The Neutralization of the Eosinophil Peroxidase Antibody Accelerates Eosinophilic Mucin Decomposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell and Mucin Preparation
2.2. Viscoelasticity
2.3. DNase I Activity
2.4. dsDNA Measurement
2.5. Immunofluorescence Staining
2.6. Measurement of EPX-IgG
2.7. Participants
2.8. Corticosteroid Sensitivity
2.9. Protein Phosphatase Activity
2.10. Statistics Analysis
3. Results
3.1. Eosinophils Are Associated with Mucin in ECRS
3.2. Mucin Igs Enhanced dsDNA Release from Eosinophils
3.3. EPX-IgG Levels Increase in Mucin and Serum from Patients with Refractory ECRS
3.4. EPX Addition Accelerates Mucin Decomposition
3.5. Dupilumab Accelerates Mucin Decomposition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, A.; Vandeplas, G.; Huynh, T.M.T.; Joish, V.N.; Mannent, L.; Tomassen, P.; Van Zele, T.; Cardell, L.O.; Arebro, J.; Olze, H.; et al. The Global Allergy and Asthma European Network (GALEN rhinosinusitis cohort: A large European cross-sectional study of chronic rhinosinusitis patients with and without nasal polyps. Rhinology 2019, 57, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, N.; Bo, M.; Holtappels, G.; Zheng, M.; Lou, H.; Wang, H.; Zhang, L.; Bachert, C. Diversity of T(H) cytokine profiles in patients with chronic rhinosinusitis: A multicenter study in Europe, Asia, and Oceania. J. Allergy Clin. Immunol. 2016, 138, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Fujieda, S.; Imoto, Y.; Kato, Y.; Ninomiya, T.; Tokunaga, T.; Tsutsumiuchi, T.; Yoshida, K.; Kidoguchi, M.; Takabayashi, T. Eosinophilic chronic rhinosinusitis. Allergol. Int. 2019, 68, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Brescia, G.; Marioni, G.; Franchella, S.; Ramacciotti, G.; Pendolino, A.L.; Callegaro, F.; Giacomelli, L.; Marino, F.; Martini, A. Post-operative steroid treatment for eosinophilic-type sinonasal polyposis. Acta Otolaryngol. 2015, 135, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.Y.; Head, K.; Hopkins, C.; Philpott, C.; Schilder, A.G.; Burton, M.J. Intranasal steroids versus placebo or no intervention for chronic rhinosinusitis. Cochrane Database Syst. Rev. 2016, 4, Cd011996. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.H.; Lee, P.L.; Shiao, A.S.; Chen, K.T.; Lan, M.Y. Topical corticosteroids applied with a squirt system are more effective than a nasal spray for steroid-dependent olfactory impairment. Laryngoscope 2012, 122, 747–750. [Google Scholar] [CrossRef] [PubMed]
- Amelink, M.; de Groot, J.C.; de Nijs, S.B.; Lutter, R.; Zwinderman, A.H.; Sterk, P.J.; ten Brinke, A.; Bel, E.H. Severe adult-onset asthma: A distinct phenotype. J. Allergy Clin. Immunol. 2013, 132, 336–341. [Google Scholar] [CrossRef]
- Tokunaga, T.; Sakashita, M.; Haruna, T.; Asaka, D.; Takeno, S.; Ikeda, H.; Nakayama, T.; Seki, N.; Ito, S.; Murata, J.; et al. Novel scoring system and algorithm for classifying chronic rhinosinusitis: The JESREC Study. Allergy 2015, 70, 995–1003. [Google Scholar] [CrossRef]
- Kimura, Y.; Suzukawa, M.; Inoue, N.; Imai, S.; Akazawa, M.; Matsui, H. Real-world benefits of biologics for asthma: Exacerbation events and systemic corticosteroid use. World Allergy Organ. J. 2021, 14, 100600. [Google Scholar] [CrossRef]
