impaired expansion and proliferation of the second heart field (SHF). | 25803368/[107] |
HDAC mBOP | N/A | C57BL/6 mice depleted for mBOP (BOP−/−) | N/A | N/A | - BOP−/− => single ventricle lack of RV marker (e.g. HAND2). - BOP is necessary for maturation of CM and morphogenesis of the RV. | 11923873/[108] |
HDAC1 HDAC2 | N/A | C57BL/6 Depleted for HDAC1 and/or HDAC2 | N/A | N/A | - HDAC2−/− => perinatal death => obliteration RV lumen | 17639084/[109] |
Healthy RV | ||||||
- H3/H4 acetylation - H3 dimethylation - HAT P300 | N/A | Mice, Swiss Webster, 8 W | N/A | N/A | - RV vs. LV => ↓ BNP and ANP, and a-mhc expression. - RV vs. LV => ↓H3k4m2, ↓acetyl-H3k9/14, ↓acetyl H4 marks, and ↓ p300 recruitment on BNP and ANP genes - RV vs. LV => ↓ h3k4m2 on a-mhc and b-mhc | 20090419/[112] |
Pulmonary hypertension | ||||||
HDAC Class I, IIa, IIb | N/A | - Rats, Male, Sprague-Dawley, 250–280 g - Hypoxia (10% O2, 3 W) - SU5416 (20 mg/kg) + Hypoxia (10% O2, 3 W) | - NRVMs - ARVMs - ARVFs | N/A | In vivo - ↑ class I, IIa, IIb HDAC activity in Sug-Hx RV - ↑ class IIb HDAC activity in Hx RV - ↑ HDAC6 expression in Hx RV In vitro - ↓ HDAC-I in NRVM exposed to PE, NE, PGF2a, ET1 - ↑ HDAC-I activity in ARVM exposed to PE, NE, PGF2a, ET1, FBS, IL1b - ↓ HDAC-IIa activity in NRVM exposed to NE and ET1 -↑ HDAC-IIa activity in ARVM exposed to PE, PGF2a, FBS - ↑ HDAC-IIb activity in NRVM exposed to PE, NE, PGF2a, ET1 - ↑ HDAC-IIb activity in ARVM exposed to PE, NE, PGF2a, ET1, FBS, IL1b - ↑ HDAC-6 activity in NRVM and ARVM exposed to PE | 21539845/[113] |
HDAC Class I | N/A | - Rats, Male, Sprague-Dawley, 250–280 g - Hypoxia (10% O2, 3 W) | N/A | - Class I HDACs 1, 2, and 3 inhibitor MGCD0103 (daily IP, 10 mg/kg/days, 3 weeks). - Class I HDAC- inhibitor MS-275 (daily IP 3 mg/kg/days, 3 weeks). | - ↑ HDAC 1, 2, 3 in Hx RV. - MGCD0103 ↓ RVH, BNP expression, CM apoptosis, inflammatory cytokine IL-1b, 2, CINC-2 and CNTF in RV. - MGCD0103 ↓ RV stroke work and has No effect on RV hemodynamics (e.g. RVEDP, PRSW, and CO). - MS-275 ↓ RVH | 22282194/[115] |
HDAC inhibitor Vorinostat | N/A | - Calves, Male, Holstein dairy, 7 D (45–50 kg) - Hypobaric hypoxia (15,000 feet simulated elevation, PB = 430 mmHg, 14 days | N/A | suberanilohydroxamic acid, 5 mg/kg/day for 5 days | - HDAC1 increased in HX RV. - Vorinostat ↑ rv fraction area changes, and ↓ aSMA | 34552503/[116] |
HDAC class 1 HDAC class 2 | N/A | - Rats, Male, Sprague-Dawley, 250–280 g - PAB - MCT (60 mg/kg, s.c.) - SU5416 (20 mg/kg) + Hypoxia (10% O2, 3 W) | N/A | N/A | - MCT vs. ctrl RV=> ↑ HDAC Class I & II activity - SuHX vs. ctrl RV => ↑ HDAC Class I & II activity - PAB vs. ctrl RV => ↑ HDAC Class I & II activity | 25006442/[114] |
Pressureoverload | ||||||
HDAC inhibitors (TSA) | N/A | - Rats, Male, Sprague-Dawley, 250–280 g - PAB | - HCMVEC - HCF | - In vivo TSA (IP, 450 μg/kg, 5/W, initiated 4 W post-surgery) - in vitro TSA (0.01–10 μM/24 H) | - TSA Does Not Prevent RVH - TSA Associated with RV Dysfunction, ↑ RV Fibrosis ↓ Capillary density - TSA => reactivation of fetal genes and ↑cardiomyocyte apoptosis | 21297075/[118] |
HDAC inhibitor sodium valproate | N/A | - Rats, Male, Sprague-Dawley, 3 W - PAB - MCT | N/A | - Sodium valproate (drinking water, 0.71% weight/vol, 3 weeks) | -Valproate ↓ RVH in both PAB and MCT rats. - Valproate ↓ fibrosis | 20208383/[117] |
Systemic ventricle | ||||||
HDAC Class I, IIa, and IIb | RV: - SV patients (n = 6, 17% female, 0.15 +/− 0.05 y), - non-failing control (n = 6, 17% female, 9.2 +/− 4.7 y) | - Rats, Sprague-Dawley - Neonatal hypoxia (10% O2, D1 for 1 W) | N/A | N/A | - ↑ HDAC Class I, IIa, and IIb catalytic activity and protein expression in human SV RV and HX neonatal rats - ↑ RVH in HX neonatal rats | 28549058/[120] |
Tetralogy of Fallot | ||||||
HIRA | RVOT: - 39 TOF patients - 4 noncardiac death children. Blood samples: - 100 TOF patients - and 200 healthy children | N/A | N/A | N/A | - ↓ HIRA mRNA and protein expressions In TOF Myocardium. - 5 SNP in HIRA promoter (g.4111A>G (rs1128399), g.4265C>A (rs4585115), g.4369T>G (rs2277837), g.4371C>A (rs148516780), and g.4543T>C (rs111802956)) | 27748330/[121] |
Arrhythmogenic cardio-myopathy | ||||||
H3K4me3 | N/A | N/A | AMRVM AMLVM | Genetic engenering NOTCH gain of function | - Notch activation => ↑H3K4me3 at the Hrt2 promoter in the LV - Notch activation => ↑H3K4me3 at the Hrt2 promoter in the LV | 27697822/[111] |
GCN5 | RV - 16 ACM (41 y +/− 11.9) - 7 ctrl | N/A | CStCs | - GCN5 shRNA - GCN5 inhibitors MB-3 | Human: - ACM vs. ctrl RV => ↑ GCN5 In vitro - ACM vs. ctrl CStCs => ↑ GCN5 - ↓ GCN5 => ↓ lipid accumulation, ↓ ROS in ACM CStCs | 35712781/[119] |
3.11. DNA Methylation
Epigenetic Modification | Human | In Vivo | In Vitro | Therapeutic Intervention | Outcome | PMID/Ref |
---|---|---|---|---|---|---|
Congenital heart disease | ||||||
DNAm | Blood - monozygotic twin with and without DORV (2 y, 100% female) - 15 DORV (60% male, 1–3.5 y) - 5 ctrl (60% male, 0.8–3.8 y) | N/A | N/A | N/A | - DORV vs. healthy twin => 1566 DMR, ↓ DNAm ZIC3 and NR2F2 promoters - DORV vs. ctrl => ↓ ZIC3 and NR2F2 DNAm - ZIC3 and NR2F2 methylation negatively correlate with gene expression. | 29866040/[136] |
Dilated cardiomyopathy | ||||||
- 450K Human-Methylation Array | - 9 DCM RV free wall (57 +/− 6 yo) - 18 DCM LV apex (54 +/− 4 y) | N/A | N/A | N/A | - RV vs. LV => 544 hypermethylated, 1284 hypomethylated DMP. - Impaired DNAm enriched in the cis-regulatory regions of cardiac development genes | 27417303/[123] |
DNAm (TBX20) | RV (intraventricular septum) - 30 DCM (63% male) - 14 ctrl (64% male) PBMC - 150 DCM (41.9 y +/− 14.4) - 114 ctrl (42.9 y +/− 14.2) | N/A | N/A | N/A | - RV DCM vs. ctrl => no changes in TBX20 promoter methylation - PBMC DCM vs. ctrl => no changes in TBX20 promoter methylation | 26895318/[135] |
Fibrosis | ||||||
- DNMT1 - DNMT3a - DNAm | N/A | - Mice, C57BL/6, male with extra copy for human EC-SOD - Hx (10% O2, 21 d) | - MCF | N/A | In Vivo: - Hx => ↑ RV DNMT1, DNMT3a, and fibrosis. - EC-SOD mice => ↓ DNMT1, DNMT3a, and RV fibrosis. In vitro: - Hx => ↑ DNAm in MCF - EC-SOD MCF => ↓ Hx induced DNAm - ↓ RASSFA1 DNAm => ↓ MCF proliferation | 34136546/[138] |