- Fujieda, S.; Matsune, S.; Takeno, S.; Ohta, N.; Asako, M.; Bachert, C.; Inoue, T.; Takahashi, Y.; Fujita, H.; Deniz, Y.; et al. Dupilumab efficacy in chronic rhinosinusitis with nasal polyps from SINUS-52 is unaffected by eosinophilic status. Allergy 2022, 77, 186–196. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kanda, A.; Yun, Y.; Dan Van, B.; Suzuki, K.; Sawada, S.; Asako, M.; Iwai, H. Reduced Local Response to Corticosteroids in Eosinophilic Chronic Rhinosinusitis with Asthma. Biomolecules 2020, 10, 326. [Google Scholar] [CrossRef] [PubMed]
- Brusselle, G.G.; Koppelman, G.H. Biologic Therapies for Severe Asthma. N. Engl. J. Med. 2022, 386, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Rabe, K.F.; Nair, P.; Brusselle, G.; Maspero, J.F.; Castro, M.; Sher, L.; Zhu, H.; Hamilton, J.D.; Swanson, B.N.; Khan, A.; et al. Efficacy and Safety of Dupilumab in Glucocorticoid-Dependent Severe Asthma. N. Engl. J. Med. 2018, 378, 2475–2485. [Google Scholar] [CrossRef]
- Kavanagh, J.E.; Hearn, A.P.; Jackson, D.J. A pragmatic guide to choosing biologic therapies in severe asthma. Breathe 2021, 17, 210144. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Han, J.K.; Desrosiers, M.; Hellings, P.W.; Amin, N.; Lee, S.E.; Mullol, J.; Greos, L.S.; Bosso, J.V.; Laidlaw, T.M.; et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): Results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet 2019, 394, 1638–1650. [Google Scholar] [CrossRef] [PubMed]
- Unsal, A.A.; Reyes, C.; Biddinger, P.; Kountakis, S.E. Eosinophilic Mucin: A Predictor for Disease Severity in Chronic Rhinosinusitis. Am. J. Rhinol. Allergy 2021, 35, 187–194. [Google Scholar] [CrossRef]
- Dunican, E.M.; Elicker, B.M.; Gierada, D.S.; Nagle, S.K.; Schiebler, M.L.; Newell, J.D.; Raymond, W.W.; Lachowicz-Scroggins, M.E.; Di Maio, S.; Hoffman, E.A.; et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J. Clin. Investig. 2018, 128, 997–1009. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yasuba, H.; Asako, M.; Yamamoto, T.; Takano, H.; Tomoda, K.; Kanda, A.; Iwai, H. HFA-BDP Metered-Dose Inhaler Exhaled Through the Nose Improves Eosinophilic Chronic Rhinosinusitis With Bronchial Asthma: A Blinded, Placebo-Controlled Study. Front. Immunol. 2018, 9, 2192. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kanda, A.; Bui, D.V.; Yun, Y.; Nguyen, L.M.; Chu, H.H.; Mitani, A.; Suzuki, K.; Asako, M.; Iwai, H. Omalizumab Restores Response to Corticosteroids in Patients with Eosinophilic Chronic Rhinosinusitis and Severe Asthma. Biomedicines 2021, 9, 787. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Mercado, N.; Barnes, P.J.; Ito, K. Defects of protein phosphatase 2A causes corticosteroid insensitivity in severe asthma. PLoS ONE 2011, 6, e27627. [Google Scholar] [CrossRef]
- Ueki, S.; Konno, Y.; Takeda, M.; Moritoki, Y.; Hirokawa, M.; Matsuwaki, Y.; Honda, K.; Ohta, N.; Yamamoto, S.; Takagi, Y.; et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes. J. Allergy Clin. Immunol. 2016, 137, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin? J. Cell Biol. 2012, 198, 773–783. [Google Scholar] [CrossRef] [PubMed]
- Hakkim, A.; Fürnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef]