Pulmonary hypertension | ||||||
- DNMT1 - DNAm - miR-148 | N/A | N/A | - RRVF - RLVF | 5-Aza (10 μM, 48 h) | - MCT RRVF vs. Ctrl RRVF => ↑ DNMT1. - MCT RLVF vs. Ctrl RLVF => no difference in DNAm - 5-Aza => ↓ HIF-1a, ↑ mitochondrial metabolism in MCT-RRVF. - miR-148 predict to target DNMT1. - MCT RRVF => ↑ mir-148. | 32216531/[137] |
-DNMT3a -DNMT3b - DNAm | RV free wall tissue - 17 ctrl (62 +/− 4 years, 53% female) - 8 CRV (40 +/− 7 years, 50% female); - 14 PAH DRV (53 +/− 4 years 79% female) | N/A | - Human EC from ctrl RV, CRV and DRV | In vitro -Hydralazine | Human - ↑ DNMT3a and DNMT3B in DRV - ↑ DNAm of miR126 promoter in DRV In vitro - hydralazine => ↑ miR-126 expression => ↑ angiogenesis | 26162916/[56] |
Surgery | ||||||
DNAm (b-MHC) | Right atrial - 3 coronary artery bypass surgery Blood leukocytes - 3 coronary artery bypass surgery | N/A | N/A | N/A | - b-MHC promoter methylation negatively correlates with b-MHC mRNA expression | 9747442/[124] |
Tetralogy of Fallot | ||||||
- DNAm (NKX2-5, GATA4, HAND1) | RV myocardium: - 30 TOF (67% male, 1.13 +/− 0.85 y), - 6 ctrl (67% Male, 1.73 +/− 1.44 y) | N/A | N/A | N/A | - TOF vs. ctrl => ↑ NKX2-5, HAND1 DNAm. - NKX2-5 DNAm negatively correlates with mRNA levels. | 24182332/[134] |
- Methyl Array | RV myocardium - 41 TOF (63% male, 11 (7–24 m), - 6 ctrl (67% male, 15 (10.5–30 m) | N/A | N/A | N/A | - TOF vs. ctrl => 26 differentially methylated genes. - EGFR, EVC2, TBX5, CFC1B DNAm correlates with their respective mRNA | 24479926/[133] |
- DNAm (RXRa promoter) | RVOT: 6 TOF (69% male, 15.8 +/− 13 m), 6 ctrl (67% male, 21 +/− 17.3 m) | N/A | N/A | N/A | -TOF vs. ctrl => ↑ RXRa DNAm -TOF vs. ctrl => ↓ RXRa mRNA | 24513686/[132] |
- DNAm (VANGL2 promoter) | RVOT: - 36 TOF (64% male, 11.5 (7.0–22.8 m) - 5 ctrl (60% male, 12 (2.0–42.0 m). | N/A | N/A | N/A | -TOF vs. ctrl => ↑ VANGL2 DNAm -TOF vs. ctrl => ↓ VANGL2 mRNA et protein | 25200836/[131] |
- DNAm (TBX20) | RVOT: - 23 TOF (48% male, 18 (11–35) m). - 5 ctrl (40% male, 19 (2.5–31 m). | N/A | N/A | N/A | - TOF vs. ctrl => ↓ TBX20 DNAm - TOF vs. ctrl => ↑ TBX20 mRNA - TBX20 DNAm correlates with TBX20 mRNA | 30084275/[128] |
- DNAm (TBX20) | RVOT: - 42 TOF (62% male, 1.28 +/− 1.05 y); - 6 ctrl (68% male, 1.73 +/− 1.44 y) | N/A | N/A | N/A | - TOF vs. ctrl => ↓ TBX20 DNAm - DNAm affects TFBS for SP1. - SP1 might mediated increased TBX20 expression. | 31138201/[127] |
- DNAm (NR2F2) | RVOT: - 25 TOF (60% male, 7.0 m (4.27–13)), - 5 ctrl (100% male, 2 m (0.14–9.5)) | N/A | - HL-1 - HEK293T | - 5-Aza (5 µM, 48 h) | Human: TOF vs. Ctrl => ↓ NR2F2 DNAm. NR2F2 DNAm correlates with gene expression. In vitro: - DNAm affects RXRa binding site. - 5-Aza treatment influences RXRα affinity to its binding sites. | 32819587/[126] |
- DNAm (NOTCH4) | RVOT: - 24 TOF (58.3% male, 2.54 y +/− 0.86) - 5 ctrl (100% male, 0.35 y +/− 0.19) | N/A | N/A | N/A | - TOF vs. ctrl => ↑ NOTCH4 DNAm - TOF vs. ctrl => ↓ NOTCH4 mRNA - NOTCH4 DNAm correlates NOTCH4 expression - DNAm affect ETS1 binding sites | 33000281/[129] |
- DNAm (DLK1) | RVOT: - 25 TOF (60% male, 0.59 y (0.37–0.95)) - 5 ctrl (100% male, 0.17 y (0.01–0.79)) | N/A | - HEK293T | - Decitabine | Humans: - TOF vs. ctrl => ↓ DLK1 DNAm TOF - - TOF vs. ctrl => ↓ DLK1 mRNA - NOTCH4 DNAm correlates NOTCH4 expression - DNAm affect ETS1 binding sites - ETS1 inhibits DLK1 expression. In Vitro: - Decitabine increased ETS1 binding. | 35059744/[130] |
DNAm (LINE-1, NKX2-5, HAND1 and TBX 20) | RV - 19 TOF (69% male, 19.8 m +/− 13.9) - 15 ctrl (66.7% male 13.4 y +/− 11.0 ) | N/A | N/A | N/A | - TOF vs. ctrl => ↓ LINE-1 DNAm, ↓ TBX20 DNAm, ↑NKX2-5 and HAND1 - TOF male vs. ctrl male => => ↓ LINE-1 DNAm (not in female) - LINE-1 DNAm predict TOF. | 22672592/[125] |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Black, B.L. Transcriptional pathways in second heart field development. Semin. Cell Dev. Biol. 2007, 18, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Gorr, M.W.; Sriram, K.; Chinn, A.M.; Muthusamy, A.; Insel, P.A. Transcriptomic profiles reveal differences between the right and left ventricle in normoxia and hypoxia. Physiol. Rep. 2020, 8, e14344. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Yin, J.; Dwyer, D.; Yamawaki, T.; Zhou, H.; Ge, H.; Han, C.Y.; Shkumatov, A.; Snyder, K.; Ason, B.; et al. Chamber-enriched gene expression profiles in failing human hearts with reduced ejection fraction. Sci. Rep. 2021, 11, 11839. [Google Scholar] [CrossRef] [PubMed]
- Fine, N.M.; Chen, L.; Bastiansen, P.M.; Frantz, R.P.; Pellikka, P.A.; Oh, J.K.; Kane, G.C. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ. Cardiovasc. Imaging 2013, 6, 711–721. [Google Scholar] [CrossRef]
- Towheed, A.; Sabbagh, E.; Gupta, R.; Assiri, S.; Chowdhury, M.A.; Moukarbel, G.V.; Khuder, S.A.; Schwann, T.A.; Bonnell, M.R.; Cooper, C.J.; et al. Right Ventricular Dysfunction and Short-Term Outcomes Following Left-Sided Valvular Surgery: An Echocardiographic Study. J. Am. Heart Assoc. 2021, 10, e016283. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.; Doyle, R.; Murphy, D.J.; Hunt, S.A. Right ventricular function in cardiovascular disease, part II: Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008, 117, 1717–1731. [Google Scholar] [CrossRef]
- Reddy, S.; Bernstein, D. Molecular Mechanisms of Right Ventricular Failure. Circulation 2015, 132, 1734–1742. [Google Scholar] [CrossRef]
- Liu, C.F.; Tang, W.H.W. Epigenetics in Cardiac Hypertrophy and Heart Failure. JACC Basic. Transl. Sci. 2019, 4, 976–993. [Google Scholar] [CrossRef]
- Gibney, E.R.; Nolan, C.M. Epigenetics and gene expression. Heredity 2010, 105, 4–13. [Google Scholar] [CrossRef]
- Handy, D.E.; Castro, R.; Loscalzo, J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation 2011, 123, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Stavast, C.J.; Erkeland, S.J. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019, 8, 1465. [Google Scholar] [CrossRef] [PubMed]
- Vacchi-Suzzi, C.; Hahne, F.; Scheubel, P.; Marcellin, M.; Dubost, V.; Westphal, M.; Boeglen, C.; Büchmann-Møller, S.; Cheung, M.S.; Cordier, A.; et al. Heart structure-specific transcriptomic atlas reveals conserved microRNA-mRNA interactions. PLoS ONE 2013, 8, e52442. [Google Scholar] [CrossRef] [PubMed]
- Sommariva, E.; D’Alessandra, Y.; Farina, F.M.; Casella, M.; Cattaneo, F.; Catto, V.; Chiesa, M.; Stadiotti, I.; Brambilla, S.; Dello Russo, A.; et al. MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic CardioMyopathy. Sci. Rep. 2017, 7, 4802. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, S.R.; Calway, T.; Harmon, C.; Farrell, P.; Kim, G.H. MicroRNA-130a Regulation of Desmocollin 2 in a Novel Model of Arrhythmogenic Cardiomyopathy. Microrna 2017, 6, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Bueno Marinas, M.; Celeghin, R.; Cason, M.; Bariani, R.; Frigo, A.C.; Jager, J.; Syrris, P.; Elliott, P.M.; Bauce, B.; Thiene, G.; et al. A microRNA Expression Profile as Non-Invasive Biomarker in a Large Arrhythmogenic Cardiomyopathy Cohort. Int. J. Mol. Sci. 2020, 21, 1536. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Dong, T.; Yang, J.; Xi, Y.; Wu, Y.; Kang, K.; Hu, S.; Gou, D.; Wei, Y. Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy. Sci. Rep. 2016, 6, 28101. [Google Scholar] [CrossRef]
- Sacchetto, C.; Mohseni, Z.; Colpaert, R.M.W.; Vitiello, L.; De Bortoli, M.; Vonhögen, I.G.C.; Xiao, K.; Poloni, G.; Lorenzon, A.; Romualdi, C.; et al. Circulating miR-185-5p as a Potential Biomarker for Arrhythmogenic Right Ventricular Cardiomyopathy. Cells 2021, 10, 2578. [Google Scholar] [CrossRef]
- Khudiakov, A.A.; Panshin, D.D.; Fomicheva, Y.V.; Knyazeva, A.A.; Simonova, K.A.; Lebedev, D.S.; Mikhaylov, E.N.; Kostareva, A.A. Different Expressions of Pericardial Fluid MicroRNAs in Patients with Arrhythmogenic Right Ventricular Cardiomyopathy and Ischemic Heart Disease Undergoing Ventricular Tachycardia Ablation. Front. Cardiovasc. Med. 2021, 8, 647812. [Google Scholar] [CrossRef]
- Yamada, S.; Hsiao, Y.W.; Chang, S.L.; Lin, Y.J.; Lo, L.W.; Chung, F.P.; Chiang, S.J.; Hu, Y.F.; Tuan, T.C.; Chao, T.F.; et al. Circulating microRNAs in arrhythmogenic right ventricular cardiomyopathy with ventricular arrhythmia. Europace 2018, 20, f37–f45. [Google Scholar] [CrossRef]
- Navarre, B.M.; Clouthier, K.L.; Ji, X.; Taylor, A.; Weldy, C.S.; Dubin, A.M.; Reddy, S. miR Profile of Chronic Right Ventricular Pacing: A Pilot Study in Children with Congenital Complete Atrioventricular Block. J. Cardiovasc. Transl. Res. 2022, 16, 287–299. [Google Scholar] [CrossRef]
- Heggermont, W.A.; Delrue, L.; Dierickx, K.; Dierckx, R.; Verstreken, S.; Goethals, M.; Bartunek, J.; Vanderheyden, M. Low MicroRNA-126 Levels in Right Ventricular Endomyocardial Biopsies Coincide with Cardiac Allograft Vasculopathy in Heart Transplant Patients. Transpl. Direct 2020, 6, e549. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, F.; Mi, Y.; Wang, F.; Cai, K.; Yang, X.; Zhang, R.; Liu, L.; Zhang, Y.; Wang, Y.; et al. Aberrant expression of miR-29b-3p influences heart development and cardiomyocyte proliferation by targeting NOTCH2. Cell Prolif. 2020, 53, e12764. [Google Scholar] [CrossRef]
- Lange, S.; Banerjee, I.; Carrion, K.; Serrano, R.; Habich, L.; Kameny, R.; Lengenfelder, L.; Dalton, N.; Meili, R.; Börgeson, E.; et al. miR-486 is modulated by stretch and increases ventricular growth. JCI Insight 2019, 4, e125507. [Google Scholar] [CrossRef]
- Shi, L.; Kojonazarov, B.; Elgheznawy, A.; Popp, R.; Dahal, B.K.; Böhm, M.; Pullamsetti, S.S.; Ghofrani, H.A.; Gödecke, A.; Jungmann, A.; et al. miR-223-IGF-IR signalling in hypoxia- and load-induced right-ventricular failure: A novel therapeutic approach. Cardiovasc. Res. 2016, 111, 184–193. [Google Scholar] [CrossRef]
- Legchenko, E.; Chouvarine, P.; Borchert, P.; Fernandez-Gonzalez, A.; Snay, E.; Meier, M.; Maegel, L.; Mitsialis, S.A.; Rog-Zielinska, E.A.; Kourembanas, S.; et al. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci. Transl. Med. 2018, 10, eaao0303. [Google Scholar] [CrossRef] [PubMed]
- Connolly, M.; Garfield, B.E.; Crosby, A.; Morrell, N.W.; Wort, S.J.; Kemp, P.R. miR-322-5p targets IGF-1 and is suppressed in the heart of rats with pulmonary hypertension. FEBS Open Bio. 2018, 8, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Baptista, R.; Marques, C.; Catarino, S.; Enguita, F.J.; Costa, M.C.; Matafome, P.; Zuzarte, M.; Castro, G.; Reis, A.; Monteiro, P.; et al. MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1. Cardiovasc. Res. 2018, 114, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Stevens, H.C.; Deng, L.; Grant, J.S.; Pinel, K.; Thomas, M.; Morrell, N.W.; MacLean, M.R.; Baker, A.H.; Denby, L. Regulation and function of miR-214 in pulmonary arterial hypertension. Pulm. Circ. 2016, 6, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.R.; Dhagia, V.; Gairhe, S.; Edwards, J.G.; McMurtry, I.F.; Gupte, S.A. MicroRNA-140 is elevated and mitofusin-1 is downregulated in the right ventricle of the Sugen5416/hypoxia/normoxia model of pulmonary arterial hypertension. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H689–H698. [Google Scholar] [CrossRef]
- de Melo, B.L.; Vieira, S.S.; Antônio, E.L.; Dos Santos, L.F.; Portes, L.A.; Feliciano, R.S.; de Oliveira, H.A.; Silva, J.A., Jr.; de Carvalho, P.T.; Tucci, P.J.; et al. Exercise Training Attenuates Right Ventricular Remodeling in Rats with Pulmonary Arterial Stenosis. Front. Physiol. 2016, 7, 541. [Google Scholar] [CrossRef] [PubMed]
- Kmecova, Z.; Veteskova, J.; Lelkova-Zirova, K.; Bies Pivackova, L.; Doka, G.; Malikova, E.; Paulis, L.; Krenek, P.; Klimas, J. Disease severity-related alterations of cardiac microRNAs in experimental pulmonary hypertension. J. Cell Mol. Med. 2020, 24, 6943–6951. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Chen, Y.; Li, F. Attenuation of MicroRNA-495 Derepressed PTEN to Effectively Protect Rat Cardiomyocytes from Hypertrophy. Cardiology 2018, 139, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.M.; Liu, Z.P. Up-regulation of circRNA_0068481 promotes right ventricular hypertrophy in PAH patients via regulating miR-646/miR-570/miR-885. J. Cell Mol. Med. 2021, 25, 3735–3743. [Google Scholar] [CrossRef] [PubMed]