- Nakazawa, D.; Tomaru, U.; Ishizu, A. Possible implication of disordered neutrophil extracellular traps in the pathogenesis of MPO-ANCA-associated vasculitis. Clin. Exp. Nephrol. 2013, 17, 631–633. [Google Scholar] [CrossRef] [PubMed]
- Cha, H.; Lim, H.S.; Park, J.A.; Jo, A.; Ryu, H.T.; Kim, D.W.; Kim, J.K.; Hong, S.N.; Shin, H.W.; Kim, D.W. Effects of Neutrophil and Eosinophil Extracellular Trap Formation on Refractoriness in Chronic Rhinosinusitis With Nasal Polyps. Allergy Asthma Immunol. Res. 2023, 15, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.K.; Li, Q.Z.; Suh, L.; Kato, A.; Conley, D.B.; Chandra, R.K.; Zhou, J.; Norton, J.; Carter, R.; Hinchcliff, M.; et al. Evidence for intranasal antinuclear autoantibodies in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2011, 128, 1198–1206.e1191. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, M.; Bulir, D.C.; Radford, K.; Kjarsgaard, M.; Huang, C.M.; Jacobsen, E.A.; Ochkur, S.I.; Catuneanu, A.; Lamothe-Kipnes, H.; Mahony, J.; et al. Sputum autoantibodies in patients with severe eosinophilic asthma. J. Allergy Clin. Immunol. 2018, 141, 1269–1279. [Google Scholar] [CrossRef]
- Chu, H.H.; Kobayashi, Y.; Bui, D.V.; Yun, Y.; Nguyen, L.M.; Mitani, A.; Suzuki, K.; Asako, M.; Kanda, A.; Iwai, H. CCL4 Regulates Eosinophil Activation in Eosinophilic Airway Inflammation. Int. J. Mol. Sci. 2022, 23, 16149. [Google Scholar] [CrossRef]
- Dippy, J.E.; Davis, S.S. Rheological assessment of mucolytic agents on sputum of chronic bronchitics. Thorax 1969, 24, 707–713. [Google Scholar] [CrossRef]
- Venkatesan, P. 2023 GINA report for asthma. Lancet Respir. Med. 2023, 11, 589. [Google Scholar] [CrossRef]
- Remes, S.; Korppi, M.; Remes, K.; Savolainen, K.; Mononen, I.; Pekkanen, J. Serum eosinophil cationic protein (ECP) and eosinophil protein X (EPX) in childhood asthma: The influence of atopy. Pediatr. Pulmonol. 1998, 25, 167–174. [Google Scholar] [CrossRef]
- Kim, K.C.; Gleich, G.J.; Lee, M.K. Two eosinophil granule proteins, eosinophil peroxidase and major basic protein, inhibit mucin release from hamster tracheal surface epithelial cells in primary culture. Inflamm. Res. 1999, 48, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Kam, J.C.; Szefler, S.J.; Surs, W.; Sher, E.R.; Leung, D.Y. Combination IL-2 and IL-4 reduces glucocorticoid receptor-binding affinity and T cell response to glucocorticoids. J. Immunol. (Baltim. Md. 1950) 1993, 151, 3460–3466. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Chu, H.H.; Kanda, A.; Yun, Y.; Shimono, M.; Nguyen, L.M.; Mitani, A.; Suzuki, K.; Asako, M.; Iwai, H. CCL4 Functions as a Biomarker of Type 2 Airway Inflammation. Biomedicines 2022, 10, 1779. [Google Scholar] [CrossRef] [PubMed]
- Weston, C.A.; Rana, B.M.J.; Cousins, D.J. Differential expression of functional chemokine receptors on human blood and lung group 2 innate lymphoid cells. J. Allergy Clin. Immunol. 2019, 143, 410–413.e419. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Dong, J.; Ji, L.; Jiang, P.; Leung, T.F.; Liu, D.; Ng, L.G.; Tsang, M.S.; Jiao, D.; Lam, C.W.; et al. Anti-Allergic Inflammatory Activity of Interleukin-37 Is Mediated by Novel Signaling Cascades in Human Eosinophils. Front. Immunol. 2018, 9, 1445. [Google Scholar] [CrossRef] [PubMed]