- Connolly, M.; Garfield, B.E.; Crosby, A.; Morrell, N.W.; Wort, S.J.; Kemp, P.R. miR-1-5p targets TGF-βR1 and is suppressed in the hypertrophying hearts of rats with pulmonary arterial hypertension. PLoS ONE 2020, 15, e0229409. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.; Li, J.; Zuo, X.; Cao, Q.; Xie, W.; Wang, H. Inhibiting miR-1 attenuates pulmonary arterial hypertension in rats. Mol. Med. Rep. 2021, 23, 283. [Google Scholar] [CrossRef]
- Chang, W.T.; Wu, C.C.; Lin, Y.W.; Shih, J.Y.; Chen, Z.C.; Wu, S.N.; Wu, C.C.; Hsu, C.H. Dynamic Changes in miR-21 Regulate Right Ventricular Dysfunction in Congenital Heart Disease-Related Pulmonary Arterial Hypertension. Cells 2022, 11, 564. [Google Scholar] [CrossRef]
- Liu, F.; Yin, L.; Zhang, L.; Liu, W.; Liu, J.; Wang, Y.; Yu, B. Trimetazidine improves right ventricular function by increasing miR-21 expression. Int. J. Mol. Med. 2012, 30, 849–855. [Google Scholar] [CrossRef]
- Gubrij, I.B.; Pangle, A.K.; Pang, L.; Johnson, L.G. Reversal of MicroRNA Dysregulation in an Animal Model of Pulmonary Hypertension. PLoS ONE 2016, 11, e0147827. [Google Scholar] [CrossRef]
- Parikh, M.; Shah, S.; Basu, R.; Famulski, K.S.; Kim, D.; Mullen, J.C.; Halloran, P.F.; Oudit, G.Y. Transcriptomic Signatures of End-Stage Human Dilated Cardiomyopathy Hearts with and without Left Ventricular Assist Device Support. Int. J. Mol. Sci. 2022, 23, 2050. [Google Scholar] [CrossRef]
- Rubiś, P.; Totoń-Żurańska, J.; Wiśniowska-Śmiałek, S.; Kołton-Wróż, M.; Wołkow, P.; Wypasek, E.; Rudnicka-Sosin, L.; Pawlak, A.; Kozanecki, K.; Tomkiewicz-Pająk, L.; et al. Right ventricular morphology and function is not related with microRNAs and fibrosis markers in dilated cardiomyopathy. Cardiol. J. 2018, 25, 722–731. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Xu, L.; Liu, J.; Wang, D.; Li, Q.; Wang, L.; Li, P.; Chen, S.; Liu, T. Expression of Bcl-2 and microRNAs in cardiac tissues of patients with dilated cardiomyopathy. Mol. Med. Rep. 2017, 15, 359–365. [Google Scholar] [CrossRef]
- Rubiś, P.; Totoń-Żurańska, J.; Wiśniowska-Śmiałek, S.; Dziewięcka, E.; Kołton-Wróż, M.; Wołkow, P.; Pitera, E.; Rudnicka-Sosin, L.; Garlitski, A.C.; Gackowski, A.; et al. The relationship between myocardial fibrosis and myocardial microRNAs in dilated cardiomyopathy: A link between mir-133a and cardiovascular events. J. Cell Mol. Med. 2018, 22, 2514–2517. [Google Scholar] [CrossRef] [PubMed]
- Dziewięcka, E.; Totoń-Żurańska, J.; Wołkow, P.; Kołton-Wróż, M.; Pitera, E.; Wiśniowska-Śmiałek, S.; Khachatryan, L.; Karabinowska, A.; Szymonowicz, M.; Podolec, P.; et al. Relations between circulating and myocardial fibrosis-linked microRNAs with left ventricular reverse remodeling in dilated cardiomyopathy. Adv. Clin. Exp. Med. 2020, 29, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Viczenczova, C.; Kura, B.; Egan Benova, T.; Yin, C.; Kukreja, R.C.; Slezak, J.; Tribulova, N.; Szeiffova Bacova, B. Irradiation-Induced Cardiac Connexin-43 and miR-21 Responses Are Hampered by Treatment with Atorvastatin and Aspirin. Int. J. Mol. Sci. 2018, 19, 1128. [Google Scholar] [CrossRef] [PubMed]
- Radom-Aizik, S.; Zaldivar, F.P.; Nance, D.M.; Haddad, F.; Cooper, D.M.; Adams, G.R. Growth inhibition and compensation in response to neonatal hypoxia in rats. Pediatr. Res. 2013, 74, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Powers, J.C.; Sabri, A.; Al-Bataineh, D.; Chotalia, D.; Guo, X.; Tsipenyuk, F.; Berretta, R.; Kavitha, P.; Gopi, H.; Houser, S.R.; et al. Differential microRNA-21 and microRNA-221 Upregulation in the Biventricular Failing Heart Reveals Distinct Stress Responses of Right Versus Left Ventricular Fibroblasts. Circ. Heart Fail. 2020, 13, e006426. [Google Scholar] [CrossRef] [PubMed]
- Kameny, R.J.; He, Y.; Zhu, T.; Gong, W.; Raff, G.W.; Chapin, C.J.; Datar, S.A.; Boehme, J.T.; Hata, A.; Fineman, J.R. Analysis of the microRNA signature driving adaptive right ventricular hypertrophy in an ovine model of congenital heart disease. Am. J. Physiol. Heart Circ. Physiol. 2018, 315, H847–H854. [Google Scholar] [CrossRef]
- Chouvarine, P.; Geldner, J.; Giagnorio, R.; Legchenko, E.; Bertram, H.; Hansmann, G. Trans-Right-Ventricle and Transpulmonary MicroRNA Gradients in Human Pulmonary Arterial Hypertension. Pediatr. Crit. Care Med. 2020, 21, 340–349. [Google Scholar] [CrossRef]
- Chang, W.T.; Hsu, C.H.; Huang, T.L.; Tsai, Y.C.; Chiang, C.Y.; Chen, Z.C.; Shih, J.Y. MicroRNA-21 is Associated with the Severity of Right Ventricular Dysfunction in Patients with Hypoxia-Induced Pulmonary Hypertension. Acta Cardiol. Sin. 2018, 34, 511–517. [Google Scholar]
- Tang, Y.; Huo, X.; Liu, J.; Tang, Y.; Zhang, M.; Xie, W.; Zheng, Z.; He, J.; Lian, J. MicroRNA-325-3p Targets Human Epididymis Protein 4 to Relieve Right Ventricular Fibrosis in Rats with Pulmonary Arterial Hypertension. Cardiovasc. Ther. 2022, 2022, 4382999. [Google Scholar] [CrossRef] [PubMed]
- Paulin, R.; Sutendra, G.; Gurtu, V.; Dromparis, P.; Haromy, A.S.; Provencher, S.; Bonnet, S.; Michelakis, E.D. A miR-208-Mef2 Axis Drives the De-Compensation of Right Ventricular Function in Pulmonary Hypertension. Circ. Res. 2014, 116, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Zhao, H.; Feng, Q. Involvement of miR-200b-PKCα signalling in pulmonary hypertension in cor pulmonale model. Clin. Exp. Pharmacol. Physiol. 2020, 47, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, K.; Taha, M.; Deng, Y.; Jiang, B.; Stewart, D.J. Discordant Regulation of microRNA Between Multiple Experimental Models and Human Pulmonary Hypertension. Chest 2015, 148, 481–490. [Google Scholar] [CrossRef]
- Potus, F.; Ruffenach, G.; Dahou, A.; Thebault, C.; Breuils-Bonnet, S.; Tremblay, È.; Nadeau, V.; Paradis, R.; Graydon, C.; Wong, R.; et al. Downregulation of miR-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension. Circulation 2015, 132, 932–943. [Google Scholar] [CrossRef]
- Drake, J.I.; Bogaard, H.J.; Mizuno, S.; Clifton, B.; Xie, B.; Gao, Y.; Dumur, C.I.; Fawcett, P.; Voelkel, N.F.; Natarajan, R. Molecular signature of a right heart failure program in chronic severe pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 2011, 45, 1239–1247. [Google Scholar] [CrossRef]
- Chouvarine, P.; Legchenko, E.; Geldner, J.; Riehle, C.; Hansmann, G. Hypoxia drives cardiac miRNAs and inflammation in the right and left ventricle. J. Mol. Med. 2019, 97, 1427–1438. [Google Scholar] [CrossRef]
- Miao, R.; Gong, J.; Guo, X.; Guo, D.; Zhang, X.; Hu, H.; Zhong, J.; Yang, Y.; Li, Y. Diagnostic value of miRNA expression and right ventricular echocardiographic functional parameters for chronic thromboembolic pulmonary hypertension with right ventricular dysfunction and injury. BMC Pulm. Med. 2022, 22, 171. [Google Scholar] [CrossRef]
- Chang, W.T.; Fisch, S.; Dangwal, S.; Mohebali, J.; Fiedler, A.G.; Chen, M.; Hsu, C.H.; Yang, Y.; Qiu, Y.; Alexander, K.M.; et al. MicroRNA-21 regulates right ventricular remodeling secondary to pulmonary arterial pressure overload. J. Mol. Cell Cardiol. 2021, 154, 106–114. [Google Scholar] [CrossRef]
- Ma, H.; Ye, P.; Zhang, A.-K.; Yu, W.-d.; Lin, S.; Zheng, Y.-G. Upregulation of miR-335-5p Contributes to Right Ventricular Remodeling via Calumenin in Pulmonary Arterial Hypertension. Biomed. Res. Int. 2022, 2022, 9294148. [Google Scholar] [CrossRef]
- Prasad, V.; Makkaoui, N.; Rajan, R.; Patel, A.; Mainali, B.; Bagchi, P.; Kumar, R.; Rogers, J.; Diamond, J.; Maxwell, J.T. Loss of cardiac myosin light chain kinase contributes to contractile dysfunction in right ventricular pressure overload. Physiol. Rep. 2022, 10, e15238. [Google Scholar] [CrossRef]
- Reddy, S.; Hu, D.-Q.; Zhao, M.; Blay, E., Jr.; Sandeep, N.; Ong, S.-G.; Jung, G.; Kooiker, K.B.; Coronado, M.; Fajardo, G.; et al. miR-21 is associated with fibrosis and right ventricular failure. JCI Insight 2017, 2, e91625. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Zhao, M.; Hu, D.Q.; Fajardo, G.; Hu, S.; Ghosh, Z.; Rajagopalan, V.; Wu, J.C.; Bernstein, D. Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol. Genom. 2012, 44, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Tutarel, O.; Dangwal, S.; Bretthauer, J.; Westhoff-Bleck, M.; Roentgen, P.; Anker, S.D.; Bauersachs, J.; Thum, T. Circulating miR-423_5p fails as a biomarker for systemic ventricular function in adults after atrial repair for transposition of the great arteries. Int. J. Cardiol. 2013, 167, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.T.M.; Ng, E.k.o.n.; Chow, P.-C.; Kwong, A.; Cheung, Y.-F. Circulating microRNA expression profile and systemic right ventricular function in adults after atrial switch operation for complete transposition of the great arterie. BMC Cardiovasc. Disord. 2013, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Abu-Halima, M.; Meese, E.; Abdul-Khaliq, H.; Raedle-Hurst, T. MicroRNA-183-3p Is a Predictor of Worsening Heart Failure in Adult Patients with Transposition of the Great Arteries and a Systemic Right Ventricle. Front. Cardiovasc. Med. 2021, 8, 730364. [Google Scholar] [CrossRef]
- Grunert, M.; Appelt, S.; Dunkel, I.; Berger, F.; Sperling, S.R. Altered microRNA and target gene expression related to Tetralogy of Fallot. Sci. Rep. 2019, 9, 19063. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Xu, X.; Deng, F.; Feng, J.; Zhang, H.; Liu, Y.; Zhang, Y.; Pan, L.; Liu, Y.; Zhang, D.; et al. miRNA-940 reduction contributes to human Tetralogy of Fallot development. J. Cell Mol. Med. 2014, 18, 1830–1839. [Google Scholar] [CrossRef] [PubMed]
- Bittel, D.C.; Kibiryeva, N.; Marshall, J.A.; O’Brien, J.E. MicroRNA-421 Dysregulation is Associated with Tetralogy of Fallot. Cells 2014, 3, 713–723. [Google Scholar] [CrossRef]
- Zhang, J.; Chang, J.J.; Xu, F.; Ma, X.J.; Wu, Y.; Li, W.C.; Wang, H.J.; Huang, G.Y.; Ma, D. MicroRNA deregulation in right ventricular outflow tract myocardium in nonsyndromic tetralogy of fallot. Can. J. Cardiol. 2013, 29, 1695–1703. [Google Scholar] [CrossRef]
- Weldy, C.S.; Syed, S.A.; Amsallem, M.; Hu, D.Q.; Ji, X.; Punn, R.; Taylor, A.; Navarre, B.; Reddy, S. Circulating whole genome miRNA expression corresponds to progressive right ventricle enlargement and systolic dysfunction in adults with tetralogy of Fallot. PLoS ONE 2020, 15, e0241476. [Google Scholar] [CrossRef]
- Abu-Halima, M.; Meese, E.; Keller, A.; Abdul-Khaliq, H.; Rädle-Hurst, T. Analysis of circulating microRNAs in patients with repaired Tetralogy of Fallot with and without heart failure. J. Transl. Med. 2017, 15, 156. [Google Scholar] [CrossRef]
- Lai, C.T.M.; Ng, E.K.O.; Chow, P.C.; Kwong, A.; Cheung, Y.F. Circulating MicroRNA in patients with repaired tetralogy of Fallot. Eur. J. Clin. Investig. 2017, 47, 574–582. [Google Scholar] [CrossRef]
- O’Brien, J.E., Jr.; Kibiryeva, N.; Zhou, X.G.; Marshall, J.A.; Lofland, G.K.; Artman, M.; Chen, J.; Bittel, D.C. Noncoding RNA expression in myocardium from infants with tetralogy of Fallot. Circ. Cardiovasc. Genet. 2012, 5, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.S.; Wu, Q.Y.; Xu, M.; Zhou, Y.X.; Shui, C.X. Mitogen-activated protein kinase signal pathways play an important role in right ventricular hypertrophy of tetralogy of Fallot. Chin. Med. J. 2012, 125, 2243–2249. [Google Scholar] [PubMed]
- DiLorenzo, M.P.; DeCost, G.; Mai, A.D.; Hughes, N.; Goldmuntz, E.; Jones, A.; Fogel, M.A.; Mercer-Rosa, L. Comparison of serum biomarkers of myocardial fibrosis with cardiac magnetic resonance in patients operated for tetralogy of Fallot. Int. J. Cardiol. 2022, 358, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Shi, G.; Zhu, Z.; Chen, H.; Fu, Q. Sexual difference of small RNA expression in Tetralogy of Fallot. Sci. Rep. 2018, 8, 12847. [Google Scholar] [CrossRef] [PubMed]
- Gerull, B.; Heuser, A.; Wichter, T.; Paul, M.; Basson, C.T.; McDermott, D.A.; Lerman, B.B.; Markowitz, S.M.; Ellinor, P.T.; MacRae, C.A.; et al. Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat. Genet. 2004, 36, 1162–1164. [Google Scholar] [CrossRef] [PubMed]