- Ulfman, L.H.; Alblas, J.; van Aalst, C.W.; Zwaginga, J.J.; Koenderman, L. Differences in potency of CXC chemokine ligand 8-, CC chemokine ligand 11-, and C5a-induced modulation of integrin function on human eosinophils. J. Immunol. 2005, 175, 6092–6099. [Google Scholar] [CrossRef]
- Rossios, C.; Pavlidis, S.; Hoda, U.; Kuo, C.H.; Wiegman, C.; Russell, K.; Sun, K.; Loza, M.J.; Baribaud, F.; Durham, A.L.; et al. Sputum transcriptomics reveal upregulation of IL-1 receptor family members in patients with severe asthma. J. Allergy Clin. Immunol. 2018, 141, 560–570. [Google Scholar] [CrossRef]
- Marshall, C.L.; Hasani, K.; Mookherjee, N. Immunobiology of Steroid-Unresponsive Severe Asthma. Front. Allergy 2021, 2, 718267. [Google Scholar] [CrossRef]
HV (n = 8) | Stable ECRS (n = 31) | Active ECRS (n = 23) | Non-ECRS (n = 8) | AR (n = 8) | p Value | |
---|---|---|---|---|---|---|
Age | 52.3 ± 8.2 | 59.5 ± 10.5 | 54.4 ± 14.8 | 56.4 ± 15.2 | 37.1 ± 19.3 | p = 0.0023 |
Gender (M/F) | 3/5 | 13/18 | 12/11 | 7/1 | 6/2 | p = 0.0136 |
Smoking status (never/ex) | 7/1 | 18/13 | 17/6 | 4/4 | 5/3 | p = 0.5257 |
Eosinophils (per μL) | 225 ± 109 | 401 ± 396 | 753 ± 1069 | 245 ± 178 | 196 ± 162 | p = 0.1011 |
FEV1 (%predicted) | 92.4 ± 8.9 | 74.9 ± 18.7 | 79.7 ± 22.6 | 92.8 ± 13.7 | 90.1 ± 15.2 | p = 0.0685 |
FEV1/FVC | 83.1 ± 4.7 | 69.3 ± 12.0 | 69.6 ± 16.1 | 74.6 ± 8.2 | 83.6 ± 4.9 | p = 0.0075 |
FEF25–75 (%predicted) | 83.0 ± 16.5 | 45.1 ± 19.7 | 51.0 ± 35.1 | 61.4 ± 25.4 | 75.2 ± 20.0 | p = 0.0016 |
Treatment | ||||||
ICS (μg) (1) | none | 800 ± 345 | 1087 ± 285 | none | none | p = 0.0005 |
LABA | 0 | 22 | 23 | 0 | 0 | p = 0.0716 |
LTRA | 0 | 18 | 14 | 0 | 4 | p = 0.8999 |
Anti-histamine | 0 | 6 | 12 | 1 | 3 | p = 0.0898 |
INS | 0 | 19 | 13 | 0 | 3 | p = 0.5829 |
OCS | 0 | 0 | 3 [2.8 ± 0.7 mg] (2) | 0 | 0 | p = 0.6391 |
Macrolide | 0 | 3 | 1 | 3 | 0 | p = 0.4616 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobayashi, Y.; Chu, H.H.; Bui, D.V.; Yun, Y.; Nguyen, L.M.; Mitani, A.; Suzuki, K.; Asako, M.; Kanda, A.; Iwai, H. The Neutralization of the Eosinophil Peroxidase Antibody Accelerates Eosinophilic Mucin Decomposition. Cells 2023, 12, 2746. https://doi.org/10.3390/cells12232746
Kobayashi Y, Chu HH, Bui DV, Yun Y, Nguyen LM, Mitani A, Suzuki K, Asako M, Kanda A, Iwai H. The Neutralization of the Eosinophil Peroxidase Antibody Accelerates Eosinophilic Mucin Decomposition. Cells. 2023; 12(23):2746. https://doi.org/10.3390/cells12232746
Chicago/Turabian StyleKobayashi, Yoshiki, Hanh Hong Chu, Dan Van Bui, Yasutaka Yun, Linh Manh Nguyen, Akitoshi Mitani, Kensuke Suzuki, Mikiya Asako, Akira Kanda, and Hiroshi Iwai. 2023. "The Neutralization of the Eosinophil Peroxidase Antibody Accelerates Eosinophilic Mucin Decomposition" Cells 12, no. 23: 2746. https://doi.org/10.3390/cells12232746
APA StyleKobayashi, Y., Chu, H. H., Bui, D. V., Yun, Y., Nguyen, L. M., Mitani, A., Suzuki, K., Asako, M., Kanda, A., & Iwai, H. (2023). The Neutralization of the Eosinophil Peroxidase Antibody Accelerates Eosinophilic Mucin Decomposition. Cells, 12(23), 2746. https://doi.org/10.3390/cells12232746