- Brodehl, A.; Weiss, J.; Debus, J.D.; Stanasiuk, C.; Klauke, B.; Deutsch, M.A.; Fox, H.; Bax, J.; Ebbinghaus, H.; Gärtner, A.; et al. A homozygous DSC2 deletion associated with arrhythmogenic cardiomyopathy is caused by uniparental isodisomy. J. Mol. Cell Cardiol. 2020, 141, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Pilichou, K.; Nava, A.; Basso, C.; Beffagna, G.; Bauce, B.; Lorenzon, A.; Frigo, G.; Vettori, A.; Valente, M.; Towbin, J.; et al. Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 2006, 113, 1171–1179. [Google Scholar] [CrossRef]
- Bauce, B.; Basso, C.; Rampazzo, A.; Beffagna, G.; Daliento, L.; Frigo, G.; Malacrida, S.; Settimo, L.; Danieli, G.; Thiene, G.; et al. Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur. Heart J. 2005, 26, 1666–1675. [Google Scholar] [CrossRef]
- Bermúdez-Jiménez, F.J.; Carriel, V.; Brodehl, A.; Alaminos, M.; Campos, A.; Schirmer, I.; Milting, H.; Abril, B.; Álvarez, M.; López-Fernández, S.; et al. Novel Desmin Mutation p.Glu401Asp Impairs Filament Formation, Disrupts Cell Membrane Integrity, and Causes Severe Arrhythmogenic Left Ventricular Cardiomyopathy/Dysplasia. Circulation 2018, 137, 1595–1610. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Link, M.S.; Calkins, H. Arrhythmogenic Right Ventricular Cardiomyopathy. N. Engl. J. Med. 2017, 376, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Boogerd, C.J.; Lacraz, G.P.A.; Vértesy, Á.; van Kampen, S.J.; Perini, I.; de Ruiter, H.; Versteeg, D.; Brodehl, A.; van der Kraak, P.; Giacca, M.; et al. Spatial transcriptomics unveils ZBTB11 as a regulator of cardiomyocyte degeneration in arrhythmogenic cardiomyopathy. Cardiovasc. Res. 2023, 119, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Corrado, D.; Anastasakis, A.; Basso, C.; Bauce, B.; Blomström-Lundqvist, C.; Bucciarelli-Ducci, C.; Cipriani, A.; De Asmundis, C.; Gandjbakhch, E.; Jiménez-Jáimez, J.; et al. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy. European Task Force consensus report. Int. J. Cardiol. 2023; in press. [Google Scholar] [CrossRef]
- Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Olson, E.N. AngiomiRs–key regulators of angiogenesis. Curr. Opin. Genet. Dev. 2009, 19, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Sassi, Y.; Avramopoulos, P.; Ramanujam, D.; Grüter, L.; Werfel, S.; Giosele, S.; Brunner, A.D.; Esfandyari, D.; Papadopoulou, A.S.; De Strooper, B.; et al. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat. Commun. 2017, 8, 1614. [Google Scholar] [CrossRef]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies. Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Merlo, M.; Gobbo, M.; Stolfo, D.; Losurdo, P.; Ramani, F.; Barbati, G.; Pivetta, A.; Di Lenarda, A.; Anzini, M.; Gigli, M.; et al. The Prognostic Impact of the Evolution of RV Function in Idiopathic DCM. JACC Cardiovasc. Imaging. 2016, 9, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Tadic, M.; Cuspidi, C.; Hering, D.; Venneri, L.; Grozdic-Milojevic, I. Radiotherapy-induced right ventricular remodelling: The missing piece of the puzzle. Arch. Cardiovasc. Dis. 2017, 110, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.P.C.; Schroen, B.; Kuster, G.M.; Robinson, E.L.; Ford, K.; Squire, I.B.; Heymans, S.; Martelli, F.; Emanueli, C.; Devaux, Y. Regulatory RNAs in Heart Failure. Circulation 2020, 141, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Touma, M.; Kang, X.; Zhao, Y.; Cass, A.A.; Gao, F.; Biniwale, R.; Coppola, G.; Xiao, X.; Reemtsen, B.; Wang, Y. Decoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional Discovery. Circ. Cardiovasc. Genet. 2016, 9, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Tsuchihashi, T.; Maeda, J.; Shin, C.H.; Ivey, K.N.; Black, B.L.; Olson, E.N.; Yamagishi, H.; Srivastava, D. Hand2 function in second heart field progenitors is essential for cardiogenesis. Dev. Biol. 2011, 351, 62–69. [Google Scholar] [CrossRef]
- Ritter, N.; Ali, T.; Kopitchinski, N.; Schuster, P.; Beisaw, A.; Hendrix, D.A.; Schulz, M.H.; Müller-McNicoll, M.; Dimmeler, S.; Grote, P. The lncRNA Locus Handsdown Regulates Cardiac Gene Programs and Is Essential for Early Mouse Development. Dev. Cell 2019, 50, 644–657.e8. [Google Scholar] [CrossRef]
- Anderson, K.M.; Anderson, D.M.; McAnally, J.R.; Shelton, J.M.; Bassel-Duby, R.; Olson, E.N. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 2016, 539, 433–436. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, Y.; Wang, L.; Li, L.; Zhang, J.; Gao, X.; Dai, S.; Zhang, Y.; Guo, Q.; Peng, Y.G.; et al. Analyses of long non-coding RNA and mRNA profiles in right ventricle myocardium of acute right heart failure in pulmonary arterial hypertension rats. Biomed. Pharmacother. 2018, 106, 1108–1115. [Google Scholar] [CrossRef]
- Omura, J.; Habbout, K.; Shimauchi, T.; Wu, W.H.; Breuils-Bonnet, S.; Tremblay, E.; Martineau, S.; Nadeau, V.; Gagnon, K.; Mazoyer, F.; et al. Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation 2020, 142, 1464–1484. [Google Scholar] [CrossRef]
- di Salvo, T.G.; Yang, K.C.; Brittain, E.; Absi, T.; Maltais, S.; Hemnes, A. Right ventricular myocardial biomarkers in human heart failure. J. Card. Fail. 2015, 21, 398–411. [Google Scholar] [CrossRef]
- Di Salvo, T.G.; Guo, Y.; Su, Y.R.; Clark, T.; Brittain, E.; Absi, T.; Maltais, S.; Hemnes, A. Right ventricular long noncoding RNA expression in human heart failure. Pulm. Circ. 2015, 5, 135–161. [Google Scholar] [CrossRef]
- Tian, C.; Yang, Y.; Ke, Y.; Yang, L.; Zhong, L.; Wang, Z.; Huang, H. Integrative Analyses of Genes Associated with Right Ventricular Cardiomyopathy Induced by Tricuspid Regurgitation. Front. Genet. 2021, 12, 708275. [Google Scholar] [CrossRef]
- Chouvarine, P.; Photiadis, J.; Cesnjevar, R.; Scheewe, J.; Bauer, U.M.M.; Pickardt, T.; Kramer, H.H.; Dittrich, S.; Berger, F.; Hansmann, G. RNA expression profiles and regulatory networks in human right ventricular hypertrophy due to high pressure load. iScience 2021, 24, 102232. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Wu, C.; Pan, Z.; Xiang, L.; Liu, H.; Jin, X.; Tong, K.; Fan, S.; Jin, X. Potential association of long noncoding RNA HA117 with tetralogy of Fallot. Genes Dis. 2018, 5, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Zhang, W.; Chen, G.; Shi, Q.; Mi, Y.; Zhang, H.; Jia, B. Pathological Change and Whole Transcriptome Alternation Caused by ePTFE Implantation in Myocardium. Biomed. Res. Int. 2021, 2021, 5551207. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wang, Y.; Du, L. Epigenetic Modulation in the Initiation and Progression of Pulmonary Hypertension. Hypertension 2019, 74, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, T.L.; Ma, Y.; Park, C.Y.; Harriss, J.; Pierce, S.A.; Dekker, J.D.; Valenzuela, N.; Srivastava, D.; Schwartz, R.J.; Stewart, M.D.; et al. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS ONE 2015, 10, e0121765. [Google Scholar] [CrossRef]
- Gottlieb, P.D.; Pierce, S.A.; Sims, R.J.; Yamagishi, H.; Weihe, E.K.; Harriss, J.V.; Maika, S.D.; Kuziel, W.A.; King, H.L.; Olson, E.N.; et al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat. Genet. 2002, 31, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, R.L.; Davis, C.A.; Potthoff, M.J.; Haberland, M.; Fielitz, J.; Qi, X.; Hill, J.A.; Richardson, J.A.; Olson, E.N. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 2007, 21, 1790–1802. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, J.; Anderson, J.P.; Wu, J.; Gleim, S.R.; Kundu, R.K.; McLean, D.L.; Kim, J.D.; Park, H.; Jin, S.W.; et al. Apelin-APJ signaling is a critical regulator of endothelial MEF2 activation in cardiovascular development. Circ. Res. 2013, 113, 22–31. [Google Scholar] [CrossRef]
- Khandekar, A.; Springer, S.; Wang, W.; Hicks, S.; Weinheimer, C.; Diaz-Trelles, R.; Nerbonne, J.M.; Rentschler, S. Notch-Mediated Epigenetic Regulation of Voltage-Gated Potassium Currents. Circ. Res. 2016, 119, 1324–1338. [Google Scholar] [CrossRef]
- Mathiyalagan, P.; Chang, L.; Du, X.J.; El-Osta, A. Cardiac ventricular chambers are epigenetically distinguishable. Cell Cycle 2010, 9, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Lemon, D.D.; Horn, T.R.; Cavasin, M.A.; Jeong, M.Y.; Haubold, K.W.; Long, C.S.; Irwin, D.C.; McCune, S.A.; Chung, E.; Leinwand, L.A.; et al. Cardiac HDAC6 catalytic activity is induced in response to chronic hypertension. J. Mol. Cell Cardiol. 2011, 51, 41–50. [Google Scholar] [CrossRef]
- De Raaf, M.A.; Hussaini, A.A.; Gomez-Arroyo, J.; Kraskaukas, D.; Farkas, D.; Happé, C.; Voelkel, N.F.; Bogaard, H.J. Histone deacetylase inhibition with trichostatin A does not reverse severe angioproliferative pulmonary hypertension in rats (2013 Grover Conference series). Pulm. Circ. 2014, 4, 237–243. [Google Scholar] [CrossRef]
- Cavasin, M.A.; Demos-Davies, K.; Horn, T.R.; Walker, L.A.; Lemon, D.D.; Birdsey, N.; Weiser-Evans, M.C.; Harral, J.; Irwin, D.C.; Anwar, A.; et al. Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism. Circ. Res. 2012, 110, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Applegate, T.J.; Krafsur, G.M.; Boon, J.A.; Zhang, H.; Li, M.; Holt, T.N.; Ambler, S.K.; Abrams, B.A.; Gustafson, D.L.; Bartels, K.; et al. Brief Report: Case Comparison of Therapy with the Histone Deacetylase Inhibitor Vorinostat in a Neonatal Calf Model of Pulmonary Hypertension. Front. Physiol. 2021, 12, 712583. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.K.; Eom, G.H.; Kee, H.J.; Kim, H.S.; Choi, W.Y.; Nam, K.I.; Ma, J.S.; Kook, H. Sodium valproate, a histone deacetylase inhibitor, but not captopril, prevents right ventricular hypertrophy in rats. Circ. J. 2010, 74, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Bogaard, H.J.; Mizuno, S.; Hussaini, A.A.; Toldo, S.; Abbate, A.; Kraskauskas, D.; Kasper, M.; Natarajan, R.; Voelkel, N.F. Suppression of histone deacetylases worsens right ventricular dysfunction after pulmonary artery banding in rats. Am. J. Respir. Crit. Care Med. 2011, 183, 1402–1410. [Google Scholar] [CrossRef]
- Volani, C.; Pagliaro, A.; Rainer, J.; Paglia, G.; Porro, B.; Stadiotti, I.; Foco, L.; Cogliati, E.; Paolin, A.; Lagrasta, C.; et al. GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. J. Cell Mol. Med. 2022, 26, 3687–3701. [Google Scholar] [CrossRef]
- Blakeslee, W.W.; Demos-Davies, K.M.; Lemon, D.D.; Lutter, K.M.; Cavasin, M.A.; Payne, S.; Nunley, K.; Long, C.S.; McKinsey, T.A.; Miyamoto, S.D. Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy. Pediatr. Res. 2017, 82, 642–649. [Google Scholar] [CrossRef]
- Ju, Z.R.; Wang, H.J.; Ma, X.J.; Ma, D.; Huang, G.Y. HIRA Gene is Lower Expressed in the Myocardium of Patients with Tetralogy of Fallot. Chin. Med. J. 2016, 129, 2403–2408. [Google Scholar] [CrossRef]
- Pepin, M.E.; Ha, C.M.; Crossman, D.K.; Litovsky, S.H.; Varambally, S.; Barchue, J.P.; Pamboukian, S.V.; Diakos, N.A.; Drakos, S.G.; Pogwizd, S.M.; et al. Genome-wide DNA methylation encodes cardiac transcriptional reprogramming in human ischemic heart failure. Lab. Investig. 2019, 99, 371–386. [Google Scholar] [CrossRef]
- Jo, B.S.; Koh, I.U.; Bae, J.B.; Yu, H.Y.; Jeon, E.S.; Lee, H.Y.; Kim, J.J.; Choi, M.; Choi, S.S. Methylome analysis reveals alterations in DNA methylation in the regulatory regions of left ventricle development genes in human dilated cardiomyopathy. Genomics 2016, 108, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Clifford, C.P.; Nunez, D.J. Human beta-myosin heavy chain mRNA prevalence is inversely related to the degree of methylation of regulatory elements. Cardiovasc. Res. 1998, 38, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Wang, H.; Ma, X.; Qian, Y.; Zhang, P.; Wu, Y.; Zheng, F.; Chen, L.; Huang, G.; Ma, D. LINE-1 methylation status and its association with tetralogy of fallot in infants. BMC Med. Genom. 2012, 5, 20. [Google Scholar] [CrossRef] [PubMed]
- Xiaodi, L.; Ming, Y.; Hongfei, X.; Yanjie, Z.; Ruoyi, G.; Ma, X.; Wei, S.; Guoying, H. DNA methylation at CpG island shore and RXRα regulate NR2F2 in heart tissues of tetralogy of Fallot patients. Biochem. Biophys. Res. Commun. 2020, 529, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Sheng, W.; Ma, D.; Huang, G.; Liu, F. DNA methylation status of TBX20 in patients with tetralogy of Fallot. BMC Med. Genom. 2019, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Kong, Q.; Li, Z.; Xu, M.; Cai, Z.; Zhao, C. Association between the promoter methylation of the TBX20 gene and tetralogy of fallot. Scand. Cardiovasc. J. 2018, 52, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Ye, M.; Xu, H.; Gu, R.; Ma, X.; Chen, M.; Li, X.; Sheng, W.; Huang, G. Methylation status of CpG sites in the NOTCH4 promoter region regulates NOTCH4 expression in patients with tetralogy of Fallot. Mol. Med. Rep. 2020, 22, 4412–4422. [Google Scholar] [CrossRef]
- Tian, G.; He, L.; Gu, R.; Sun, J.; Chen, W.; Qian, Y.; Ma, X.; Yan, W.; Zhao, Z.; Xu, Z.; et al. CpG site hypomethylation at ETS1-binding region regulates DLK1 expression in Chinese patients with Tetralogy of Fallot. Mol. Med. Rep. 2022, 25, 93. [Google Scholar] [CrossRef]
- Yuan, Y.; Gao, Y.; Wang, H.; Ma, X.; Ma, D.; Huang, G. Promoter methylation and expression of the VANGL2 gene in the myocardium of pediatric patients with tetralogy of fallot. Birth Defects Res. A Clin. Mol. Teratol. 2014, 100, 973–984. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, X.; Wang, H.; Ma, D.; Huang, G. Elevated methylation of the RXRA promoter region may be responsible for its downregulated expression in the myocardium of patients with TOF. Pediatr. Res. 2014, 75, 588–594. [Google Scholar] [CrossRef]
- Sheng, W.; Qian, Y.; Zhang, P.; Wu, Y.; Wang, H.; Ma, X.; Chen, L.; Ma, D.; Huang, G. Association of promoter methylation statuses of congenital heart defect candidate genes with Tetralogy of Fallot. J. Transl. Med. 2014, 12, 31. [Google Scholar] [CrossRef]
- Sheng, W.; Qian, Y.; Wang, H.; Ma, X.; Zhang, P.; Diao, L.; An, Q.; Chen, L.; Ma, D.; Huang, G. DNA methylation status of NKX2-5, GATA4 and HAND1 in patients with tetralogy of fallot. BMC Med. Genom. 2013, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Sharma, R.; Prasad, R.; Bahl, A.; Khullar, M. Role of cardiac TBX20 in dilated cardiomyopathy. Mol. Cell Biochem. 2016, 414, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Lyu, G.; Zhang, C.; Ling, T.; Liu, R.; Zong, L.; Guan, Y.; Huang, X.; Sun, L.; Zhang, L.; Li, C.; et al. Genome and epigenome analysis of monozygotic twins discordant for congenital heart disease. BMC Genom. 2018, 19, 428. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wu, D.; Dasgupta, A.; Chen, K.H.; Mewburn, J.; Potus, F.; Lima, P.D.A.; Hong, Z.; Zhao, Y.Y.; Hindmarch, C.C.T.; et al. Epigenetic Metabolic Reprogramming of Right Ventricular Fibroblasts in Pulmonary Arterial Hypertension: A Pyruvate Dehydrogenase Kinase-Dependent Shift in Mitochondrial Metabolism Promotes Right Ventricular Fibrosis. Circ. Res. 2020, 126, 1723–1745. [Google Scholar] [CrossRef]
- Rajgarhia, A.; Ayasolla, K.R.; Zaghloul, N.; Lopez Da Re, J.M.; Miller, E.J.; Ahmed, M. Extracellular Superoxide Dismutase (EC-SOD) Regulates Gene Methylation and Cardiac Fibrosis During Chronic Hypoxic Stress. Front. Cardiovasc. Med. 2021, 8, 669975. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.V.; Lister, R. Genomic Targeting of TET Activity for Targeted Demethylation Using CRISPR/Cas9. Methods Mol. Biol. 2021, 2272, 181–194. [Google Scholar]
- Liu, B.; Chen, S.; Rose, A.; Chen, D.; Cao, F.; Zwinderman, M.; Kiemel, D.; Aïssi, M.; Dekker, F.J.; Haisma, H.J. Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing. Nucleic Acids Res. 2020, 48, 517–532. [Google Scholar] [CrossRef]
- Kwon, D.Y.; Zhao, Y.T.; Lamonica, J.M.; Zhou, Z. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat. Commun. 2017, 8, 15315. [Google Scholar] [CrossRef] [PubMed]
- Woulfe, K.C.; Walker, L.A. Physiology of the Right Ventricle Across the Lifespan. Front. Physiol. 2021, 12, 642284. [Google Scholar] [CrossRef] [PubMed]
- Sharifi Kia, D.; Shen, Y.; Bachman, T.N.; Goncharova, E.A.; Kim, K.; Simon, M.A. The Effects of Healthy Aging on Right Ventricular Structure and Biomechanical Properties: A Pilot Study. Front. Med. 2021, 8, 751338. [Google Scholar] [CrossRef] [PubMed]
- Fiechter, M.; Fuchs, T.A.; Gebhard, C.; Stehli, J.; Klaeser, B.; Stähli, B.E.; Manka, R.; Manes, C.; Tanner, F.C.; Gaemperli, O.; et al. Age-related normal structural and functional ventricular values in cardiac function assessed by magnetic resonance. BMC Med. Imaging 2013, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.; Morello, A.; Iacono, A.M.; Scarafile, R.; Cocchia, R.; Riegler, L.; Pezzullo, E.; Golia, E.; Bossone, E.; Calabrò, R.; et al. Right Ventricular Changes in Highly Trained Athletes: Between Physiology and Pathophysiology. J. Cardiovasc. Echogr. 2015, 25, 97–102. [Google Scholar] [CrossRef]
- La Gerche, A.; Rakhit, D.J.; Claessen, G. Exercise and the right ventricle: A potential Achilles’ heel. Cardiovasc. Res. 2017, 113, 1499–1508. [Google Scholar] [CrossRef]
- La Gerche, A.; Roberts, T.; Claessen, G. The response of the pulmonary circulation and right ventricle to exercise: Exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series). Pulm. Circ. 2014, 4, 407–416. [Google Scholar] [CrossRef]
- La Gerche, A.; Burns, A.T.; Mooney, D.J.; Inder, W.J.; Taylor, A.J.; Bogaert, J.; Macisaac, A.I.; Heidbüchel, H.; Prior, D.L. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur. Heart J. 2012, 33, 998–1006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro, V.; Jutras-Beaudoin, N.; Boucherat, O.; Bonnet, S.; Provencher, S.; Potus, F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023, 12, 2693. https://doi.org/10.3390/cells12232693
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells. 2023; 12(23):2693. https://doi.org/10.3390/cells12232693
Chicago/Turabian StyleToro, Victoria, Naomie Jutras-Beaudoin, Olivier Boucherat, Sebastien Bonnet, Steeve Provencher, and François Potus. 2023. "Right Ventricle and Epigenetics: A Systematic Review" Cells 12, no. 23: 2693. https://doi.org/10.3390/cells12232693
APA StyleToro, V., Jutras-Beaudoin, N., Boucherat, O., Bonnet, S., Provencher, S., & Potus, F. (2023). Right Ventricle and Epigenetics: A Systematic Review. Cells, 12(23), 2693. https://doi.org/10.3390/cells12232693